Kuibarov, Andrii and Suvorov, Oleksandr and Vocaturo, Riccardo and Fedorov, Alexander and Lou, Rui and Merkwitz, Luise and Voroshnin, Vladimir and Facio, Jorge I. and Koepernik, Klaus and Yaresko, Alexander and Shipunov, Grigory and Aswartham, Saicharan and Brink, Jeroen van den and Büchner, Bernd and Borisenko, Sergey (2024) Evidence of superconducting Fermi arcs. Nature, 626 (7998). pp. 294-299. ISSN 0028-0836
s41586-023-06977-7.pdf - Published Version
Download (20MB)
Abstract
An essential ingredient for the production of Majorana fermions for use in quantum computing is topological superconductivity As bulk topological superconductors remain elusive, the most promising approaches exploit proximity-induced superconductivity, making systems fragile and difficult to realize Due to their intrinsic topology8, Weyl semimetals are also potential candidates but have always been connected with bulk superconductivity, leaving the possibility of intrinsic superconductivity of their topological surface states, the Fermi arcs, practically without attention, even from the theory side. Here, by means of angle-resolved photoemission spectroscopy and ab initio calculations, we identify topological Fermi arcs on two opposing surfaces of the non-centrosymmetric Weyl material trigonal PtBi2 (ref. 9). We show these states become superconducting at temperatures around 10 K. Remarkably, the corresponding coherence peaks appear as the strongest and sharpest excitations ever detected by photoemission from solids. Our findings indicate that superconductivity in PtBi2 can occur exclusively at the surface, rendering it a possible platform to host Majorana modes in intrinsically topological superconductor–normal metal–superconductor Josephson junctions.
Item Type: | Article |
---|---|
Subjects: | STM Academic > Multidisciplinary |
Depositing User: | Unnamed user with email support@stmacademic.com |
Date Deposited: | 23 Feb 2024 06:11 |
Last Modified: | 23 Feb 2024 06:11 |
URI: | http://article.researchpromo.com/id/eprint/2195 |