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Abstract

We introduced the class of generalized weakly C-contractive mappings in G-partial metric spaces
by combining the characteristics of Hardy and Rogers maps with weak contraction maps. The
existence and uniqueness of fixed point for those maps in ordered G-partial metric spaces are
established. Examples are given to support the validity of our results. Our results generalize

some results in the literature.
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1 Introduction

Metric fixed point theory has been a rigorous area of research in fixed point theory and applications.
Several authors have worked on the generalization of the notion of metric space. In particular,
Matthew [1] generalized the notion of metric space by introducing the concept of nonzero self
distance. Mustafa and Sims [2] also extended the concept of metric to G-metric by assigning the
real number to every triplet of an arbitrary set. Recently in [3], the concept of G-partial metric
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space is established by introducing the concept of nonzero self-distance to the notion of G-metric
space. In the same reference, some fixed point results for contraction maps in ordered G-partial
metric space are proved. In a decade, the existence of fixed points in ordered metric spaces was
initiated by Ran and Reurings [4]. Olaleru et al. [5] established the uniqueness of fixed points for
some Ciric-type contractive maps in ordered G-partial metric space. In this work we proved our
results also in ordered G-partial metric space.

The following definitions and motivations are found in [3].

Definition 1.1 : Let X be a nonempty set, and let G, : X x X x X — R" be a function satisfying
the following;:

(Gpl) Gp(z,y,2) > Gp(z,xz,2) > 0 for all z,y, z, € X (small self distance),

(Gp2) Gp(z,y, 2) = Gp(z,z,y) = Gp(y,y,2) = Gp(z, z,z) iff © =y = z, (equality),
(Gp3) Gp(z,y, 2) = Gp(z,z,y) = Gp(y, z,x) (symmetry in all three variables),
(Gpd) Gp(z,y, 2) < Gp(z,a,a) + Gp(a,y, z) — G(a,a,a) (rectangle inequality).

Then the function G, is called a G- partial metric and the pair (X, G}) is called a G-partial metric
space.

Example 1.2 : Let X = R' and a G-partial metric G, : X x X x X — R" can be defined with
Gp(z,y, 2z) = maz{z,y, z} then (X, G)) is a G-partial metric space.

We state the following definitions:

Definition 1.3: A sequence {z,} of points in a G-partial metric space (X, G)p) converges to some
a€ X if
liMn—00Gp(Tn, Tn,a) = liMn— oo Gp(Tn, Tn, Zn) = Gp(a,a,a).

Definition 1.4: A sequence {z,} of points in a G-partial metric spaces (X, Gp) is Cauchy if the
numbers Gp(Zn, Tm, z1) converges to some a € X as n,m,! approach infinity.

The proof of the following proposition easily follows from definition.

Proposition 1.5: Let {z,} be a sequence in G-partial metric space X and a € X. If {z,} converges
to a € X, then {z,} is a Cauchy sequence.

Definition 1.6: A G-partial metric space (X, Gp) is said to be complete if every Cauchy sequence
in (X,G,) converges to an element in (X,G,). That is, Gp(z,x,2) = limnosecGp(Tn,z,x) =
liMan,m—00Gp(Tn, Tm, Tm).

Definition 1.7 [4]: Let (X, <) be a partially ordered set. Then two elements z,y € X are said to
be totally ordered or ordered if they are comparable. i.e. x <y or y <X x.

Definition 1.8: Let X be a nonempty set. Then (X, X, G,) is called an ordered G-partial metric
space if the following conditions hold:

(i) Gp is a G-partial metric on X;
(ii) = is a partial order on X.

Lemma 1.9: Let (X, G4) be a G-partial metric space, T : X — X be a given mapping. Suppose
that T is continuous at 2o € X. Then, for each sequence {z,} in X, n, — o = Tzn — Txo.

Definition 1.10 [6]: The function ¢ : [0, c0) — [0, 00) is called an altering distance function, if the
following properties are satisfied:
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(1) ¢ is continuous and nondecreasing;
(2) #(t) =0 if and only if ¢ = 0.

Banach contraction mapping theorem is a well known result in fixed point theory. Though it has
its drawback, that is the continunity of the map in the space. Kannan [7] introduced a class of map
in which this condition (continunity of the map in the space) is not necessarily valid in proving
the existence of fixed point for the map in metric space. Chatterjea [8] also introduced contractive
maps different from that introduced in [7]. Choudhury [9] named the map introduced by Chatterjea
after him as C-contraction map.

Definition 1.11 [8] (C-contraction): Let T : X — X where(X,d) is a metric space is called a
C-contraction if there exists 0 < k < % such that for all z,y € X the following inequality holds:

d(Tz,Ty) < kld(z, Ty) + d(y, Tz)]. (1.1)

Other generalizations of Banach’s contraction mapping included the weak contraction which was
introduced in Hilbert space in [10]. The following is the corresponding definition in metric space
given in [11].

Definition 1.12 [11] (weak - contraction) : A mapping T': X — X where (X, d) is a complete
metric space is said to be weakly contractive if

d(TIZ, Ty) S d(:I:, y) - w(d(xv y)) (1'2)

where z,y € X, ¢ : [0,00) — [0,00) is continuous and nondecreasing, (z) = 0 if and only if z =0
and limz— oot (x) = 0.

Recently, Choudhury [9] introduced a generalized C-contraction which was termed weak C-contraction.

Definition 1.13 [9] : A mapping T : X — X, where (X, d) is a complete metric space is said to
be weakly C-contractive or weak C-contraction if for all x,y € X,

d(Tz,Ty) < S[d(a, Ty) + d(y, o)) — $(d(, Ty), dly, Tw)). (13)

where 1 : [0, 00)% — [0, 00) is a continuous mapping such that ) (x,y) = 0 if and only if z = y = 0.
A more generalized C-contractive mapping is introduced by Hardy and Rogers [12].

Definition 1.14 [12] : Let (X,d) be a complete metric space and an operator T': X — X be a
contractive mapping then there exist some numbers a, b, ¢, e and f, a + b+ c+ e+ f < 1 such that
for each z,y € X,

d(Tz,Ty) < ad(z,y) + bd(z, Tx) + cd(y, Ty) + ed(z, Ty) + fd(y, Tz). (1.4)

In [13], the existence of unique common fixed point for weakly compatible mappings in a metric
space satisfying Hardy and Rogers contractive conditions is established. The existence of a unique
fixed point for weak contraction mappings in G-metric spaces is proved in [14]. Eke [15] further
established the existence of unique common fixed point for a pair of weakly compatable mappings
satisfying weak contraction condition in G-metric space. Choudhury [9] established that weak
C-contractive mapping actually have unique fixed point in complete metric spaces. The existence of
a unique fixed point for weakly C-contractive mappings in ordered partial metric space is established
in [6].

Theorem 1.1 [6] : Let (X, <) be a partially ordered set and suppose that there exists a partial
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metric on X such that (X,p) is complete. Let T': X — X be continuous nondecreasing mapping.
Suppose that for comparable x,y € X, we have

(p(=, Ty) + p(y, T'z)
2

P(p(Tz, Ty)) < o( ) — o(p(x, Ty), p(y, Tx)) (1.5)

where 1 and ¢ are altering distance functions with

P(t) —p(t) = 0. (1.6)

fort >0, and ¢ : [0,00)% — [0, 00) is a continuous function with ¢(x, y) = 0 if and only if z = y = 0.
If there exists xo € X such that x¢o < Tzo, then T has a fixed point.

2 Main Results

In this work, we introduced a class of generalized weak C-contractive mapping in G-partial metric
space by replacing the C-contraction map with Hardy and Rogers contractive map.

Definition 2.1: Let (X, G)p) be a G-partial metric space and T : X — X be a mapping. Then T
is said to be generalized weakly C-contractive if for all z,y € X, the following inequality holds:

Gp(Tz, Ty, Ty) < arGp(z,y,y) + a2Gyp(x, Tx, Tx) + azGyp(y, Ty, Ty)
+a4GP(ZB7 Ty7 Ty) + a5GP(y7 Tf, TZC) - ¢(Gp(m7 Y, y)a
Gp(m7 Txv T.’L‘), Gp(y7 T% Ty)7 GP(:C7 Ty7 Ty)7 Gp(y7 T{L’, TCE)) (21)

where a1, as, as, a4, as € [0,1), Zle a; <1, and ¢ : [0700)5

with ¢(v,w,z,y,z) =0ifandonly if v =w=x=y=2=0.

— [0,00) is a continuous function

Remarks 2.2: f v=w=2=0,a1 =az =a3 =0, a4 = a5 = % and G-partial metric space is
replaced with metric space then (2.1) reduces to (1.3).

We also established the existence of a unique fixed point for a generalized weak C-contractive
mapping in ordered G-partial metric spaces.

Theorem 2.3 : Let (X, <) be a partially ordered set and suppose that there exists a G-partial
metric on X such that (X, Gp) is complete. Let T : X — X be continuous nondecreasing mapping.
Suppose that for comparable x,y € X, we have

Y(Gp(T2, Ty, Ty)) < @(ar1Gp(w,y,y) + a2Gp(x, Tz, Tx) + asGp(y, Ty, Ty)
+asGp(z, Ty, Ty) + asGp(y, Tz, Tx)) — ¢(Gp(z,y, ),
Gy(z, Tz, Tx), Gp(y, Ty, Ty), Gp(x, Ty, Ty),
Gp(y, Tz, Tx)) (2.2)

where a1, a2, as, a4, as € [0,1), Zle a; < 1, and v, ¢ are altering distance functions with

P(t)—(t) = 0. (2.3)

for t > 0, and ¢ : [0,00)° — [0, 00) is a continuous function with ¢(v,w,z,y, z) = 0 if and only if
v=w=z =y =z =0. If there exists zo € X such that o < Txo, then T has a fixed point.
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Proof: Observe that if T satisfies (2.2) then it satisfies

P(Gp(Tx, Ty, Ty)) < (aGp(z,y,y) + bGp(z, Tx, Tx) + bGy(y, Ty, Ty)
+cGp(z, Ty, Ty) + cGp(y, Tz, Tx)) — $(Gp(2,y,Y),
Gp(z, Tz, Tx), Gp(y, Ty, Ty), Gp(z, Ty, Ty),
Gp(y, Tz, Tx)) (2.4)

where a = a1, 2b = a2 + a3, 2¢ = a4 + a5, a +2b+ 2¢ < 1 and 20+ 2¢ < 1. We use (2.4) for our
argument.

Let xo € X be arbitrarily chosen. Suppose xo = Txo then xg is the fixed point of T. Let xo < Tzo,
x1 € X can be chosen such that Tx¢p = 1. Since T is nondecreasing function, then
ro Sx1 =Tx9 222 =Tx1 23 =T2.

Continuing the process, a sequence {x,} can be constructed such that xn+1 = Tx, with
ToZ21 3223233 . X Tp X Tpgleen -

If Gp(Tn, Tnt1,Tnt+1) = 0 for some n € N then T has a fixed point. Letting Gp(2n, Znt1, Tnt1) > 0
for all n € N, we claim that

Gp(xn,a:n+1,wn+1) < GP(m’ﬂflvwnaxn)vn EN (25)
Suppose Tn # Tnt+1, Gp(Tn, Tnt1, Tnt1) > Gp(Tn—1,Zn, Tn) for some ng then
Gp(xno » Tng+1s 117n0+1) > Gp(xno—lv Tng, $n0)~ (26)

From (2.4) and (2.6) the proof of the claim is established as:

Y(Gp(Tngs Trg+15 Tng+1)) = Y(Gp(TTng—1, TTng, T, ))
< w(aGP(xWO*la Lng s xno) + bGP(ZEnoflv Txno*lv Txno*l) + bGP(xnovTxnovTxno)
+ CGP(wnoflaTwnoaTwno) + CGP(wanxno*laTwn()*l)) - d’(GP(x"o*la xnovxn0)7
Gp(Tng—1, TTng—1, TTng 1), Gp(@ngs Tng, Tng ), Gp(Tng—1, TTng, Tng ),
Gp(xnoa Txno*la Txno*l))

= ‘p(aGp(xno—lv Tng CC"o) + bGP(zno—h xnovxno) + bGP(mnovxno-‘rlv CCno-‘rl)

+ cGp(Tng—1, Tng+1, Tng+1) + cGp(Tng, Tng, Tng))

= O(Gp(Tro—15Tng, Tng )y Gp(Trg—1, Tng, Tng )y Gp(Tngs Trg+15 Tng+1)s
Gp(xno—lvxno+17xno+1)v Gp(mnovxnovxno))

< 9(aGp(@ng—1,Tngs Tng) + bGp(Tng—1, Tng, Tng) + bGp(Tng; Tng+1; Tng+1)

+ CGP(xno—lv Tng s xno) + CGP(xnm Tno+1, Ino-‘rl) - CGP(mnmmnmxno)

+ CGP(mnoawnoa J3”0)) - d)(GP(x”o*lvmnovxno)v GP(xHO*lvxnovxno)a
Gp($"0?wno+17$no+1)zGp(mnO*l?xno+1axno+1)7Gp(mn07xnovxno))

< p(aGp(Tng—1; Tngs Tng) + bGp(Trg—1;Tngs Tng) + Gp(Tngs Tng+1, Tng+1)

+ Gp(Tng—1,Tngs Tng) + Gp(Tng, Tng+1, Tng+1)) = A(Gp(Tng—1,Tng, Tng ),
Gp(Tng—1,Tng, Tng)s Gp(Tngs Tng+1, Tng+1), Gp(Tng—1, Tng+1, Tng+1);
Gp(Tng; Tng, Tng))

< ‘P((a +2b+ 2C)max{GP($no—17 Tng, xno)v GP(‘rnov Tng+1, $n0+1))
= A(Gp(Tng—1,Tng, Tng ), Gp(Tng—1, Tng Tng )y Gp(Tngs Trng+1, Tng+1),
Gp(Tng—1, Tng+15 Tng+1)s Gp(Tngs Tngs Tng )
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< @(max{GP(xnofh Tng ), mno)’ Gp(xno » Tno+1s $n0+1))
= (Gp(Tng—1,Tngs Tng), Gp(Tro—1,Tng, Tng )s Gp(Tng s Tng+1, Tng+1),
Gp(Tro—1,Tno+1, Tng+1)s Gp(Tng, Tng, Tng )

< @(Gp(@ngs Tng+1, Tng+1)) = G(Gp(Tng—1,Tng, Tng ), Gp(Tng—1, Tng, Tng ),
GP("””O: Tng+1, xnoJrl)v Gp(mn()*h Tng+1, xno+1)7 Gp(xnoa Tng s xno))'
Using (2.4), (2.7) becomes
¢(Gp(xno—1, Tng Tng)s Gp(xno—lv Tng s xno): Gp(l’nm Tng+1, 1’n0+1),
Gp(Tng—1,Tng+1; Tng+1), Gp(Tng, Tngs Tng)) = 0.

By property of ¢, (2.8) yields
GP(xTLo*lrxnoaxno) =0, GP(xWO*lvxnovxno) =0, Gp(xnoaxnoleaxnoJrl) =0,
Gp(Tng—1,Tng+1, Tng+1) = 0, Gp(Tng, Tng, Tngy) = 0.
Since
w(Gp(mnovxnoJrlvmnoH)) = w(GP(TmWO*laTxnovTxno))
< 0(aGp(Tng—1, Tngs Tng) + bGp(Tng—1, TTno—1, TTno—1) + bGp(Tng, TTng, TTng)
+ CGP(xno—lv TxnovTxno) + CGP(xnovTxno—lv Tm"o—l)) - ¢(GP($7L0—17 xnmxno)a
GP(ZEWO*M Tx"o*lv Txno*l)v Gp(xno ) Txno ) Txno)a GP(xHO*lv Txno ) Txno)v
Gp(Tng, TTng—1, TTno-1))
= ‘P(aGP(xno—lv Tng s mno) + bGP(‘rno—h xnmxno) + bGP(mnmxno-‘rlv xno-‘rl)
+ cGp(Tng—1, Tng+1, Tng+1) + cGp(Tng, Tng, Tng))
= O(Gp(Tro—15Tng, Tng )y Gp(Trg—1, Tng, Tng )y Gp(Tngs Tng+15 Tng+1)s
Gp(Tng—1,Tng+1, Tng+1)s Gp(Tng, Tng, Tng))

< @(aGp(Tno—1,Tngs Tno) + OGp(Tng—1, Tngs Tng) + OGp(Tng, Tng+1, Tng+1)

+ CG;D(xno—lv Tng xno) =+ CGP(xnm Tng+1, :rno-‘rl) - CGp(mnmxnmxno)

+ CGP(mnovl‘noa x"o)) - qb(GP(xno*lvxnormno)v Gp(x”o*lvmnovxno)a
Gp($"0?xno+lvxno+1)zGP(xHO*l’x'ﬂo+1,%n0+1)7Gp(mnmxnmxno))

< p(aGp(Tng—1; Tngs Tng) + bGp(Trg—15Tngs Tng) + bGp(Tngs Tng+1; Tng+1)

+ CGP(mnoflf Tng xno) + CGP(xnovxnoﬂv Tno+1))

= (Gp(Tng—1,Tngs Tng), Gp(Tro—1,Tng, Tng )s Gp(Tng, Trg+1, Tng+1)s
Gp(Tno—1;Tng+1; Tng+1); Gp(Tng s Tng, Tng))-

Putting (2.9) into (2.10) yields
Y(Gp(Tngs Trg+1; Tng+1)) = 0.

By the property of ), (2.10) implies that G, (Zng, Tno+1, Tno+1) = 0 which contradict
Gp(Tng, Tno+1, Tno+1) > 0 for all n € N, hence (2.5) holds. Thus,

{Gp(@n, Tn+1,Tnt1)} is a decreasing sequence, hence there exists k& > 0 such that
limn—)ooGp(xn7 Tn+1, fn+1) =k.

Using (2.4), we obtain

Y(Gp(@Tn+1, Tnt2, Tng2)) = Y(Gp(T2n, TTns1, TTn41))
< (a(Gp(Tn, Tnt1, Tnt1) + 0(Gp(Tn, TTn, Tzn) + b(Gp(Tns1, TTns1, TTni1)
+ c(Gp(@n, Txny1, Tony1) + c(Gp(Tnsr, Tan, Ten)) — $(Gp(Tn, Tnt1, Tnt1),
Gp(@n, Txn, T2n), Gp(Tnt1, TTnt1, TZn11), Gp(Tny TTrt1, TTrt1),
Gp(Tnt1, Ten, Tan))
= 0(a(Gp(Tn, Trnt1,Tnt1) + b(Gp(Tn, Tnt1, Tnt1) + b(Gp(Tnt1, Tnt2, Tnt2)
+ c(Gp(Tns Tn2, Tnt2) + (Gp(Tnt1, Tnt1, Tnt1)) = A(Gp(Tn, Tnt1, Tng1),

(2.10)

(2.11)
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GP(I'm Tn+1, xn+1)7 GP('TH+1’ Tn+2, x"+2)7 Gp(z"’ T2, l’n+2),
Gp(Tnt1, Tnt1, Tnt1))

(a(Gp(®n, Tnt1, Tat1) + 0(Gp(Tn, Tnt1, Tnt1) + (Gp(Tnt1, Tni2, Tny2)
Gp(Tn, Tnt1, Tnt1) + (Gp(Tnt1, Tnt2, Tnt2) — CGp(Tnt1, Tnt1, Tnt1)
Gp(Tnt1, Tnt1, Tnt1)) — Q(Gp(Tn, Tnt1, Tnt1), Gp(Tn, Tnt1, Tnt1),
P(zn+17 Tnt2, Tnt2), Gp(xna Tn+2, xn+2)7 Gp(zn+17 Tnt1,Tnt1))

+ + IA
P

Q

< @(a(Gp(@n, Tnt1, Tnt1) + 0(Gp(@n, Tny1, Tny1) + 0(Gp(Tni1, Tnt2, Tni2)

+ c(Gp(Tns Tn1, Tns1) + (Gp(Tnt1, Tnt2, Tnt2)) — (Gp(Tn, Tns1, Tnt1),
Gp(Tns Tnt1, Tnt1), Gp(Tnt1, Tnt2, Tnt2), Gp(Tn, Tnta, Tni2),

Gp(Tnt1, Tnt1, Tnt1))

< o((a+2b+ 2c)maz{Gp(Tn, Tn+1, Tnt1), Gp(Tnt1, Tnt2, Tny2)})
— O(Gp(Tn, Tnt1, Tnt1), Gp(Tn, Tnt1, Tny1),
Gp(Tnt1, Tny2, Tnt2), Gp(Tn, Tnya, Tnt2), Gp(Tnt1, Tnt1, Tni1))

< @(maz{Gp(@n, Tn+1,Tn+1), Gp(Tnt1, Tnt2, Tns2)})
- ¢(Gp(xn7 Tn+1, xn+1): Gp(xru Tn+1, -Tn+1)7
Gp(mn+1’xn+27 CCn+2), Gp($n, l’n+2,56n+2), Gp(l’n+1,$n+1,$n+1))
< @(Gp(Tnt1, Tnt2, Tnt2)) — O(Gp(Tn, Tni1, Tnt1), Gp(Tn, Tnt1, Tnt1),
Gp(Tnt1, Tnt2, Tnt2), Gp(Tn, Tntz, Tnt2), Gp(Tnt1, Tnt1, Tnt1)). (2.12)

Using (2.3) we have,

¢(Gp($n: Tn+1, 1»’n+1)7 Gp($n7 Tn+1, $n+1), Gp(xn+1, Tn+2, $n+2)7
Gp(Tn, Tnt2, Tnt2), Gp(Tnt1, Tnt1, Tnt1)) = 0.

Taking the limit as n — oo in the above inequality yields

lim in fosoo ($(Gp(Tns Tnt1, Tnt1), Gp(Tn, Tt Tnt1); Gp(Tnt1, Tnt2, Tnta),
Gp(Tn, Tnt2, Tnt2), Gp(Tnt1, Tnt1, Tny1))) = 0.

By the continunity of ¢ we have

d)(llm annqooGp(xn, Tn+1, -Tn+1), lim infnﬁooGp(xn7 Tn+1, ZCn+1),
lim ann%ooGp (xn+1a Tn+2, xn+2)7 lim ’Lnfn%oo Gp (‘T'ny Tn+2, mn+2)7
lim infroooGp(Tn+1, Tnt1, Tnt1)) = 0.

The property of ¢ gives that

lim infnsooGp(Tn, Tnt1, Tnt1) = 0, lim infnoooGp(Tnt1, Tny2, Tnt2) =0,
lim infnqooGp(l‘n,an,.z, xn+2) = 0, lzm infn—yooGp(xn+17 $n+1,11n+1)) = O. (2.13)

Taking the inferior limit in (2.12) and using (2.13), ¥ (k) = 0, this implies that £ = 0. Therefore
UiMn—00Gp(Tn, Tnt1, Tns1) = 0.

Now we claim that {z,} is a Cauchy sequence. It is sufficient to show that {z2,} is a Cauchy
sequence. On the contrary, suppose {x2,} is not a Cauchy sequence then there exists ¢ > 0 and two
subsequences {Z2n, } and {@am, } of {x2n} such that n(k) > m(k) > k and sequences in (2.4) tend
to € as k — co. For two comparable elements y = 22y, +1 and £ = z2.,»,, we can get, from (2.3) that
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Y(Gp(T2ny+1, T2my, T2my,)) = Y(Gp(T 220y, TT2my—1, TT2my 1))
< (P(aGp(fL‘an y L2myp —1, 132mk—1) + pr($2nk s TZL’an s TCCan)
+ pr(l'gmkfl, T:IL'kaf17 Tl'gmkfl) + CGP(Zgnk R T:Egmkfl, Txgmkfl)
+ cGp(@2my,—1, Txon, , Tx2n, ) — O(Gp(®2n,, Tamy,—1, T2my—1),
Gp(Tong; Txan,, TTan, )y Gp(Tome -1, TZ2my—1, TZ2me—1),
Gp(l'gnk 5 Txgmkfl, Txgmkfl), Gp(xzmkfl, szn, Tl'gnk))
< p(aGp(Tany, T2my—1, T2mp—1) + bGp(Ton,, , Tang+1, T2ny+1)
+ 0Gp(T2my -1, Tamy, s T2my,) + CGp(T2any s Tamy s Tamy, ) + ¢Gp(Tamy—1, Tant1, Tang +1))
— (Gp(@2ny,s T2my—1, T2my 1), Gp(T2ny, Tang+1, T2ng+1); Gp(T2my 1, T2my, s T2my, )
Gp(l’znk s L2my, » mzmk), Gp(xzmkfl, T2n+1, $2"k+1))' (2.14)

As k — oo in (2.14), we get

1/](6) < 30(6) - ¢(Ev 666 6)7

This implies that ¢(e,€,€,¢,¢) = 0, hence ¢ = 0, a contradiction. Thus {z2,} is a Cauchy
sequence and so is {z,}. Since (X,G,) is complete then the sequence {z,} converges to some
z € X, that is limp—eGp(Tn,2,2) = 0 and limn—ecGp(Tn, 2,2) = liMpseGp(Tn, Tn, Tn) =
liMn—00Gp(Tn, Tm, Tm)

= limn—0Gp(z,2,2) = 0.

Applying the rectangle inequality, we have
Gp(2,T2,Tz) < Gp(2,Zn, Tn)+Gp(Tn,, T2, T2)—Gp(Tn, Tn,Tn) < Gp(2, Tn, Tn)+Gp(Txn-1,T2,Tz).

Taking n — oo in the above inequalities, with the continunity of T and Lemma 1.9 give that
Gp(2,T2,Tz) < Gp(Tz,Tz,Tz).
By Gp(1), Gp(2,T2,Tz) > Gp(Tz,Tz,Tz). This implies that

Gp(2,Tz,Tz) = Gp(Tz,Tz,Tz) (2.15)
By combining (2.4) and (2.15), we have

1/](GP(Za Tz, TZ)) = '()[)(GP(TZv Tz, TZ))

< (aGp(z,2,2) + bGp(2, T2, Tz) + bGp(2, Tz, Tz) + cGp(z,Tz,Tz)

+ cGp(2,T2,Tz))
— &(Gp(z,2,2),Gp(2,T2,T2),Gp(2,T2,T2),Gp(2,T2,Tz2),Gp(2,T2,Tz))
= (204 20)Gp(2,T2,T2)) — d(Gp(z,2,2), Gp(2,T2,T2),Gp(2,Tz,Tz),
Gp(2,T2,T2),Gp(2,T2,Tz))

< (Gp(2,T2,Tz2)) — ¢(Gp(z,2,2),Gp(2,T2,Tz),Gp(2,Tz,T2z),
Gp(2,T2,T2),Gp(2,Tz,Tz)),

d(Gp(2,2,2),Gp(2,T2,T2),Gp(2,T2,T2),Gp(2,T2,T2),Gp(2,T2,Tz))
S QO(GP(Za TZ: TZ)) - ¢(GP(Z7 TZ, TZ)) =0.

Thus Gp(2,Tz,Tz) =0, hence z = Tz. Therefore z is a fixed point of T.

Remarks 2.4: Theorem 2.1 is more general than Theorem 2.1 of Chen and Zhu [6] because G-
partial metric space generalized partial metric space and the weakly C-contractive map of Chen
and Zhu is included in our map. Also the result generalizes the results of Choudhury [9] in terms of
space and maps. Generalized weakly C-contractive maps is more general than the usual Hardy and
Rogers contractive map and our space also generalized the usual metric space, therefore Theorem
2.1 generalizes Theorem 2.1 of Olaleru [13].
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Corollary 2.5: Let (X, =) be a partially ordered set and suppose that there exists a G-partial
metric on X such that (X, Gp) is complete. Let T': X — X be continuous nondecreasing mapping.
Suppose that for comparable x,y € X, we have

—¢(Gp($,Ty,Ty),Gp(y,TiL',TQ?)) (216)
where 9(t) —(t) >0 (2.17)

for all £ > 0, and ¢ : [0,00)> — [0,00) is a continuous function with ¢(y,z) = 0 if and only if
y = z = 0. If there exists zo € X such that x¢o < Tz then T has a fixed point.

Corollary 2.6 : Let (X, =) be a partially ordered set and suppose that there exists a G-partial
metric on X such that (X, Gp) is complete. Let T': X — X be continuous nondecreasing mapping.
Suppose that for comparable z,y € X, we have

w(GP(Tvavay)) < W(Gp(xvyvy)) - ¢(Gp(x7y7y)) (2'18)
Y(t) —p(t) >0 (2.19)

for all t > 0, and ¢ : [0,00) — [0, c0) is a continuous function with ¢(z) = 0 if and only if z = 0. If
there exists 29 € X such that zo < Txo then T has a fixed point.

The proof of the corollary follows from Theorem 2.1.

Remarks 2.7: Corollary 2.5 is an analog result of Chen and Zhu [6] from partial metric space to
ordered G-partial metric space. If we replace ordered G-partial metric space with G-metric space
and (k) =k, ¢(t) =t in (2.14) then corollary 2.6 gives Theorem 2.1 of Aage and Saluke [14].

Example 2.8: LetX = [0, 14] be endowed with a G-partial metric Gp : X x X x X — R defined
by Gp(z,y,y) = maz{z,y,y}. Clearly, we can show that the G-partial metric space (X,Gp) is

complete. Also, we define the mapping T': X — X by Tz = 5. Let us take ¢, : [0,+00) —

[0, +00) such that ¥(t) = % and ¢(t) = g, respectively, and take ¢ : [0, +00)® — [0, +00) such
that ¢(u,v,x,y,2) = M. If z > y then

Gp(Tz, Ty, Ty) = max{§,%,%} = 3.

By simple calculation we have,

Gp(Tz, Ty, Ty) < 5Gp(z,y,y), (2.20)
Gp(Tz, Ty, Ty) < %[GP(I7T$7T.’K)+Gp(y7Ty,Ty)], (2.21)
Gp(Tz, Ty, Ty) < 3Gp(x, Ty, Ty) + Gp(y, Tz, T)]. (2.22)
Also,

Gp(z,y,y) + Gp(z, Tz, Tx) + Gp(y, Ty, Ty) + Gp(x, Ty, Ty) +

Q
o
S
&
=
&

=G ( z,Y,Y )+G (x7373)+G (y7373)+G (‘T7373)+G (y % %)
:max{xyy}+max{x,3,3}+G(y,3,3)+max{x,3,3}+ P(yvgvg)

=3z +Gp(y, L, Y) + Gp(y, 2, 2).
Hence,

Bz +Gp(y, ¥, ¥)+

)+ Golu, %, 2))°
9

W(Gy(Tw, Ty, Ty)) = & <
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$)+Gr(v,
3
)

. 2))?

+Gp(y, &, £))2

feole

< B2 4Gy,

ok fooke

_ (3z +Gp(y:
= p(a1Gp(z,y, y) + a2Gp(x, Tx, Tx) + azGp(y, Ty, Ty) + aaGp(z, Ty, Ty)

+asGp(y, T, Tx)) — ¢(Gp(x,y,y), Gp(x, Tx, Tx), Gp(y, Ty, Ty),
GP(:r7 Ty: Ty)7 Gp(y7 T:r: T:II))

N

If y > = then we have,
Gp(Tx, Ty, Ty) = maz{3, §, §} = §.

Also,

Gp(,y,y) + Gp(z, Tz, Tx) + Gp(y, Ty, Ty) + Gp(2, Ty, Ty) + Gp(y, Tz, Tx)
G(l'yy)+G(a§7 +G(y337§)+G(x3g7%)+G(y73)§)
_’ITLG,.T{.T Y, y}+G .T, +ma${y7373}+G ($,3,3)+ma${y737§
y
3

5)
%7
=3y+Gp(z, 35, 5) + G, 5, 5)-

)
y
EE
Therefore,

(By +Cp(e, &, £)+Cp(z, §, §))°

W(Gp(Ta, Ty, Ty)) = & <

©

(By +Gp(a, &, 5)+Gp(e, §.4)2 By +Gp(e, §.°5)+Gp(a, 4. %)
3

IN

= ¢(a1Gp(z,y,y) + a2Gp(z, Tx,Tx) + a3Gp(y, Ty, Ty) + aaGp(z, Ty, Ty)
+ a’5GP(y7 TQJ‘, T;t)) - ¢(Giﬂ(x7 Y, y)7 Gp(.I, TQJ‘, T;t), G;D(yz Ty7 Ty)7
Gp(xv Tya Ty)v Gp(yv Txa TZE))

From the above argument, we conclude that (2.2) holds. Therefore all the conditions of Theorem
2.1 is satisfied. The fixed point of T is 0.

3 Conclusions

The class of generalized weakly C-contractive mappings is introduced to G-partial metric spaces.
Some fixed point results for these maps are proved in ordered G-partial metric spaces. Examples is
given to support our result. The introduction of these contractive maps will open up new research
area for interested researchers in fixed point theory and applications.

Competing Interests

The author declares that no competing interests exist.

References

[1] Matthews SG. Partial metric spaces. 8th British Colloquium for Theoretical Computer Science.
In Research Report 212, Dept. of Computer Science, University of Warwick. 1992;708-718.

[2] Mustafa Z, Sims B. A new approach to generalised metric spaces. Journal of Nonlinear and
Convex Analysis. 2006;7(2):289- 297.

[3] Eke KS, Olaleru JO. Some fixed point results on ordered G-partial metric spaces. ICASTOR
Journal of Mathematical Sciences. 2013;7(1):65-78.

10



Eke; BJIMCS, 12(1), 1-11, 2016; Article no.BJMCS.18991

[10]
[11]
[12]
[13]
[14]

[15]

Ran ACM, Reurings MCB. A fixed point theorem in partially ordered sets and some
applications to matrix equations. Proceedings of the American Mathematical Society.
2003;132(5):1435 - 1443.

Olaleru JO, Eke KS, Olaoluwa H. Some fiixed point results for Ciric- type contractive mappings
in odered G- partial metric spaces. Journal of Applied Mathematics. 2014;5(6):1004- 1012.

Chen C, Zhu C. Fixed point theorems for weakly C- contractive mappings in partial metric
spaces. Fixed Point Theory and Applications.2013;2013:107.

Kannan R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968;10:71-76.
Chatterjea SK. Fixed point theorems. C. R. Acad. Bulgare Sci. 1972;25:727-730.

Choudhury BS. Unique fixed point theorem for weakly C- contractive mappings. Kathmandu
University Journal of Sci. Eng. and Tech. 2009;5(1):6-13.

Alber Ya. I, Guerre-Delabriere S. Principles of weakly contractive maps in Hilbert spaces, in
: 1. Gohberg. Yu. Lyubich (Eds). New Results in Operator Theory, in: Advances and Appl.
1997;98:7-22.

Rhoades GE. Some theorems on weakly contractive maps. Nonlinear Anal. 2001;47:2683-2693.

Hardy GE, Rogers TD. A generalization of a fixed point theory of reich. Canad. Math. Bull.
1973;16(2):201-206.

Olaleru J. Approximation of common fixed points of weakly compatible pairs using Jungck
iteration. Applied Mathematics and Computation. 2011;217:8425-8431.

Aage CA, Salunke JN. Fixed points for weak contraction in G-metric spaces. Applied
Mathematics E-Note. 2011;12:23-28.

Eke KS. Common fixed points of weakly compatible maps in G-metric spaces. British Journal
of Mathematics and Computer Sciences. 2015;5(3):341-348.

(©2016 Eke; This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (hitp://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)

http://sciencedomain.org/review-history/11615

11


http://creativecommons.org/licenses/by/4.0

	Introduction
	Main Results 
	Conclusions

