

Article

On 3-total edge product cordial labeling of tadpole, book and flower graphs

Umar Ali¹, Yasir Ahmad¹ and Muhammad Shoaib Sardar^{1,*}

School of Mathematical Sciences, Anhui University, Hefei, Anhui, 230601, P.R. China.; umarali.msc@gmail.com(U.A); yasirahmad6667@gmail.com(Y.A)

Received: 29 July 2019; Accepted: 13 February 2020; Published: 7 March 2020.

Abstract: In this paper, we will determine the 3-total edge product cordial (3-TEPC) labeling. We study certain classes of graphs namely tadpole, book and flower graphs in the context of 3-TEPC labeling.

Keywords: 3-total edge product cordial labeling, book graphs, flower graphs.

MSC: 05C78.

1. Introduction

e define with simple, finite and undirected graph $G = (E_G, V_G)$, where E_G and V_G is vertex set and edge set respectively. Cordinalities of there sets are called the size and order of G. We follow the standard notations and terminology of graph theory as in [1]. A graph labeling is an assignment to vertices or edges or both subject to certain conditions. If the domain is $V_G \cup E_G$ then we called the labeling is total labeling.

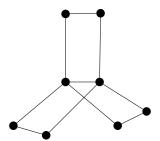
We have the following notations, in order to know cordial labeling h and its sorts.

- 1. $v_h(j)$ is the number of vertices labeled by j;
- 2. $e_h(j)$ is the number of edges labeled by j;
- 3. $v_h(i,j) = v_h(i) v_h(j);$
- 4. $e_h(i,j) = e_h(i) e_h(j)$ and
- 5. the sum of all vertices and edges labeled by *j* is sum(j) i.e. $sum(j) = v_h(j) + e_h(j)$.

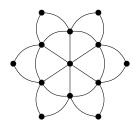
Cahit [2] gave first concept of cordial labeling as a weaker version of graceful labeling. A vertex labeling $h: V_G \to \{0,1\}$ that induce an edge labeling $h^*: E_G \to \{0,1\}$ defined by $h^*(uv) = |h(u) - h(v)|$, for all $u, v \in E_G$ if $|v_h(1) - v_h(0)| \le 1$ and $|e_h(1) - e_h(0)| \le 1$. The concept of product cordial labeling was introduced by Sundaram *et al.* in 2014. For details see [3]. In 2006 and 2012, Sundaram *et al.* develop the concept of total product cordial labeling and k-total product cordial labeling. For details see [4,5]. Vaidya and Barasara gave the concept of *edge product cordial labeling* and *total edge product cordial labeling*. For details see [6,7].

Let k be an integer, $2 \le k \le |E_G|$ an edge labeling $h: E_G \longrightarrow \{0,1,\ldots,k-1\}$, with induced vertex labeling $h^*: V_G \longrightarrow \{0,1,\ldots,k-1\}$ such that $h^*(u) = h(e_1)h(e_2)\ldots h(e_n) \pmod{k}$, where edges e_1,e_2,\ldots,e_n are the edge incident to u, then h is called k-total edge product cordial labeling if $|sum(i) - sum(j)| \le 1$ for $i,j \in \{0,1,\ldots,k-1\}$.

In 2015, Azaizeh $et\ al.\ [8]$ was introduced the basic concept of k-total edge product cordial (k-TEPC) labeling. Recently Azaizeh $et\ al.\$ investigated the 3-TEPC labeling for more families of graphs namely, path, circle, fan, double fan, triangular snake graph (see example [9,10]). Ahmad $et\ al.\$ [11] discussed 3-TEPC labeling of gear, web and helm graph. Ali $et\ al.\$ [12] investigated the 3-TEPC labeling for families of convex polytopes namely, double antiprism A_m , S_m and T_m . In 2018, Ahmad $et\ al.\$ [13] had discussed the 3-TEPC labeling for hexagonal grid. Recently, Ali $et\ al.\$ [14] investigated the 4-total edge product cordial labeling of some standard graphs. For more details see references [15–18].


Now we will define tadpole graph $(T_{p,q})$, book graph (B_q) and flower graph (Fl_q) graph.

Definition 1. The tadpole graph is obtained by connecting a cycle graph C_p (of order p) to a path graph P_q (of order q) with a bridge and is denoted by $T_{p,q}$ (see Figure 1).


Figure 1. Tadpole graph $T_{6.4}$.

Definition 2. Book graph B_q is obtained by the cartesian product $S_{q+1} \times P_2$, where S_{q+1} is the star graph of order q + 1 and P_2 is the path graph of order 2 (see Figure 2).

Figure 2. Book graph B_3

Definition 3. The flower graph Fl_q is the graph attain from a helm graph H_q of order q by joining each pendent vertex to the apex of the helm (see Figure 3).

Figure 3. Flower graph Fl_6

2. Main results

In this section, we will discuss 3-total edge product cordial (3-TEPC) labeling of tadpole, book and flower graphs.

Theorem 1. The tadpole graph $T_{p,q}$ has 3-TEPC labeling.

Proof. Let $V_G = \{u_j, 1 \le j \le p\} \cup \{v_j, 1 \le j \le q\}$ and $E_G = \{u_j u_{j+1}, 1 \le j \le p-1\} \cup \{v_j v_{j+1}, 1 \le j \le p-1\}$ q-1} \cup { u_pu_1 } \cup { v_qu_p } as shown in Figure 1. Now we see the following three cases:

Case 1 Let $p + q \equiv 0 \pmod{3}$ which implies p + q = 3t, for $t \geq 3$. So for the given case, we need to discuss the following three subcases:

Case 1.1 If $p = 0 \pmod{3}$ and $q = 0 \pmod{3}$. We define $h : E_G \to \{0, 1, 2\}$ as:

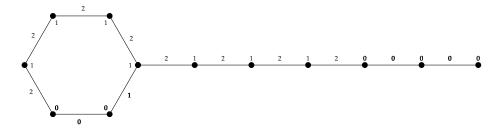
$$h(u_{j}u_{j+1}) = \begin{cases} 0, & \text{if } 1 \le j \le \frac{p}{3} - 1; \\ 2, & \text{if } \frac{p}{3} \le j \le p - 1; \end{cases} \text{ and } h(u_{p}u_{1}) = 1.$$

$$h(v_{j}v_{j+1}) = \begin{cases} 0, & \text{if } 1 \le j \le \frac{q}{3}; \\ 2, & \text{if } \frac{q}{3} + 1 \le j \le q - 1. \end{cases}, h(v_{q}u_{p}) = 2.$$

$$h(v_j v_{j+1}) = \begin{cases} 0, & \text{if } 1 \le j \le \frac{q}{3}; \\ 2, & \text{if } \frac{q}{2} + 1 \le j \le q - 1. \end{cases}, h(v_q u_p) = 2.$$

Case 1.2 If p > q but $p \neq 0 \pmod{3}$ and $q \neq 0 \pmod{3}$. We define $h : E_G \rightarrow \{0,1,2\}$ as:

$$h(u_j u_{j+1}) = \begin{cases} 0, & \text{if } 1 \le j \le t-2; \\ 2, & \text{if } t-1 \le j \le p-1; \end{cases} \text{ and } h(u_p u_1) = 1.$$


$$h(v_j v_{j+1}) = \begin{cases} 0, & \text{if } j = 1; \\ 2, & \text{if } 2 \le j \le q - 1. \end{cases}, h(v_q u_p) = 2.$$

Case 1.3 If p < q but $p \neq 0 \pmod{3}$ and $q \neq 0 \pmod{3}$. We define $h : E_G \to \{0, 1, 2\}$ as:

$$h(u_ju_{j+1}) = \begin{cases} 0, & \text{if } j = 1; \\ 2, & \text{if } 2 \le j \le p-1; \end{cases} \text{ and } h(u_pu_1) = 1.$$

$$h(v_jv_{j+1}) = \begin{cases} 0, & \text{if } 1 \le j \le t-2; \\ 2, & \text{if } t-1 \le j \le q-1. \end{cases}, h(v_qu_p) = 2.$$

So we obtain sum(0) = sum(1) = sum(2) = 2t. Thus $|sum(x_1) - sum(x_2)| \le 1$ for $0 \le x_1 < x_2 \le 2$. Hence *h* is 3-TEPC labeling as discussed in Figure 4.

Figure 4. 3-TEPC labeling of $T_{6,6}$

Case 2 Let $p + q \equiv 1 \pmod{3}$ which implies p + q = 3t + 1, for $t \geq 3$. So for the given case, we need to discuss the following three subcases:

Case 2.1 If $p = 0 \pmod{3}$ and $q \neq 0 \pmod{3}$. We define $h : E_G \to \{0, 1, 2\}$ as:

$$h(u_j u_{j+1}) = \begin{cases} 0, & \text{if } 1 \le j \le \frac{p}{3} - 1; \\ 2, & \text{if } \frac{p}{3} \le j \le p - 1; \end{cases} \text{ and } h(u_p u_1) = 1.$$

$$h(v_j v_{j+1}) = \begin{cases} 0, & \text{if } 1 \le j \le \frac{q-1}{3}; \\ 2, & \text{if } \frac{q-1}{2} + 1 \le j \le q-1. \end{cases}, h(v_q u_p) = 2.$$

Case 2.2 If $p \neq 0 \pmod{3}$ and $q = 0 \pmod{3}$. We define $h : E_G \to \{0, 1, 2\}$ as:

$$g(u_j u_{j+1}) = \begin{cases} 0, & \text{if } 1 \le j \le \frac{p-1}{3} - 1; \\ 2, & \text{if } \frac{p-1}{3} \le j \le p - 1; \end{cases} \text{ and } h(u_p u_1) = 1.$$

$$h(v_j v_{j+1}) = \begin{cases} 0, & \text{if } 1 \le j \le \frac{q}{3}; \\ 2, & \text{if } \frac{q}{3} + 1 \le j \le q - 1. \end{cases}, h(v_q u_p) = 2.$$

Case 2.3 If
$$p \neq 0 \pmod{3}$$
 and $q \neq 0 \pmod{3}$. We define $h : E_G \to \{0, 1, 2\}$ as: $h(u_j u_{j+1}) = \begin{cases} 0, & \text{if } 1 \leq j \leq \frac{p-2}{3}; \\ 2, & \text{if } \frac{p-2}{3} + 1 \leq j \leq p-1; \end{cases}$ and $h(u_p u_1) = 1$.

$$h(v_j v_{j+1}) = \begin{cases} 0, & \text{if } 1 \le j \le \frac{q-2}{3}; \\ 2, & \text{if } \frac{q-2}{3} + 1 \le j \le q-1. \end{cases}, h(v_q u_p) = 2.$$

So we obtain sum(0) = 2t, sum(1) = sum(2) = 2t + 1. Thus $|sum(x_1) - sum(x_2)| \le 1$ for $0 \le x_1 < x_2 \le 1$ 2. Hence *h* is 3-TEPC labeling as discussed in Figure 5.

Figure 5. 3-TEPC labeling of $T_{8,5}$

Case 3 Let $p + q \equiv 2 \pmod{3}$ which implies p + q = 3t + 2, for $t \geq 3$. So for the given case, we need to discuss the following three subcases:

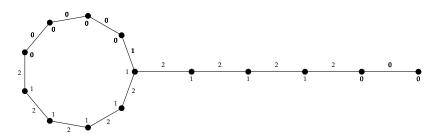
Case 3.2 If $p = 0 \pmod{3}$ and $q \neq 0 \pmod{3}$. We define $h : E_G \to \{0, 1, 2\}$ as:

$$h(u_j u_{j+1}) = \begin{cases} 0, & \text{if } 1 \le j \le \frac{p}{3}; \\ 2, & \text{if } \frac{p}{3} + 1 \le j \le p-1; \end{cases} \text{ and } h(u_p u_1) = 1.$$

$$h(v_jv_{j+1}) = \begin{cases} 0, & \text{if } 1 \leq j \leq \frac{q-2}{3}; \\ 2, & \text{if } \frac{q-2}{3}+1 \leq j \leq q-1. \end{cases}, h(v_qu_p) = 2.$$

Case 3.2 If $p \neq 0 \pmod{3}$ and $q = 0 \pmod{3}$. We define $h : E_G \to \{0, 1, 2\}$ as:

$$h(u_j u_{j+1}) = \begin{cases} 0, & \text{if } 1 \le j \le \frac{p-2}{3}; \\ 2, & \text{if } \frac{p-2}{3} + 1 \le j \le p-1; \end{cases} \text{ and } h(u_p u_1) = 1.$$


$$h(v_j v_{j+1}) = \begin{cases} 0, & \text{if } 1 \le j \le \frac{q}{3}; \\ 2, & \text{if } \frac{q}{3} + 1 \le j \le q - 1. \end{cases}, h(v_q u_p) = 2.$$

Case 3.3 If $p \neq 0 \pmod{3}$ and $q \neq 0 \pmod{3}$. We define $h : E_G \to \{0,1,2\}$ as:

$$h(u_j u_{j+1}) = \begin{cases} 0, & \text{if } 1 \le j \le \frac{p-1}{3}; \\ 2, & \text{if } \frac{p-1}{3} + 1 \le j \le p-1; \end{cases} \text{ and } h(u_p u_1) = 1.$$

$$h(v_jv_{j+1}) = \begin{cases} 0, & \text{if } 1 \leq j \leq \frac{q-1}{3}; \\ 2, & \text{if } \frac{q-1}{3}+1 \leq j \leq q-1. \end{cases}, h(v_qu_p) = 2.$$

So we obtain sum(0) = 2t + 2, sum(1) = sum(2) = 2t + 1. Thus $|sum(x_1) - sum(x_2)| \le 1$ for $0 \le x_1 < x_2 \le 2$. Hence h is 3-TEPC labeling as discussed in Figure 6.

Figure 6. 3-TEPC labeling of *T*_{9,5}

Theorem 2. The book graph B_q has 3-TEPC labeling.

Proof. Let $V_G = \{u, v, u_j, v_j, 1 \le j \le q\}$ and $E_G = \{uu_j, 1 \le j \le q\} \cup \{vv_j, 1 \le j \le q\} \cup \{u_jv_j, 1 \le j \le q\} \cup \{uv\}$ as shown in Figure 2. Now we see the following three cases:

Case 1 Let $q \equiv 0 \pmod{3}$ which implies q = 3t, for $t \geq 1$. We define $h : E_G \rightarrow \{0,1,2\}$ as:

Case 1.1 Now we define edge labeling if *t* is even:

$$h(uu_j) = \begin{cases} 0, & \text{if } 1 \le j \le t; \\ 2, & \text{if } t+1 \le j \le 3t. \end{cases}, h(u_jv_j) = \begin{cases} 0, & \text{if } 1 \le j \le t-1; \\ 1, & \text{if } t \le j \le 3t. \end{cases}$$
$$h(vv_j) = \begin{cases} 0, & \text{if } 1 \le j \le t; \\ 2, & \text{if } t+1 \le j \le \frac{3t}{2}; \\ 1, & \text{if } \frac{3t}{2}+1 \le j \le 3t. \end{cases}$$

Case 1.2 Now we define edge labeling if *t* is odd:

$$h(uu_j) = \begin{cases} 0, & \text{if } 1 \le j \le t; \\ 2, & \text{if } t+1 \le j \le 3t. \end{cases}, h(u_jv_j) = \begin{cases} 0, & \text{if } 1 \le j \le t-1; \\ 1, & \text{if } t \le j \le 3t. \end{cases}$$
$$h(vv_j) = \begin{cases} 0, & \text{if } 1 \le j \le t; \\ 2, & \text{if } t+1 \le j \le \frac{3t+1}{2}; \\ 1, & \text{if } \frac{3t+1}{2}+1 \le j \le 3t. \end{cases}$$

So we obtain sum(0) = sum(1) = sum(2) = 5t + 1. Thus $|sum(x_1) - sum(x_2)| \le 1$ for $0 \le x_1 < x_2 \le 2$. Hence h is 3-TEPC labeling.

Case 2 Let $q \equiv 1 \pmod{3}$ which implies q = 3t + 1, for $t \ge 1$. We define $h : E_G \to \{0, 1, 2\}$ as:

Case 2.1 Now we define edge labeling if *t* is even:

$$h(vv_j) = \begin{cases} 0, & \text{if } 1 \le j \le t; \\ 2, & \text{if } t+1 \le j \le 3t+1. \end{cases}, h(u_jv_j) = \begin{cases} 0, & \text{if } 1 \le j \le t; \\ 1, & \text{if } t+1 \le j \le 3t+1. \end{cases}$$
$$h(uu_j) = \begin{cases} 0, & \text{if } 1 \le j \le t; \\ 2, & \text{if } t+1 \le j \le \frac{3t}{2}; \\ 1, & \text{if } \frac{3t}{2}+1 \le j \le 3t+1. \end{cases}$$

Case 2.2 Now we define edge labeling if *t* is odd:

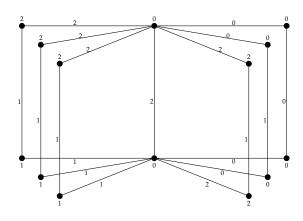
$$h(vv_j) = \begin{cases} 0, & \text{if } 1 \leq j \leq t; \\ 2, & \text{if } t+1 \leq j \leq 3t+1. \end{cases}, h(u_jv_j) = \begin{cases} 0, & \text{if } 1 \leq j \leq t; \\ 1, & \text{if } t+1 \leq j \leq 3t+1. \end{cases}$$

$$h(uu_j) = \begin{cases} 0, & \text{if } 1 \leq j \leq t; \\ 2, & \text{if } t+1 \leq j \leq \frac{3t+1}{2}; \\ 1, & \text{if } \frac{3t+1}{2}+1 \leq j \leq 3t+1. \end{cases}$$

So we obtain sum(0) = 5t + 2, sum(1) = sum(2) = 5t + 3. Thus $|sum(x_1) - sum(x_2)| \le 1$ for $0 \le x_1 < x_2 \le 2$. Hence h is 3-TEPC labeling.

Case 3 Let $q \equiv 2 \pmod{3}$ which implies q = 3t + 2, for $t \ge 1$. We define $h : E_G \to \{0, 1, 2\}$ as:

Case 3.1 Now we define edge labeling if *t* is even:


$$h(vv_j) = \begin{cases} 0, & \text{if } 1 \le j \le t; \\ 2, & \text{if } t+1 \le j \le 3t+2. \end{cases}, h(u_jv_j) = \begin{cases} 0, & \text{if } 1 \le j \le t; \\ 1, & \text{if } t+1 \le j \le 3t+2. \end{cases}$$
$$h(uu_j) = \begin{cases} 0, & \text{if } 1 \le j \le t+1; \\ 2, & \text{if } t+2 \le j \le \frac{3t}{2}+1; \\ 1, & \text{if } t+2 \le j \le 3t+2. \end{cases}$$

Case 3.2 Now we define edge labeling if *t* is odd:

$$h(vv_j) = \begin{cases} 0, & \text{if } 1 \le j \le t; \\ 2, & \text{if } t+1 \le j \le 3t+2. \end{cases}, h(u_jv_j) = \begin{cases} 0, & \text{if } 1 \le j \le t+1; \\ 1, & \text{if } t+2 \le j \le 3t+2. \end{cases}$$
$$h(uu_j) = \begin{cases} 0, & \text{if } 1 \le j \le t; \\ 2, & \text{if } t+1 \le j \le \frac{3t+1}{2}; \\ 1, & \text{if } \frac{3t+1}{2}+1 \le j \le 3t+2. \end{cases}$$

So we obtain sum(0) = 5t + 5, sum(1) = sum(2) = 5t + 4. Thus $|sum(x_1) - sum(x_2)| \le 1$ for $0 \le x_1 < x_2 \le 2$. Hence h is 3-TEPC labeling.

Example 1. The graph B_6 and its given 3-TEPC labeling as shown in Figure 7.

Figure 7. 3-TEPC labeling of B_6

Theorem 3. The flower graph Fl_q has 3-TEPC labeling.

Proof. Let $V_G = \{u, u_j, v_j, 1 \le j \le q\}$ and $E_G = \{uu_j, 1 \le j \le q\} \cup \{u_ju_{j+1}, 1 \le j \le q-1\} \cup \{u_jv_j, 1 \le j \le q\} \cup \{u_{j+1}v_j, 1 \le j \le q-1\} \cup \{u_qu_1\} \cup \{u_1v_q\}$ as shown in Figure 3. Now we see the following three cases:

Case 1 Let $q \equiv 0 \pmod{3}$ which implies q = 3t, for $t \geq 1$. We define $h : E_G \to \{0,1,2\}$ as:

$$h(u_{j}u_{j+1}) = \begin{cases} 0, & \text{if } 1 \leq j \leq t; \\ 1, & \text{if } t+1 \leq j \leq 3t-1; \end{cases} \text{ and } h(u_{3t}u_{1}) = 1.$$

$$h(u_{j+1}v_{j}) = \begin{cases} 0, & \text{if } 1 \leq j \leq t-1; \\ 2, & \text{if } t \leq j \leq 3t-1; \end{cases} \text{ and } h(u_{1}v_{3t}) = 2.$$

$$h(uu_{j}) = \begin{cases} 0, & \text{if } 1 \leq j \leq t+1; \\ 2, & \text{if } t+2 \leq j \leq 2t; \\ 1, & \text{if } 2t+1 \leq j \leq 3t. \end{cases}$$

So we obtain sum(1) = 6t + 1, sum(0) = sum(2) = 5t. Thus $|sum(x_1) - sum(x_2)| \le 1$ for $0 \le x_1 < x_2 \le 2$. Hence h is 3-TEPC labeling.

Case 2 Let $q \equiv 1 \pmod{3}$ which implies q = 3t + 1, for $t \ge 1$. We define $h : E_G \to \{0, 1, 2\}$ as:

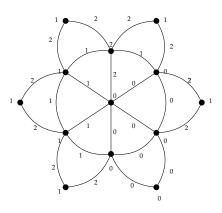
$$h(u_j u_{j+1}) = \begin{cases} 0, & \text{if } 1 \le j \le t; \\ 1, & \text{if } t+1 \le j \le 3t; \end{cases} \text{ and } h(u_j u_{3t+1}) = 1.$$

$$h(u_{j+1}v_j) = \begin{cases} 0, & \text{if } 1 \le j \le t; \\ 2, & \text{if } t+1 \le j \le 3t; \end{cases}$$
 and $h(u_1v_{3t+1}) = 2.$

$$h(uu_j) = \begin{cases} 0, & \text{if } 1 \le j \le t+1; \\ 2, & \text{if } t+2 \le j \le 2t+1; \\ 1, & \text{if } 2t+2 \le j \le 3t+1. \end{cases}, h(u_jv_j) = \begin{cases} 0, & \text{if } 1 \le j \le t; \\ 2, & \text{if } t+1 \le j \le 3t+1. \end{cases}$$

So we obtain sum(0) = 6t + 3, sum(1) = sum(2) = 5t + 2. Thus $|sum(x_1) - sum(x_2)| \le 1$ for $0 \le x_1 < x_2 \le 2$. Hence h is 3-TEPC labeling.

Case 3 Let $q \equiv 2 \pmod{3}$ which implies q = 3t + 2, for $t \ge 1$. We define $h : E_G \to \{0, 1, 2\}$ as:


$$h(u_j u_{j+1}) = \begin{cases} 0, & \text{if } 1 \le j \le t; \\ 2, & \text{if } t+1 \le j \le 3t+1; \end{cases} \text{ and } h(u_{3t+2}u_1) = 2.$$

$$h(u_{j+1}v_j) = \begin{cases} 0, & \text{if } 1 \le j \le t; \\ 1, & \text{if } t+1 \le j \le 3t+1; \end{cases} \text{ and } h(u_1v_{3t+2}) = 1.$$

$$h(uu_j) = \begin{cases} 0, & \text{if } 1 \le j \le t+1; \\ 2, & \text{if } t+2 \le j \le 3t+2. \end{cases}, h(u_jv_j) = \begin{cases} 0, & \text{if } 1 \le j \le t+1; \\ 1, & \text{if } t+2 \le j \le 3t+2. \end{cases}$$

So we obtain sum(0) = 6t + 5, sum(1) = sum(2) = 5t + 4. Thus $|sum(x_1) - sum(x_2)| \le 1$ for $0 \le x_1 < x_2 \le 2$. Hence h is 3-TEPC labeling.

Example 2. The graph Fl_6 and its given 3-TEPC labeling as shown in Figure 8.

Figure 8. 3-TEPC labeling of *Fl*₆

Acknowledgments: This article has benefited from constructive reviewing. Any remaining errors are my own

Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: "The authors declare no conflict of interest."

References

- [1] West, D. B. (1996). *Introduction to graph theory (Vol. 2)*. Upper Saddle River, NJ: Prentice hall.
- [2] Cahit, I. (1987). Cordial graphs-a weaker version of graceful and harmonious graphs. Ars Combinatoria, 23, 201-207.
- [3] Sundaram, M., Ponraj, R., & Somasundaram, S. (2004). Product cordial labeling of graphs. Bull. *Pure and Applied Sciences (Mathematics & Statistics)*, E, 23, 155-163.
- [4] Ponraj, R., Sundaram, M., & Sivakumar, M. (2012). K-total product cordial labelling of graphs. *Applications and Applied Mathematics*, 7, 708-716.

Open J. Math. Sci. 2020, 4, 48-55 55

[5] Sundaram, M., Ponraj, R., & Somasundram, S. (2006). Total product cordial labeling of graphs. *Bulletin of Pure & Applied Sciences. Sec. E, Mathematics & Statistics*, 25, 199-203.

- [6] Vaidya, S. K., & Barasara, C. M. (2012). Edge product cordial labeling of graphs. *Journal of Mathematical and computational Science*, 2(5), 1436-1450.
- [7] Vaidya, S. K., & Barasara, C. M. (2013). Total edge product cordial labeling of graphs. *Malaya Journal of Matematik*, 3(1), 55-63.
- [8] Azaizeh, A., Hasni, R., Ahmad, A., & Lau, G. C. (2015). 3-Totat edge product cordial labeling of graphs. Far East journal of Matheimatical sciences, 96(2), 193-209.
- [9] Ivanco, J. (2017). On 3-total edge product cordial connected graphs. Opuscula Mathematica, 37(5), 725-734.
- [10] Yan, L., Li, Y., Zhang, X., Saqlain, M., Zafar, S., & Farahani, M. R. (2018). 3-total edge product cordial labeling of some new classes of graphs. *Journal of Information and Optimization Sciences*, 39(3), 705-724.
- [11] Ahmad, Y., Ali, U., Zafar, S., & Zahid, Z. (2017). Some new standard graphs labeled by 3-total edge product cordial labeling. *Applied Mathematics and Nonlinear Sciences*, 2(1), 61-72.
- [12] Ali, U., Bilal, M., Zafar, S., & Zahid, Z. (2017). Some Families of Convex Polytopes Labeled by 3-Total Edge Product Cordial Labeling. *Punjab University Journal of Mathematics*, 49, 119-132.
- [13] Ahmad, A., Baća, M., Naseem, M., & Semanicová-Fenovcíková, A. (2017). On 3-total edge product cordial labeling of honeycomb. *AKCE International Journal of Graphs and Combinatorics*, 14(2), 149-157.
- [14] Ali, U., Iqbal, J., Zafar, S., & Zahid, Z. (2018). 4-total edge product cordial labeling of some standard graphs. *Tamap Journal of Mathematics and Statistics*, 16-31.
- [15] Ivanco, J. (2017). On k-total edge product cordial graphs. The Australasian Journal of Combinatorics, 67, 476-485.
- [16] Hasni, R., & Azaizeh, A. (2016). 3-total edge product cordial labeling of wheel related graphs. Matematika, 32(2),
- [17] Kuo, D., Chang, G. J., & Kwong, Y. H. (1997). Cordial labeling of mK_n. Discrete Mathematics, 169(1-3), 121-131.
- [18] Lai, Y. L., & Chen, Y. M., On the total product cordial labeling of $P_n + mK_1$. National Chiayi University. http://people.chu.edu.tw/algo2008/file/f55.pdf

© 2020 by the author; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).