Zhou, Xingyu and Qin, Tong and Meng, Linzhi (2022) Maneuvering Spacecraft Orbit Determination Using Polynomial Representation. Aerospace, 9 (5). p. 257. ISSN 2226-4310
aerospace-09-00257.pdf - Published Version
Download (3MB)
Abstract
This paper proposed a polynomial representation-based method for orbit determination (OD) of spacecraft with the unknown maneuver. Different from the conventional maneuvering OD approaches that rely on specific orbit dynamic equation, the proposed method needs no priori information of the unknown maneuvering model. The polynomials are used to represent the unknown maneuver. A transformation is made for the polynomials to improve the convergence and robustness. The Extended Kalman Filter (EKF) is used to process incoming observation data by compensating the unknown maneuver using the polynomials. The proposed method is successfully applicated into the OD problem of spacecraft with trigonometric maneuver. Numerical simulations show that the eighth-order polynomials are accurate enough to represent a trigonometric maneuver. Moreover, Monte Carlo simulations show that the position errors are smaller than 1 km, and the maneuver estimated errors are no more than 0.1 mm/s2 using the eighth-order polynomials. The proposed method is accurate and efficient, and has potential applications for tracking maneuvering space target.
Item Type: | Article |
---|---|
Subjects: | STM Academic > Engineering |
Depositing User: | Unnamed user with email support@stmacademic.com |
Date Deposited: | 04 Apr 2023 07:50 |
Last Modified: | 04 Apr 2024 09:26 |
URI: | http://article.researchpromo.com/id/eprint/425 |