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Abstract

Westward winds have now been inferred for two hot Jupiters (HJs): HAT-P-7b and CoRoT-2b. Such observations
could be the result of a number of physical phenomena such as cloud asymmetries, asynchronous rotation, or
magnetic fields. For the hotter HJs magnetic fields are an obvious candidate, though the actual mechanism remains
poorly understood. Here we show that a strong toroidal magnetic field causes the planetary-scale equatorial
magneto-Kelvin wave to structurally shear as it travels, resulting in westward tilting eddies, which drive a reversal
of the equatorial winds from their eastward hydrodynamic counterparts. Using our simplified model we estimate
that the equatorial winds of HAT-P-7b would reverse for a planetary dipole field strength ‐ ‐B 6 Gdip,HAT P 7b , a
result that is consistent with three-dimensional magnetohydrodynamic simulations and lies below typical surface
dipole estimates of inflated HJs. The same analysis suggests the minimum dipole field strength required to reverse
the winds of CoRoT-2b is ‐B 3 kGdip,CoRoT 2b , which considerably exceeds estimates of the maximum surface
dipole strength for HJs. We hence conclude that our magnetic wave-driven mechanism provides an explanation for
wind reversals on HAT-P-7b; however, other physical phenomena provide more plausible explanations for wind
reversals on CoRoT-2b.

Key words: magnetohydrodynamics (MHD) – planets and satellites: atmospheres – planets and satellites:
individual (CoRoT-2b, HAT-P-7b, HD 189733b)

1. Introduction

Observations of hot Jupiters (HJs) generally measure a
peak brightness offset eastward of the substellar point
(Knutson et al. 2009; Wong et al. 2016). Similarly, equatorial
superrotation is an archetypal feature of hydrodynamic
models of tidally locked, strongly irradiated, short-period
planets (Showman & Guillot 2002; Cooper & Showman 2005;
Langton & Laughlin 2007; Dobbs-Dixon & Lin 2008).
Furthermore, Showman & Polvani (2011, hereafter SP11)
showed that such systems will always produce eastward
equatorial jets, which are driven by interactions between the
mean flow and the system’s linear equatorial shallow-water
hydrodynamic (SWHD) waves. However, recent continuous
Kepler measurements of HAT-P-7b and thermal phase
observations of CoRoT-2b made by the Spitzer Space
Telescope found westward-venturing peak brightness and
hotspot offsets (Armstrong et al. 2016; Dang et al. 2018).
These observations suggest the existence of a mechanism that
can also drive westward equatorial winds.

Based on their magnetohydrodynamic (MHD) simulations,
Rogers & Komacek (2014) predicted that westward wind
variations would occur as the result of strong coupling between
a planet’s flow and magnetic field. Furthermore, Rogers (2017)
highlighted that, assuming wind reversals are magnetically
driven, observations of westward hotspot offsets lead to a direct
constraint on the magnetic field strengths of a given HJ. While
Rogers (2017) demonstrated that westward flows developed in
the strong field case, the actual mechanism for wind reversals
remained unknown.

Here we demonstrate that a shallow-water wave-driven
mechanism can explain the wind reversals. First, we demon-
strate that a shallow-water magnetohydrodynamic (SWMHD)
model can reproduce both eastward hotspot offsets in
hydrodynamic cases and westward hotspot in the presence of

a strong toroidal magnetic field, suggesting that magnetically
driven wind reversal is a shallow phenomenon. We then
highlight magnetic modifications to equatorial SWMHD waves
and present a wave-driven reversal mechanism, which is
consistent with the hydrodynamical theory of SP11. We
conclude by discussing the possible consequences of these
concepts for HAT-P-7b and CoRoT-2b.

2. Reduced-gravity SWMHD Model

We adapt the SWMHD model of Gilman (2000) and use a
reduced-gravity SWMHD model. This is the MHD analog of
the reduced-gravity SWHD models used to study HJs in
hydrodynamic systems (e.g., Langton & Laughlin 2007;
Showman & Polvani 2010; SP11).
The reduced-gravity SWMHD model, as illustrated in

Figure 1, has two constant density layers: an upper, meteor-
ologically active layer and an infinitely deep, quiescent
lower layer. In the absence of forcing the active layer has a
thickness H, which is physically analogous to the pressure
scale height.
In the limit H/L=1, where L is some typical horizontal

length scale, vertical acceleration becomes vanishingly small
and the system lies in magneto-hydrostatic balance: gravita-
tional acceleration balances the total (gas plus magnetic)
vertical pressure gradient, and the horizontal velocity and
magnetic fields become independent of the vertical coordinate,
z. Consequently, the MHD equations can be integrated over z
(while requiring that interfaces between vertical layers are
material surfaces, with no magnetic flux across them) to give
the reduced-gravity SWMHD equations. For a local Cartesian
system in the equatorial beta-plane approximation, the evol-
ution of the active layer of the reduced-gravity SWMHD model
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where h(x, y, t), º( ) ( )u x y t u v, , , , and º( ) ( )B x y t B B, , ,x y

denote the active layer thickness, the horizontal active layer
velocity field, and the horizontal active layer magnetic field (in
units of velocity), respectively. The horizontal gradient and
Lagrangian time derivative operators are defined by  º
¶ ¶( ),x y and º ¶ ¶ + ·ud dt t , respectively.
The system is defined in terms of a magnetic flux function, A

(x, y, t), which satisfies =  ´ B zh A , thus guaranteeing that
the SWMHD divergence-free condition,  =· ( )Bh 0,
remains satisfied everywhere for all time. We take the system’s
origin (x, y)=(0, 0) to be the modeled planet’s substellar
point, therefore our system is compared to spherical geometries
with the approximate coordinate transforms f » x R and
q » y R (where f and θ denote the azimuthal and latitudinal
coordinates, and R denotes the planetary radius). The reduced
gravitational acceleration is denoted by the constant g, which is
defined as in Perez-Becker & Showman (2013, hereafter
PBS13) rather than Vallis (2006), and the latitudinal variation
of the Coriolis parameter at the equator is given by
b º = W=∣df dy R2y 0 , for planetary rotation frequency Ω.

In numerical simulations we include explicit viscous
diffusion (Gilbert et al. 2014)

n=   + n
- · [ ( ( ) )] ( )D u uh h , 4T1

where ν is the kinematic viscosity. Furthermore, we treat
the induction equation with the explicit magnetic diffusion

(A. D. Gilbert et al. 2019, in preparation):

h=  -  h
-( · ) ( )D A h h A , 52 1

where η is the magnetic diffusivity.
The prescribed Newtonian cooling term, Q, relaxes the

system toward the imposed radiative equilibrium profile, heq,
over a radiative timescale, trad, by transferring mass upward
from the infinitely deep inactive layer to the active layer in
“heating” regions and vice versa in “cooling” regions.
The vertical mass transport, R, represents the effect of

Newtonian cooling on the momentum equations. In cooling
regions (Q<0) mass is transported downward into the
infinitely deep inactive layer, and the specific momentum of
both layers is conserved without any horizontal acceleration.
Conversely, in regions of heating (Q>0) mass with no
horizontal velocity is transported upward into the active layer,
causing the horizontal deceleration of the active layer. In
heating regions it is required that Newtonian cooling has no
effect on the temporal evolution of the specific momentum,
¶ ¶( )uh t, hence, from Equations (1) and (2), +R uh Q must
sum to zero, giving
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which has previously been used in comparable SWHD models
(e.g., Showman & Polvani 2010; SP11; PBS13). We also
include simple Rayleigh drag in Equation (1) for direct
comparison with these SWHD models.

3. Numerical Treatment and Solutions

We evolve the system by solving Equations (1)–(3) on the
domain p p- < <x R , p p- < <y R2 2, from a flat rest
state (h=H and =u 0 everywhere) for SWHD solutions, then
impose a background magnetic field (A=A0) once a
hydrodynamic steady state is achieved for SWMHD solutions.
We apply periodic boundary conditions on u, h, and A in the

x direction and require v=0, ¶ ¶ =u y 0, ¶ ¶ =A x 0 (h is
chosen to conserve mass) at y boundary points. The equations
are solved on a 256×255 grid in x and y, with spatial
derivatives taken pseudo-spectrally in x and using fourth-order
finite difference schemes in y. We integrate the system forward
in time using an adaptive third-order Adam–Bashforth scheme
(Cattaneo et al. 2003).
The system is driven by relaxing h toward the prescribed

radiative equilibrium layer thickness profile
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where H is the nightside equilibrium thickness and Dheq is the
difference in heq between the nightside and the substellar point.
This profile is the Cartesian analog of the spherical forcing
prescription used in comparable hydrodynamic models (e.g.,
Langton & Laughlin 2007; Showman & Polvani 2010; SP11).
HJs have weakly ionized photospheres. Consequently,

strong zonal flows crossing the assumed deep-seated planetary
dipolar magnetic field are believed to induce atmospheric
toroidal fields. Menou (2012) showed that the strengths of the
dipolar field, Bdip, and the toroidal field, Bf, can be
approximately related by the scaling law ~fB BRm dip, where

Figure 1. The reduced-gravity SWMHD model has two layers: an active layer
sits upon an infinitely deep inactive fluid layer, where both layers have constant
densities (ρ and rl, respectively). No magnetic flux is permitted across the
interface. The layer thickness, h, is relaxed toward the imposed radiative
equilibrium thickness profile, heq, over a radiative timescale, trad.
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the magnetic Reynolds number (Rm) is temperature dependent
and exceeds unity for hotter HJs ( T 1300 Keq ). Hence, in
such systems the toroidal field is expected to dominate the
dipolar field in equatorial regions.

Numerically, we implement an equatorially antisymmetric
azimuthal background magnetic field though a background flux
function, which we impose initially and allow to evolve. The
imposed background flux function takes the form

= - -( ) ( )A y e HV L e , 8m
y L

0
1 2

A
2 m

2 2

where the background Alfvén speed, VA, determines the back-
ground magnetic field strength of the system. We set the latitudinal
decay length of the magnetic field to =L L 2m eq , where ºLeq

b( )gH 1 2 is the equatorial Rossby deformation radius.
Following (PBS13), we choose parameters to match those

typical of HD189733b where possible. This HJ has a planetary
radius = ´R 8.2 10 m7 , a planetary rotation rate, W = ´3.2

- -10 s5 1, and gravity waves with a speed of = -gH 2 km s 1

(PBS13). The viscous and magnetic diffusivities are assigned the
constant values of n = -10 m s8 2 1 and h = ´ -3 10 m s7 2 1,
respectively. These are typical values in the radiative zones of HJs
but, in reality, the day–night temperature variations on HJs cause
longitudinal variations in diffusion coefficients, which can be
orders of magnitude for η. We fix the atmospheric pressure scale
height =H 400 km (PBS13) and vary the background magnetic
field strength via the free parameter VA, presenting solutions
in the weakly forced (D =h H 0.001eq ) and therefore approxi-
mately linear regime, with radiative/drag timescales corresponding
to moderately efficient energy redistribution (t t= =rad drag
1 Earth day; PBS13).

After an initial transient period, SWHD solutions reach
steady state. For SWMHD systems, the magnetic diffusion
timescale is relatively large compared to the system’s
dynamical timescale (t t ~h 0.08dyn ) and a dynamically
relevant quasi-steady state emerges, before diffusion causes
the magnetic field to decay. We present numerical SWHD and
SWMHD solutions in these steady and quasi-steady states,
respectively, and plot -( )g h H , the geopotential above the
nightside equilibrium reference state, in Figure 2 for VA=0
and =V gH 4A (top/bottom panels, respectively). Energy
(heat) redistribution is traced via the geopotential, with high
geopotential regions analogous to high temperature regions
(PBS13).
Strikingly, the quasi-steady solution for =V gH 4A (lower

panel of Figure 2) exhibits a westward hotspot offset (marked
by a white cross). This is in stark contrast to SWHD systems
(and SWMHD systems with V gH 4A ), which always
have an eastward hotspot offset.
Solutions in this “strong field limit” have larger geopo-

tential gradients, caused by the role of magnetic tension
(geopotential gradients increase sharply as VA is raised
beyond =V gH 4A ), and the shape of the geopotential
contours undergoes a phase transition as the magnetic field is
increased: the eastward-pointing chevron-shaped contours, in
the zero or weak field regime, transition into the westward-
pointing chevron-shaped contours in the strong field limit.
Because SP11 showed the eastward-pointing chevron-shaped
flow patterns to play a major role in the formation of eastward
zonal jets, this latter point is of particular interest concerning
wind reversals.

Figure 2. Contours of -( )g h H are plotted for (quasi-)steady solutions, with a forcing amplitude of D =h H 0.001eq (linear regime), and the radiative/drag
timescales t t= = 1 Earth dayrad drag . Wind velocity vectors are overplotted as black arrows, lines of constant horizontal magnetic flux (A) are overplotted as white
lines (with solid/dashed lines representing positive/negative magnetic field values), and hotspots (maxima of h on the equatorial line) are marked by white crosses.
The system origin lies at the substellar point and velocity vectors are independently normalized for each subplot.
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4. The Magnetic Modification of
Equatorial Shallow-water Waves

In a hydrodynamic study, SP11 showed that SWHD systems
will always produce eastward equatorial jets that are driven by
interactions between the mean flow and the linear equatorial
SWHD waves. The dominant standing, planetary-scale equa-
torial waves induced by day–night thermal forcing are the
n=1 Rossby and Kelvin waves. The superposition of these
modes causes the emergence of eastward-pointing chevron-
shaped (geopotential and velocity) phase tilts (e.g., Figure 2,
top panel). These cause eddies to pump eastward momentum
from high latitudes to the equator, driving an eastward
equatorial jet.

The question addressed in this section is how this process is
modified in the presence of a magnetic field. We show that
magnetism can cause the superposition of planetary-scale, free
equatorial SWMHD waves to acquire phase tilts that are
opposite in direction to their SWHD counterparts, then link this
to a reversal mechanism.

We linearize Equations (1)–(3), in the absence of forcing,
drag, and diffusion, about the background state {u0, v0, h0, Bx,0,
By,0}={0, 0, H, B0(y), 0}, where H is constant and

=B V y R0 A . This system has previously been solved by
Zaqarashvili (2018), who studied it in terms of the solar
tachocline, and we repeat this analysis for the HJ parameter
space (see Section 3 for parameter choices), highlighting
important features concerning HJs.

Perturbations to the background state are separated using the
plane wave ansatz, = w-{ } { ˆ ( ) ˆ ( ) ˆ ( )} ( )u B u Bh y h y y e, , , , i kx t

1 1 1 .
The resulting ordinary differential equation, (with terms up to y2

only3) is then solved using the boundary conditions, ∣ ∣v 0 as
 ¥∣ ∣y , yielding bounded solutions of the form (Zaqarashvili

2018)

m= m- +ˆ ( ) ( ) ( )( )v y H y e , 9n n
d y 22

where m+ >d 0, x( )Hn is the Hermite polynomial of order n,
for n=0, 1, 2, 3, K, and
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In Equations (9)–(11) the azimuthal wavenumber, k, and
oscillation frequency, ω, are linked by the dispersion relation

w b
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for n=0, 1, 2, 3, K.
We solve Equation (12) using numerical root finding

techniques and find that, as in hydrodynamic theory (e.g.,
Matsuno 1966), there are two bounded n=0 solutions
and three bounded n 1 solutions. Completeness is obtained
by replacing the missing/third n=0 solution with a

magneto-Kelvin solution, which has the characteristic v=0
everywhere and is often called the n=−1 mode (e.g.,
Matsuno 1966; Zaqarashvili 2018). Setting v=0 everywhere
and seeking non-trivial solutions to the linearized versions of
Equations (1)–(3), one finds (for b< ( )V R gHA

2 1 2) the
single bounded magneto-Kelvin solution

w = +
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where the exponential profile’s argument is approximated with
accuracy ( ( ) )O V y R gH .A

4 4 4 2

Due to the forms of heq, the linearized continuity equation
and the eigenfunctions’ derivatives (e.g., Abramowitz &
Stegun 1965), the n=±1 modes are always expected to play
an important role in systems with ~L Req (as found on HJs).
In Figure 3 we plot geopotential contours of the n=1 (fast)
magneto-Rossby mode (left panel) and the magneto-Kelvin
mode (right panel), for k=1/R (the forcing wavenumber).4

The structure of the (fast) magneto-Rossby modes do not
significantly vary from their hydrodynamic variants (see
Matsuno 1966), although their deformation length does
increase with increasing VA. The magneto-Kelvin mode is the
most significantly magnetically modified free wave solution as
it acquires a latitudinally dependent contribution to its
dispersion relation, which causes the wave to structurally shear
as it propagates eastward. We estimate the degree of structural
shear in linear quasi-steady solutions by plotting the free
magneto-Kelvin wave at t tº V gHtransf A

2
adv , the timescale for

the wave to transfer a local thickness perturbation, h1, to
surrounding regions in the strong field limit.5

We find that the structural deformation of the magneto-Kelvin
wave becomes qualitatively significant at ~V gH 4A . This
transition in nature is consistent with the numerical solutions
discussed in Section 3, which also transitions in nature, obtaining
a westward-chevron phase shift at ~V gH 4A .
We hence propose the following adjustment to the mech-

anism of SP11 to account for magnetism: the hydrodynamic
mechanism remains valid for low to moderate toroidal field
strengths, however, when the toroidal field strength becomes
large enough to deform the magneto-Kelvin wave’s structure,
the resultant superposition of magneto-Kelvin and n=1
magneto-Rossby standing waves has a structural form
resembling a westward-pointing chevron (such as the one seen
in Figure 2). This change in the wave structure would reverse
the sign of the convergence of the meridional flux of zonal
eddy momentum. Hence, the structural phase tilts caused by the
waves would pump eastward momentum from the equator to

3 The implied assumptions, that w ∣ ∣V k y R 1A
2 2 2 2 2 and ∣V k yA

2 2 2

w - ( ) ∣gHk R 12 2 2 , remain valid for the discussed solutions.

4 The east/west magneto-inertial gravity waves remain similar to their
SWHD forms, which are known to provide an insignificant contribution to
linear solutions (Matsuno 1966).
5 We estimate ttransf by considering approximate scalings of terms in the
continuity equation ( t ~h HU L1 transf ) and momentum equation for a
rotationless non-diffusive SWMHD model. For SWHD models and moderately
magnetic SWMHD models, t ~U gh Ltransf 1 , hence t = L gHtransf eq
(PBS13). We find numerically that for strong magnetic fields the pressure
gradient and Lorentz force approximately balance, yielding ~gh L V L1 A

2 ,
hence t t= V gHtransf A

2
adv , where t º L Uadv eq is the hydrodynamic advec-

tion timescale defined in PBS13.
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higher latitudes and, provided this pumping remains the
dominant zonal acceleration process, this would drive a
westward equatorial jet.

We comment that this assumption cannot be guaranteed
without consideration of the forced linear solutions, which we
omit from this Letter, but will investigate in a future paper.

5. Discussion

We have demonstrated that magnetically modified waves
lead to westward directed winds in a SWMHD model. We
found that the SWMHD model that we presented can capture
the physics of magnetically induced wind reversals, which have
only previously been studied via full three-dimensional MHD
simulations (Rogers & Komacek 2014; Rogers 2017). We
showed that the magnetic modification of the planetary-scale
equatorial waves causes the superposition of the magneto-
Kelvin and n=1 magneto-Rossby waves to reverse in
structure in the strong field limit. Hence we used arguments
of simple linear wave dynamics to explain the magnetic wind
reversal mechanism.

Understanding the magnetic-reversal mechanism in terms of a
shallow MHD phenomenon provides information about the
magnetic fields on HJs. Repeating the numerical analysis of
Section 3 in the parameter spaces of HAT-P-7b and CoRoT-2b,
we find that the minimum toroidal field strengths sufficient to
magnetically reverse winds are f ( )‐ ‐B P3 1 bar kG,HAT P 7b

1 2

and f ( )‐B P1 1 bar kG,CoRoT 2b
1 2 , where P is the atmospheric

pressure/depth of the reversal and the ideal gas law is used to
convert from velocity units. These minima can be linked to dipolar
field strengths using the scaling laws of Menou (2012), yielding

‐ ‐B 6 Gdip,HAT P 7b and ‐B 3 kGdip,CoRoT 2b . We comment that
the striking difference between the two dipole field minima is a

consequence of the temperature dependence of the magnetic
Reynolds number (Perna et al. 2010; Menou 2012). The minimum
dipole strength in the atmosphere of HAT-P-7-b agrees with the
three-dimensional simulations of Rogers (2017) and lies well
below the range 50–100 G predicted for most inflated HJs (Yadav
& Thorngren 2017). The dipole field strength necessary to
magnetically reverse the winds on CoRoT-2b (3 kG) greatly
exceeds 250 G, the maximum surface dipole estimate for HJs
(Yadav & Thorngren 2017). We conclude that wind reversals on
HAT-P-7b are highly likely to be magnetically driven, whereas
other explanations such as cloud asymmetries (Demory et al. 2013;
Lee et al. 2016; Parmentier et al. 2016; Roman & Rauscher 2017)
or asynchronous rotation (Rauscher & Kempton 2014) appear
more plausible on CoRoT-2b.
There are several interesting questions that we do not address

in this Letter. First, it is unclear how a highly temperature
dependent (and hence horizontally varying) magnetic Reynolds
number will effect the toroidal-poloidal scaling relationship, and
hence the dynamics of the wind reversal process. Furthermore,
vertical magnetic fields have also been assumed to be small
compared to horizontal fields in our model. Three-dimensional
simulations are required to avoid this approximation.

We acknowledge support from STFC for A.W.Hindle’s
studentship, the Leverhulme grant RPG-2017-035 and thank
Andrew Gilbert, Andrew Cummings, and Natalia Gómez-Pérez
for useful conversations leading to the development of this
manuscript.
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Figure 3. Geopotential perturbations contours, gh1, and vectors of velocity perturbations, u1, for two different mode types at k=1/R. The n=1 (fast) magneto-
Rossby mode is plotted (left panel) for =V gH 4A . The magneto-Kelvin mode is plotted (right panel) for =V gH 4A at t t= ºt V gHtransf A

2
adv . Plots are made

for the parameter choices discussed in Section 3.
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