New insights into binocular rivalry from the reconstruction of evolving percepts using model network dynamics

Barkdoll, Kenneth and Lu, Yuhua and Barranca, Victor J. (2023) New insights into binocular rivalry from the reconstruction of evolving percepts using model network dynamics. Frontiers in Computational Neuroscience, 17. ISSN 1662-5188

[thumbnail of pubmed-zip/versions/1/package-entries/fncom-17-1137015/fncom-17-1137015.pdf] Text
pubmed-zip/versions/1/package-entries/fncom-17-1137015/fncom-17-1137015.pdf - Published Version

Download (1MB)

Abstract

New insights into binocular rivalry from the reconstruction of evolving percepts using model network dynamics Kenneth Barkdoll Yuhua Lu Victor J. Barranca

When the two eyes are presented with highly distinct stimuli, the resulting visual percept generally switches every few seconds between the two monocular images in an irregular fashion, giving rise to a phenomenon known as binocular rivalry. While a host of theoretical studies have explored potential mechanisms for binocular rivalry in the context of evoked model dynamics in response to simple stimuli, here we investigate binocular rivalry directly through complex stimulus reconstructions based on the activity of a two-layer neuronal network model with competing downstream pools driven by disparate monocular stimuli composed of image pixels. To estimate the dynamic percept, we derive a linear input-output mapping rooted in the non-linear network dynamics and iteratively apply compressive sensing techniques for signal recovery. Utilizing a dominance metric, we are able to identify when percept alternations occur and use data collected during each dominance period to generate a sequence of percept reconstructions. We show that despite the approximate nature of the input-output mapping and the significant reduction in neurons downstream relative to stimulus pixels, the dominant monocular image is well-encoded in the network dynamics and improvements are garnered when realistic spatial receptive field structure is incorporated into the feedforward connectivity. Our model demonstrates gamma-distributed dominance durations and well obeys Levelt's four laws for how dominance durations change with stimulus strength, agreeing with key recurring experimental observations often used to benchmark rivalry models. In light of evidence that individuals with autism exhibit relatively slow percept switching in binocular rivalry, we corroborate the ubiquitous hypothesis that autism manifests from reduced inhibition in the brain by systematically probing our model alternation rate across choices of inhibition strength. We exhibit sufficient conditions for producing binocular rivalry in the context of natural scene stimuli, opening a clearer window into the dynamic brain computations that vary with the generated percept and a potential path toward further understanding neurological disorders.
3 24 2023 1137015 10.3389/fncom.2023.1137015 1 10.3389/crossmark-policy frontiersin.org true Swarthmore College http://dx.doi.org/10.13039/100012616 https://creativecommons.org/licenses/by/4.0/ 10.3389/fncom.2023.1137015 https://www.frontiersin.org/articles/10.3389/fncom.2023.1137015/full https://www.frontiersin.org/articles/10.3389/fncom.2023.1137015/full Brain Res. Bull. Abbott 50 303 1999 10.1016/S0361-9230(99)00161-6 Lapicque's introduction of the integrate-and-fire model neuron (1907) Vision Res. Alais 47 269 2007 Strength and coherence of binocular rivalry depends on shared stimulus complexity 10.1016/j.visres.2006.09.003 Exploring the retinal connectome355379 AndersonJ. R. JonesB. W. WattC. B. ShawM. V. YangJ.-H. DemillD. Mol. Vis.172011 Front. Comput. Neurosci. Augustin 7 9 2013 How adaptation shapes spike rate oscillations in recurrent neuronal networks 10.3389/fncom.2013.00009 Proc. Natl. Acad. Sci. U.S.A. Baker 106 5436 2009 Natural images dominate in binocular rivalry 10.1073/pnas.0812860106 IEEE Signal Process. Mag. Baraniuk 2007 Compressive sensing 10.1109/MSP.2007.4286571 Current Problems in Animal Behaviour Barlow 331 1961 “The coding of sensory messages,” Proc. R. Soc. Lond. B Biol. Sci. Barlow 212 1 1981 The ferrier lecture, 1980. critical limiting factors in the design of the eye and visual cortex Neurocomputing Barranca 455 368 2021 Neural network learning of improved compressive sensing sampling and receptive field structure 10.1016/j.neucom.2021.05.061 J. Comput. Neurosci. Barranca 51 43 2022 Reconstruction of sparse recurrent connectivity and inputs from the nonlinear dynamics of neuronal networks 10.1007/s10827-022-00831-x SIAM J. Appl. Dyn. Syst. Barranca 20 2602 2021 Data-driven reconstruction and encoding of sparse stimuli across convergent sensory layers from downstream neuronal network dynamics 10.1137/21M1403114 Cogn. Neurodyn. Barranca 13 105 2019 The impact of spike-frequency adaptation on balanced network dynamics 10.1007/s11571-018-9504-2 J. Comput. Neurosci. Barranca 37 161 Dynamics of the exponential integrate-and-fire model with slow currents and adaptation 10.1007/s10827-013-0494-0 PLoS Comput. Biol. Barranca 10 e1003793 Sparsity and compressed coding in sensory systems 10.1371/journal.pcbi.1003793 Sci. Rep. Barranca 6 31976 2016 Improved compressive sensing of natural scenes using localized random sampling 10.1038/srep31976 Front. Neurosci. Barranca 13 1101 2019 Compressive sensing inference of neuronal network connectivity in balanced neuronal dynamics 10.3389/fnins.2019.01101 J. Theor. Biol. Barranca 454 268 2018 A computational study of the role of spatial receptive field structure in processing natural and non-natural scenes 10.1016/j.jtbi.2018.06.011 Neural Comput. Benda 15 2523 2003 A universal model for spike-frequency adaptation 10.1162/089976603322385063 Comm. Mag. Berger 48 164 2010 Application of compressive sensing to sparse channel estimation 10.1109/MCOM.2010.5621984 Front. Comput. Neurosci. Binas 8 68 2014 Learning and stabilization of winner-take-all dynamics through interacting excitatory and inhibitory plasticity 10.3389/fncom.2014.00068 Nature Blake 249 488 1974 10.1038/249488a0 Adaptation to invisible gratings and the site of binocular rivalry suppression Nat. Rev. Neurosci. Blake 3 13 2002 Visual competition 10.1038/nrn701 Invest. Ophthalmol. Vis. Sci. Blake 32 2821 1991 Discriminating binocular fusion from false fusion J. Neurosci. Blasdel 12 3115 1992 10.1523/JNEUROSCI.12-08-03115.1992 Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex J. Select. Topics Signal Process. Bobin 2 718 2008 Compressed sensing in astronomy 10.1109/JSTSP.2008.2005337 PLoS ONE Bock 14 e0218529 2019 Tagged meg measures binocular rivalry in a cortical network that predicts alternation rate 10.1371/journal.pone.0218529 PLoS Comput. Biol. Boerlin 9 e1003258 2013 Predictive coding of dynamical variables in balanced spiking networks 10.1371/journal.pcbi.1003258 Anim. Behav. Borofsky 168 33 2020 Hive minded: like neurons, honey bees collectively integrate negative feedback to regulate decisions 10.1016/j.anbehav.2020.07.023 Vision Res. Bosten 110 34 2015 A population study of binocular function 10.1016/j.visres.2015.02.017 Vision Res. Brascamp 109 20 2015 The 'laws' of binocular rivalry: 50 years of Levelt's propositions 10.1016/j.visres.2015.02.019 J. Physiol. Brecht 543 49 2002 Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex 10.1113/jphysiol.2002.018465 Psychol. Rev. Breese 16 410 1909 10.1037/h0075805 Binocular rivalry J. Comput. Neurosci. Brette 23 349 2007 Simulation of networks of spiking neurons: a review of tools and strategies 10.1007/s10827-007-0038-6 Vis. Neurosci. Britten 10 1157 1993 10.1017/S0952523800010269 Responses of neurons in macaque MT to stochastic motion signals Nature Brown 283 673 1980 10.1038/283673a0 Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone Vision Res. Brown 37 2401 1997 10.1016/S0042-6989(97)00045-X A method for investigating binocular rivalry in real-time with the steady-state VEP SIAM Rev. Bruckstein 51 34 2009 From sparse solutions of systems of equations to sparse modeling of signals and images 10.1137/060657704 Vision Res. Buckthought 48 819 2008 Hysteresis effects in stereopsis and binocular rivalry 10.1016/j.visres.2007.12.013 Biol. Cybern. Burkitt 95 1 2006 A review of the integrate-and-fire neuron model: I. homogeneous synaptic input 10.1007/s00422-006-0068-6 Commun. Pur. Appl. Math. Candes 59 1207 2006 Stable signal recovery from incomplete and inaccurate measurements 10.1002/cpa.20124 Signal Process. Mag. IEEE Candes 25 21 2008 An introduction to compressive sampling 10.1109/MSP.2007.914731 eLife Cao 10 e61581 2021 Binocular rivalry reveals an out-of-equilibrium neural dynamics suited for decision-making 10.7554/eLife.61581.sa2 J. Comp. Neurol. Carter 528 3123 2020 Perceptual rivalry across animal species 10.1002/cne.24939 Nature Chao 468 263 2010 Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes 10.1038/nature09582 Stochastic Point Processes: Statistical Analysis, Theory, and Applications Cinlar 549 1972 “Superposition of point processes,” Commun. Biol. Cohen 2 319 2019 Dynamical modeling of multi-scale variability in neuronal competition 10.1038/s42003-019-0555-7 SIAM J. Appl. Dyn. Syst. Curtu 7 609 2008 Mechanisms for frequency control in neuronal competition models 10.1137/070705842 J. Bioinform. Syst. Biol. Dai 2009 162824 2009 Compressive sensing DNA microarrays 10.1155/2009/162824 Neural. Comput. Dayan 10 1119 1998 10.1162/089976698300017377 A hierarchical model of binocular rivalry Atten. Percept. Psychophys. Dieter 78 1861 2016 Does visual attention drive the dynamics of bistable perception? 10.3758/s13414-016-1143-2 Vision Res. Dieter 141 40 2017 Individual differences in sensory eye dominance reflected in the dynamics of binocular rivalry 10.1016/j.visres.2016.09.014 Neuron Dinstein 75 981 2012 Unreliable evoked responses in autism 10.1016/j.neuron.2012.07.026 IEEE Trans. Inform. Theory Donoho 52 1289 2006 Compressed sensing 10.1109/TIT.2006.871582 IEEE Trans. Inform. Theory Donoho 54 4789 2008 Fast solution of l1-norm minimization problems when the solution may be sparse 10.1109/TIT.2008.929958 Annu. Rev. Neurosci. Douglas 27 419 2004 Neuronal circuits of the neocortex 10.1146/annurev.neuro.27.070203.144152 Memoires de Mathematique et de physique presentes par Divers Savants Dutour 3 514 1760 Discussion d'une question d'optique. l'académie des sciences PLoS ONE Emad 9 e90781 2014 CaSPIAN: a causal compressive sensing algorithm for discovering directed interactions in gene networks 10.1371/journal.pone.0090781 Neural Comput. Ermentrout 13 1285 2001 The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators 10.1162/08997660152002861 Nature Ferster 380 249 1996 10.1038/380249a0 Orientation selectivity of thalamic input to simple cells of cat visual cortex Neural Comput. Field 6 559 1994 10.1162/neco.1994.6.4.559 What is the goal of sensory coding? Annu. Rev. Neurosci. Field 30 1 2007 Information processing in the primate retina: circuitry and coding 10.1146/annurev.neuro.30.051606.094252 J. Neurophysiol. Fiete 98 2038 2007 Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances 10.1152/jn.01311.2006 J. Neurophysiol. Freeman 94 4412 2005 Multistage model for binocular rivalry 10.1152/jn.00557.2005 Perception Gallagher 43 1239 2014 Interpreting the temporal dynamics of perceptual rivalries 10.1068/p7648 J. Neurosci. Ganmor 31 3044 2011 The architecture of functional interaction networks in the retina 10.1523/JNEUROSCI.3682-10.2011 Curr. Mol. Med. Gao 15 146 2015 Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders 10.2174/1566524015666150303003028 Neural Comput. Gershman 24 1 2012 Multistability and perceptual inference 10.1162/NECO_a_00226 Neuron Gilbert 9 1 1992 10.1016/0896-6273(92)90215-Y Horizontal integration and cortical dynamics J. Neurophysiol. Golubitsky 122 1989 2019 Symmetry of generalized rivalry network models determines patterns of interocular grouping in four-location binocular rivalry 10.1152/jn.00438.2019 Exp. Brain Res. Graziano 97 96 1993 10.1007/BF00228820 A bimodal map of space: somatosensory receptive fields in the macaque putamen with corresponding visual receptive fields Phys. Rev. Lett. Gross 105 150401 2010 Quantum state tomography via compressed sensing 10.1103/PhysRevLett.105.150401 J. Neurosci. Haider 26 4535 2006 Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition 10.1523/JNEUROSCI.5297-05.2006 Nat. Neurosci. Happe 9 1218 2006 Time to give up on a single explanation for autism 10.1038/nn1770 Nature Haynes 438 496 2005 Eye-specific effects of binocular rivalry in the human lateral geniculate nucleus 10.1038/nature04169 Cereb. Cortex He 17 2407 2007 Small-world anatomical networks in the human brain revealed by cortical thickness from MRI 10.1093/cercor/bhl149 SIAM Rev. Heil 31 628 1989 10.1137/1031129 Continuous and discrete wavelet transforms Trans. Signal. Proc. Herman 57 2275 2009 High-resolution radar via compressed sensing 10.1109/TSP.2009.2014277 J. Physiol. Hodgkin 117 500 1952 10.1113/jphysiol.1952.sp004764 A quantitative description of membrane current and its application to conduction and excitation in nerve Vision Res. Holcombe 48 1743 2008 Illusory motion reversals from unambiguous motion with visual, proprioceptive, and tactile stimuli 10.1016/j.visres.2008.05.019 Eye, Brain, and Vision Hubel 1995 J. Physiol. Hubel 160 106 1962 10.1113/jphysiol.1962.sp006837 Receptive fields, binocular interaction and functional architecture of the cat's visual cortex J. Physiol. Hubel 154 572 1960 10.1113/jphysiol.1960.sp006596 Receptive fields of optic nerve fibres in the spider monkey J. Vis. Hupe 8 1 2008 Bistability for audiovisual stimuli: perceptual decision is modality specific 10.1167/8.7.1 PLoS ONE Ingrosso 14 e0220547 2019 Training dynamically balanced excitatory-inhibitory networks 10.1371/journal.pone.0220547 J. Neurosci. Issa 19 6965 1999 The critical period for ocular dominance plasticity in the Ferret's visual cortex 10.1523/JNEUROSCI.19-16-06965.1999 Proc. Natl. Acad. Sci. U.S.A. Jamain 105 1710 2008 Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism 10.1073/pnas.0711555105 SIAM J. Appl. Dyn. Syst. Kilpatrick 9 1303 2010 Binocular rivalry in a competitive neural network with synaptic depression 10.1137/100788872 Curr. Biol. Klink 20 1464 2010 Experience-driven plasticity in binocular vision 10.1016/j.cub.2010.06.057 Science Knudsen 202 778 1978 10.1126/science.715444 Center-surround organization of auditory receptive fields in the owl Nat. Rev. Neurosci. Koch 17 307 2016 Neural correlates of consciousness: progress and problems 10.1038/nrn.2016.22 Front. Hum. Neurosci. Kornmeier 6 51 2012 Ambiguous figures—what happens in the brain when perception changes but not the stimulus 10.3389/fnhum.2012.00051 Proc. Natl. Acad. Sci. U.S.A. Kovacs 93 15508 1996 10.1073/pnas.93.26.15508 When the brain changes its mind: interocular grouping during binocular rivalry Commun. ACM Krizhevsky 60 84 2017 ImageNet classification with deep convolutional neural networks 10.1145/3065386 J. Neurophysiol. La Camera 96 3448 2006 Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons 10.1152/jn.00453.2006 J. Comput. Neurosci. Laing 12 39 2002 A spiking neuron model for binocular rivalry 10.1023/A:1014942129705 Science Lansing 146 1325 1964 10.1126/science.146.3649.1325 Electroencephalographic correlates of binocular rivalry in man Vision Res. Lee 39 1447 1999 10.1016/S0042-6989(98)00269-7 Rival ideas about binocular rivalry Nat. Neurosci. Lee 10 1048 2007 Hierarchy of cortical responses underlying binocular rivalry 10.1038/nn1939 Nature Leopold 379 549 1996 10.1038/379549a0 Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry On binocular rivalry Levelt 1965 Proc. Natl. Acad. Sci. U.S.A. Li 114 E6192 2017 Attention model of binocular rivalry 10.1073/pnas.1620475114 J. Neurosci. Lim 34 6790 2014 Balanced cortical microcircuitry for spatial working memory based on corrective feedback control 10.1523/JNEUROSCI.4602-13.2014 Nat. Neurosci. Liu 7 373 2004 Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites 10.1038/nn1206 Nature Logothetis 380 621 1996 10.1038/380621a0 What is rivalling during binocular rivalry? Nature London 466 123 2010 Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex 10.1038/nature09086 Magn. Reson. Med. Lustig 58 1182 2007 Sparse MRI: the application of compressed sensing for rapid MR imaging 10.1002/mrm.21391 J. Physiol. Markram 500 409 1997 10.1113/jphysiol.1997.sp022031 Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex Phys. Rev. Lett. Mather 102 068105 2009 Delay-induced degrade-and-fire oscillations in small genetic circuits 10.1103/PhysRevLett.102.068105 Biol. Cybern. Matsuoka 49 201 1984 10.1007/BF00334466 The dynamic model of binocular rivalry PLoS ONE McKinstry 11 e0162155 2016 Imagery may arise from associations formed through sensory experience: a network of spiking neurons controlling a robot learns visual sequences in order to perform a mental rotation task 10.1371/journal.pone.0162155 Proc. Natl. Acad. Sci. U.S.A. McLaughlin 97 8087 2000 A neuronal network model of macaque primary visual cortex (V1): Orientation selectivity and dynamics in the input layer 4Cα 10.1073/pnas.110135097 J. Neurosci. Mentch 39 8398 2019 GABAergic inhibition gates perceptual awareness during binocular rivalry 10.1523/JNEUROSCI.0836-19.2019 The Constitution of Visual Consciousness: Lessons From Binocular Rivalry Miller 2013 10.1075/aicr.90 Proc. Natl. Acad. Sci. U.S.A. Miller 107 2664 2010 Genetic contribution to individual variation in binocular rivalry rate 10.1073/pnas.0912149107 J. Neurosci. Miura 27 13802 2007 Balanced excitatory and inhibitory inputs to cortical neurons decouple firing irregularity from rate modulations 10.1523/JNEUROSCI.2452-07.2007 Science Mori 286 711 1999 10.1126/science.286.5440.711 The olfactory bulb: coding and processing of odor molecule information Science Nawrot 244 716 1989 10.1126/science.2717948 Neural integration of information specifying structure from stereopsis and motion J. Theor. Biol. Nelson 49 1 1975 10.1016/S0022-5193(75)80020-8 Globality and stereoscopic fusion in binocular vision Neuron Nelson 87 684 2015 Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders 10.1016/j.neuron.2015.07.033 PLoS Comput. Biol. Nguyen 16 e1008152 2020 Buildup and bistability in auditory streaming as an evidence accumulation process with saturation 10.1371/journal.pcbi.1008152 Adv. Bioinformatics Noor 2013 205763 2013 Reverse engineering sparse gene regulatory networks using cubature kalman filter and compressed sensing 10.1155/2013/205763 Trends Cogn. Sci. Pearson 12 334 2008 Sensory memory for ambiguous vision 10.1016/j.tics.2008.05.006 PLoS ONE Platonov 8 e71931 2013 Influence of contrast and coherence on the temporal dynamics of binocular motion rivalry 10.1371/journal.pone.0071931 Nat. Neurosci. Polonsky 3 1153 2000 Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry 10.1038/80676 Phys. Rev. Lett. Rangan 96 178101 2006 Maximum-entropy closures for kinetic theories of neuronal network dynamics 10.1103/PhysRevLett.96.178101 J. Neurophysiol. Rauch 90 1598 2003 Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents 10.1152/jn.00293.2003 J. Neurosci. Robertson 33 16983 2013 Slower rate of binocular rivalry in autism 10.1523/JNEUROSCI.0448-13.2013 Curr. Biol. Robertson 26 80 2016 Reduced GABAergic action in the autistic brain 10.1016/j.cub.2015.11.019 Proc. Natl. Acad. Sci. U.S.A. Rosenberg 112 9158 2015 A computational perspective on autism 10.1073/pnas.1510583112 Neural Comput. Rozell 20 2526 2008 Sparse coding via thresholding and local competition in neural circuits 10.1162/neco.2008.03-07-486 Genes Brain Behav. Rubenstein 2 255 2003 Model of autism: increased ratio of excitation/inhibition in key neural systems 10.1034/j.1601-183X.2003.00037.x Neural. Comput. Rutishauser 23 735 2011 Collective stability of networks of winner-take-all circuits 10.1162/NECO_a_00091 PLoS Comput. Biol. Said 9 e1002991 2013 A model of binocular rivalry and cross-orientation suppression 10.1371/journal.pcbi.1002991 Nat. Neurosci. Sceniak 2 733 1999 10.1038/11197 Contrast's effect on spatial summation by macaque V1 neurons J. Neurophysiol. Seely 106 2136 2011 Role of mutual inhibition in binocular rivalry 10.1152/jn.00228.2011 J. Neurosci. Sengpiel 14 6855 1994 10.1523/JNEUROSCI.14-11-06855.1994 Interocular suppression in the visual cortex of strabismic cats Proc. IRE Shannon 37 10 1949 10.1109/JRPROC.1949.232969 Communication in the presence of noise J. Vis. Shannon 11 17 2011 Genes contribute to the switching dynamics of bistable perception 10.1167/11.3.8 J. Comput. Neurosci. Shpiro 27 37 2009 Balance between noise and adaptation in competition models of perceptual bistability 10.1007/s10827-008-0125-3 Vis. Neurosci. Spear 13 199 1996 10.1017/S0952523800007239 Relationship between numbers of retinal ganglion cells and lateral geniculate neurons in the rhesus monkey Curr. Biol. Spiegel 29 2948 2019 Slower binocular rivalry in the autistic brain 10.1016/j.cub.2019.07.026 Trends Cogn. Sci. Sterzer 13 310 2009 The neural bases of multistable perception 10.1016/j.tics.2009.04.006 Neuron Stettler 36 739 2002 Lateral connectivity and contextual interactions in macaque primary visual cortex 10.1016/S0896-6273(02)01029-2 Neuron Suzuki 36 143 2002 Evidence for perceptual “trapping” and adaptation in multistable binocular rivalry 10.1016/S0896-6273(02)00934-0 Front. Neurosci. Tamamaki 4 202 2010 Long-range GABAergic connections distributed throughout the neocortex and their possible function 10.3389/fnins.2010.00202 Proc. Natl. Acad. Sci. U.S.A. Tao 103 12911 2006 Orientation selectivity in visual cortex by fluctuation-controlled criticality 10.1073/pnas.0605415103 Brain Mind Tong 2 55 2001 Competing theories of binocular rivalry: a possible resolution 10.1023/A:1017942718744 Nature Tong 411 195 2001 Interocular rivalry revealed in the human cortical blind-spot representation 10.1038/35075583 Trends Cogn. Sci. Tong 10 502 2006 Neural bases of binocular rivalry 10.1016/j.tics.2006.09.003 IEEE Trans. Inform. Theory Tropp 53 4655 2007 Signal recovery from random measurements via orthogonal matching pursuit 10.1109/TIT.2007.909108 Neural Comput. Troyer 9 971 1997 10.1162/neco.1997.9.5.971 Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell J. Opt. Soc. Am. A Opt. Image Sci. Vis. van Ee 26 2612 2009 Stochastic variations in sensory awareness are driven by noisy neuronal adaptation: evidence from serial correlations in perceptual bistability 10.1364/JOSAA.26.002612 Science van Vreeswijk 274 1724 1996 10.1126/science.274.5293.1724 Chaos in neuronal networks with balanced excitatory and inhibitory activity Neural Comput. van Vreeswijk 15 1321 1998 10.1162/089976698300017214 Chaotic balanced state in a model of cortical circuits Biol. Psychiatry Vattikuti 67 672 2010 A computational model for cerebral cortical dysfunction in autism spectrum disorders 10.1016/j.biopsych.2009.09.008 PLoS Comput. Biol. Vattikuti 12 e1004903 2016 Canonical cortical circuit model explains rivalry, intermittent rivalry, and rivalry memory 10.1371/journal.pcbi.1004903 Phys. Rev. X Wang 1 021021 2011 Network reconstruction based on evolutionary-game data via compressive sensing 10.1103/PhysRevX.1.021021 J. Comput. Neurosci. Wang 48 193 2020 Ring models of binocular rivalry and fusion 10.1007/s10827-020-00744-7 J. Comp. Neurol. Welker 166 173 1976 10.1002/cne.901660205 Receptive fields of barrels in the somatosensory neocortex of the rat Philos. Trans. R. Soc. Lond. Wheatstone 128 371 1838 XVIII. contributions to the physiology of vision.—Part the first. on some remarkable, and hitherto unobserved, phenomena of binocular vision J. Physiol. Wiesel 153 583 1960 10.1113/jphysiol.1960.sp006557 Receptive fields of ganglion cells in the cat's retina Neuron Wilke 39 1043 2003 Generalized flash suppression of salient visual targets 10.1016/j.neuron.2003.08.003 Chem. Senses Wilson 26 577 2001 Receptive fields in the rat piriform cortex 10.1093/chemse/26.5.577 Proc. Natl. Acad. Sci. U.S.A. Wilson 100 14499 2003 Computational evidence for a rivalry hierarchy in vision 10.1073/pnas.2333622100 The Constitution of Visual Consciousness Wilson 281 2013 10.1075/aicr.90.11wil “Binocular rivalry: cooperation, competition, and decisions,” Vision Res. Wilson 140 89 2017 Binocular contrast, stereopsis, and rivalry: toward a dynamical synthesis 10.1016/j.visres.2017.07.016 Nature Wilson 412 907 2001 Dynamics of travelling waves in visual perception 10.1038/35091066 J. Neurosci. Xu 36 3231 2016 Rivalry-like neural activity in primary visual cortex in anesthetized monkeys 10.1523/JNEUROSCI.3660-15.2016 Nature Xue 511 596 2014 Equalizing excitation-inhibition ratios across visual cortical neurons 10.1038/nature13321 Methods in Neuronal Modeling: From Synapses to Networks Yamada 97 1989 “Multiple channels and calcium dynamics,” Neuron Zhang 71 362 2011 Binocular rivalry requires visual attention 10.1016/j.neuron.2011.05.035 Curr. Biol. Zhou 19 1561 2009 Binaral rivalry between the nostrils and in the cortex 10.1016/j.cub.2009.07.052

Item Type: Article
Subjects: STM Academic > Medical Science
Depositing User: Unnamed user with email support@stmacademic.com
Date Deposited: 27 Mar 2023 08:48
Last Modified: 18 Mar 2024 03:59
URI: http://article.researchpromo.com/id/eprint/366

Actions (login required)

View Item
View Item