Circular Economy Approach for Treatment of Water-Containing Diclofenac Using Recyclable Magnetic Fe3o4 Nanoparticles: A Case Study of Real Water Sample from Lake Victoria

Shehu, Zaccheus and Nyakairu, George William Atwoki and Tebandeke, Emmanuel and Odume, Oghenekaro Nelson (2023) Circular Economy Approach for Treatment of Water-Containing Diclofenac Using Recyclable Magnetic Fe3o4 Nanoparticles: A Case Study of Real Water Sample from Lake Victoria. Journal of Pharmaceutical Research International, 35 (22). pp. 66-81. ISSN 2456-9119

[thumbnail of Nyakairu35222023JPRI105315.pdf] Text
Nyakairu35222023JPRI105315.pdf - Published Version

Download (1MB)

Abstract

Aims: A circular economy is a concept that aims to create a sustainable future by reducing waste and promoting the reuse of resources. In the field of water treatment, this concept has been applied through the use of recyclable materials to remove pollutants from water.

Place and Duration of Study: In this study, we investigated the use of recyclable magnetic Fe3O4 nanoparticles to remove diclofenac from a water sample from Lake Victoria. The water sample was collected once to test the application of recyclable magnetic Fe3O4 nanoparticles in real environmental samples.

Methodology: The nanoparticles were synthesized using a coprecipitation method and characterized using various techniques, including SEM/EDX, XRD, MPMS, ImageJ, and Solid addition method for PZC determination. The removal of diclofenac experiments was designed by response surface methodology.

Results: The optimal conditions for diclofenac removal were pH 2, concentration 500 ug/L, contact time 60 minutes, and adsorbent dose 50 mg with a removal percentage of 69.95%. The reusability of the Fe3O4 nanoparticles was evaluated for three cycles, with removal percentages of 69.95%, 60%, and 41.6% for the first, second, and third cycles, respectively. This characteristic aligns with the principles of the circular economy, promoting resource conservation and waste reduction. The nanoparticles were also tested on a real water sample from Lake Victoria, resulting in 100% removal of diclofenac.

Conclusion: This finding suggests that the Fe3O4 nanoparticles can be adopted for drinking water treatment in the East African community, addressing the issue of pharmaceutical contamination in water bodies.

Item Type: Article
Subjects: STM Academic > Medical Science
Depositing User: Unnamed user with email support@stmacademic.com
Date Deposited: 13 Oct 2023 12:56
Last Modified: 13 Oct 2023 12:56
URI: http://article.researchpromo.com/id/eprint/1453

Actions (login required)

View Item
View Item