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ABSTRACT 
 

In this paper, we investigate the effects of electron inertia on the gravitational instability of gaseous 
plasma under the influence of FLR (Finite Larmor Radius) corrections and suspended particles. A 
general dispersion relation has been derived through relevant linearized perturbation equations. 
The general dispersion relation is reduced for both longitudinal and transverse mode of 
propagation. Numerical calculations have been performed to show the effect of various parameters 
on the growth rate of the gravitational instability. It is found that the simultaneous effect of viscosity, 
finite conductivity and permeability of the medium does not essentially change the Jeans criterion 
of instability. From the curves, we find that relaxation time, Stoke drag, viscosity and FLR 
parameter have a stabilizing effect on the growth rate of instability, but the thermal conductivity and 
finite electron inertia parameter have a destabilizing effect on the growth rate of instability. 
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1. INTRODUCTION  
 

Nowadays, there has been a great deal of 
interest in understanding the formation of 
planetesimals and stars in interstellar media. The 
gravitational instability of an infinite 
homogeneous self-gravitating gaseous plasma 
was first discussed by Jeans [1] and he pointed 
out that an infinitely extending homogeneous 
static medium is unstable with respect to the 
gravitational, sound wave with wave number � 
less than the critical Jeans wave-number  

�� = �����
	
 �

�
 where the symbols have their usual 

meaning. Chandrasekhar [2] has discussed in 
detail the effect of the magnetic field and 
rotations on the Jeans criterion of gravitational 
instability. He inferred that Jeans criterion 
determines the condition of instability even in the 
presence of a magnetic field and rotation. A 
number of researchers [3–12] have extended the 
problem of the gravitational instability of the self-
gravitating system under different conditions. 
Recently, Prajapati et al. [13] have investigated 
the problem of self-gravitational instability of 
rotating viscous Hall plasma with arbitrary 
radiative heat loss functions and electron inertia 
and have obtained modified Jeans criterion of 
instability. Ren et al. [14] have studied the 
electrostatic drift modes in quantum dusty 
plasma with Jeans terms. Bashir et al. [15] have 
discussed the problem of self-gravitational 
electrostatic drift waves for a streaming non-
uniform quantum dusty magnetoplasma. 
Prajapati and Chhajlani [16] have discussed the 
self-gravitational instability in magnetized finitely 
conducting viscoelastic fluid. Sharma and 
Chhajlani [17] have pointed out the modified 
Jeans instability of magnetized spin 

�
� Quantum 

plasma with resistive effects and Hall current. 
Joshi and Pensia [18] have discussed the effect 
of radiation on the Jeans instability of quantum 
plasma under the influence of rotation. 
 

In addition, to this the Finite Larmor Radius 
(FLR) effect plays an important role in interstellar 
gas dynamics, which exhibits itself in the form of 
a magnetic viscosity in the fluid equations 
Roberts and Taylor [19], Recently Kaothekar and 
Chhajlani [20] have discussed the problem of 
Jeans instability for a self-gravitating, rotating, 

radiative plasma with finite Larmor radius 
corrections and point out the stabilizing influence 
of the FLR effect.  
 
In all these studies of a gravitational instability of 
a self-gravitating medium under the combined 
effects of FLR corrections, finite electron inertia, 
viscosity, electrical conductivity, magnetic field, 
permeability and presence of suspended 
particles have not been investigated. It would, 
therefore, be of interest to examine the 
gravitational instability of a self-gravitating 
gaseous plasma under the influence of finite 
electron inertia, FLR correction, viscosity, 
thermal conductivity, permeability, magnetic field, 
electrical conductivity and presence of 
suspended particles. In the present work, we 
have discussed the problem of gravitational 
instability of a self-gravitating gaseous plasma in 
the presence of suspended particles and 
transverse magnetic field, including the 
simultaneous effects of finite electron inertia, 
FLR correction, viscosity, thermal conductivity 
and electrical resistivity. The present study can 
serve as a theoretical support to understand the 
astrophysical problems. This problem to the best 
of our knowledge has not been investigated yet.  
 
2. LINEARIZED PERTURBATION EQUA-

TIONS 
 
We consider an infinite homogeneous, viscous, 
self-gravitating gaseous plasma composed of 
gas and the suspended particle mixture with a 
uniform vertical magnetic field, finite electron 
inertia and the FLR. Into the unperturbed state, 
the fluid is assumed to be at rest. Pressure � and 
the density are constant is space and time. Due 
to the action of the perturbing field, a small 
amplitude perturbation induces an oscillatory 
motion. If the amplitude of these perturbations 
grows in time, then the system is said to be 
unstable. The unstable mode well grows when 
energy transferred to the system exceeds the 
dissipation. The perturbations in density, velocity, 
pressure, magnetic field, temperature and the 
gravitational potential are given as ��, ��, �P, ��������,�� ��� �� respectively. 
 
The perturbation state is given by 

 

� = �� + �� , � = �� + ��, ��� = ������� + ��������, � = �� + ��, � = �� + ��,
�� = �������  +  �������, !with ������� = 0', (�� = (������ + �(�����, !with (������ = 0' 
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Suffix ‘0’ is dropped from the equilibrium quantities.  
 
Thus, the linearized perturbation equations with finite Larmor radius and finite electron inertia 
governing the motion of hydromagnetic electrically conducting fluid plasma having suspended 
particles are given by. 
 

� ���
�)  =  −∇����� − ∇.���� - + �∇����� +  ./0!(�� − ��' + 1

43 4∇��� × ��������6 × ��� + �7 8∇��� − 1
�� ��9                     !1' 

 :��
:) + �∇.���� � ���� = 0                                                                                                                                                      !2' 

 
�� =  <���                                                                                                                                                               !3' 

 
∇��� + 43>��   =   0                                                                                                                                            !4' 

 

8? :
:)  + 19 (��  =  � ����                                                                                                                                                  !5' 

 

A∇��� =  �<B
:��
:)  −  :��

:)                                                                                                                                   !6' 

 ��
�  =  ��

�  +  ��
�                                                                                                                                                       !7' 

 

:��������
:)  = ∇��� × 4�� × ���6 + χ∇���������  + <�

43�EB  :
:) ∇���������                                                                                           !8' 

 
Where,          
                    
��4�G, �H , �I6, (��4(G, (H, (I6, 0, �, �, �, ���!0,0, �', �, >, 7, <B, A, J, ��, K, �/ , 43�EB,
./!63�L' ��� ��������4��G , ��H, ��I6, P, denote respectively, the gas velocity, the particle velocity, the 
number density of the particle, density of the gas, pressure of the gas, Gravitational potential, 
magnetic field, temperature, Gravitational constant, kinematic viscosity, specific heat at constant 
pressure, thermal conductivity, gas constant, permeability, mass per unit volume of the particles its 
density, plasma frequency of electron, the constant in the stokes drag formula, perturbation in 
magnetic field and stress tensor (Pressure Tensor). The component of pressure tensor P taking into 
account of finite ion Larmor radius, for the magnetic field along Z axis (For the vertical magnetic field) 
according to Roberts and Taylor [19] are   
 

�GG  =  −�υ� �MNO
MG + MNP

MH � ,   �HH  =  �υ� �MNO
MG + MNP

MH �,     �II  = 0,       �GH = �HG  =  �υ� �MNP
MG − MNO

MH �, 

�GI = �IG  =  −2�υ� �MNO
MI + MNQ

MH �,       �HI = �IH  =  2�υ� �MNQ
MG + MNP

MI �, 
 

Where �υ� = R′ST′
�UV, and T being the density and temperature of ions and WX is ion-gyration frequency 

and k’ is Boltzmann’s constant.  
 
3. DISPERSION RELATION   
   
We assume that all the perturbed quantities vary as, 
 YZ[\]!�GZ + �I^ + _)'`                                                                                                                                        !9' 
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Where �G, �I are the wave numbers of perturbation along the x and z-axis so that �G�  +  �I�  =  �� and  _ the frequency of harmonic disturbances, Using (2)-(9) in (1), we obtain the following algebraic 
equations for the components. 

 

b��G  + υ�!�G� + 2�I�'�H  +  ]�G�� ΩS� c = 0                                                                                                     !10' 

 4−υ�!�G� + 2�I�'6�G  + b��H  − !2υ��G�I'�I     = 0                                                                                    !11' 
 

!2υ��G�I'�H  +  d��I  + ]�I�� ΩS� c = 0                                                                                                            !12' 

 
The divergence of (1) with the aid of (2)-(9) gives 
 ]�G��e����� �G + ]�Gυ�!�G� + 4�I�'�H − 4fd� + ΩS� 6c = 0                                                                        !13' 

    

Where,    c = M�
�    is the condensation of the medium,  g =  	h

	i = 	
	 ′   ratio of the specific                    

heat, e = j
k���  is the Alfven velocity, � =  T
R

�  has the dimension of frequency, ? =  l
T
 is the relaxation 

time,                 τΩR  =  �

�  is the mass conservation, f = ]_, is the growth rate of perturbation,    

 m = n
�	h  is the thermometric conductivity, Ωl = χ��  is electrical resistivity, 

  C and C’ is the adiabatic and isothermal velocities of 
sound. 
 

d� = �f + Ωo + �f?
f? + 1� ,  d� = 4−υ�!�G� + 2�I�'6, dp = !−bp',    d� = !2υ��G�I',   �� = ���,  

 

Ω�′� = 4< ′��� − 43>�6,      Ω�� = !<��� − 43>�',         ΩS� = qrΩstuvΩs′
rtuv w,     mT = gm��, 

 

b� = qd� + e������� w ,                         b� = qd� + ��e��I��� w ,                        bp = ]�Gυ�!�G� + 4�I�'     
 

The nontrivial solution of the determinant of the matrix obtained from (10)-(13) with !�G ,  �H , �I,) and 
s having various coefficients, that should vanish is to give the following dispersion relation. 
 

b� b�d�4fd� +  ΩS� 6 + d��b�4fd� +  ΩS� 6 − b� dpd�
]�I�� ΩS� + d�d��4fd� + ΩS� 6

+ d�d� q]��G�Ie�����  ΩS� w + ]�G�� d�d�dp ΩS� + !d�b� + d��' q]��G�e�����  ΩS� w  = 0 !14' 

 
Equation (14) represents the general dispersion 
relation of the considered problem and it shows 
the combined influence of finite electron inertia, 
suspended particles, electrical resistivity, thermal 
conductivity, viscosity, magnetic field and finite 
Larmor radius on the self-gravitational instability 
of a homogeneous gaseous plasma. If we ignore 
the effect of electron inertia them (equ. 14) is 
similar to those of Vyas and Chhajlani [4] 
neglecting the contribution of rotation in that 
case. If we ignore the suspended particles, finite 
Larmor radius (equ. 14) reduces to the one 
similar to obtained by Prajapati et al. [13] 

excluding the effect of Hall currents, rotation and 
heat-loss function.  
 
Thus, with these corrections, we find the 
dispersion relation is modified due to the 
combined influences of suspended particles, 
finite electron inertia, viscosity, finite Larmor 
radius, thermal conductivity and electrical 
resistivity. The above dispersion relation is very 
lengthy and to investigate the effects of each 
parameter we now reduce the dispersion relation 
(14) for two modes of propagation. 
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4.  ANALYSIS OF THE DISPERSION 
RELATION    

                                                                                                                                                                                                   
Now we shall discuss the dispersion relation 
given by equation (14) for the following modes. 
Longitudinal propagation, i.e. �G = 0 , �I = � and 
Transverse propagation, i.e. �G = �, �I = 0 
 

4.1 Longitudinal Mode of Propagation !x ∥ z' 
 
In this case, we assume that all the perturbations 
are longitudinal to the direction of the magnetic 
field i.e.!x{ = | , x} = x'. 
 
Thus, the dispersion relation (14) reduces to the 
simple form to give  
 d�~b�� + !−2υ���'��4fd� + ΩS� 6 = 0           !15' 

This dispersion relation is the product of three 
independent factors. These factors show the 
mode of propagations incorporating different 
parameters as discussed below. The first factor 
equated to zero gives, 
 ?f� + f\1 + ?!� + Ωo'` + Ωo = 0               !16' 
 
The dispersion relation (16) shows the combined 
influence of viscosity and suspended particles on 
the propagation of the disturbances. This mode 
is independent of finite electron inertia, finite 
Larmor radius, magnetic field and self-
gravitation. From the root of the dispersion 
relation (16) the stability of the system may be 
considered. In (16) there is no term of suspended 
particles and we get damped mode due to 
viscosity and it is stable mode. The second factor 
equated to zero and after simplification, we get 

 f�?�E� + ��f� + ��f� + ��f� + ��f� + �pfp + ��f� + ��f + �� = 0                                          !17' 
 
The dispersion relation (17) is a non-gravitating Alfven mode influenced by suspended particles, finite 
electron inertia, finite Larmor radius, viscosity, thermal conductivity and electrical resistivity. The 
dispersion relation (17) is eight degree polynomial equations and its coefficient are very long and the 
constant terms are given as, 
 �� =  Ωo�Ωl� + ��e�Ωl� + 2Ωo��e�Ωlp + 4υ����Ωl�  
 
The third factor equated to zero and after simplification gives 
 

f�? + fp\1 + ?!� + Ωo + mT'` + f��!Ωo + mT' + ?�Ω�� + mT!� + Ωo'��
+ f �Ω�� + mTΩo + ?ΩoΩ� ′�� + ΩoΩ� ′�  = 0                                                                   !18' 

 
The dispersion relation (18) is a gravitating mode and shows the combined effect of suspended 
particles, viscosity and thermal conductivity on the self-gravitational instability of the system for 
longitudinal propagation. This gravitating mode of propagation is independent of finite electron inertia, 
magnetic field, finite Larmor radius and electrical resistivity. The dispersion relations (18) are four-
degree polynomial equations. If f�, f�, fp ��� f� are the root of the equations, then we have  
 

f�+ f�+fp  + f� = − ��
� + � + Ωo + mT�  And  f�. f�. fp . f� = uv

�  Ω�′�       
  

From the dispersion relation (18) we get the condition of instability for all Jeans length λ >
λ�′ � � �

���
�
 � ′�  Or wave number � < ��′ . In the absence of thermal conductivity mT = 0 , the system 

change from isothermal to behavior to adiabatic behavior. Now we analyze the dynamical stability of 
the system represented by (18) by applying the Routh-Hurwitz criterion. If Ω��  > 0 and Ω�′�  > 0, then 
all the coefficients of (18) positive and the necessary condition for stability satisfied. To obtain the 
sufficient condition, the principal diagonal minors of the Hurwitz matrix must be positive and we get 
 

 ∆�= \1 + ?!� + Ωo + mT'` > 0 , 
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∆�= �!Ωo + mT' + ?\�mT + !Ωo + mT'!� + Ωo + mT'` + ?�mT �Ω�� − Ω�′��
+ ?�!Ωo + �'�Ω�� + mT!� + Ωo + mT'�� > 0 , 

 

 
 ∆�= mTΩ�′� ∆p > 0 ,  

 
All the ∆′c positive, thereby, satisfying the Hurwitz criterion, according to which equation (18) will not 
admit any positive real root of f!= ]_' Or a complex root whose real part is positive, hence, it gives a 
stable mode independent of the finite electron inertia, finite Larmor radius and the magnetic field. To 
analyze the role of viscosity, suspended particles and thermal conductivity on the growth rate of an 
unstable mode, we choose the arbitrary values of these parameters in the present problem. We write 
the dispersion relation (18) is non-dimensional from in term of self-gravitation as,  
 

 
 
Where the various nondimensional parameters are defined as, 
 

f∗ = r
k���� ,  �/∗ = T
R

�k���� ,   A∗ = n
�	hk���� ,  �∗ = T	

k���� , υ∗ = υk����
	 ,   ��∗ = T�k����

	 ,  ?∗ = ?k43>� !20'    
 
In the present analysis, the expression for 
dispersion relation and a growth rate of instability 
are evaluated for the infinitely conducting 
medium. We have examined the effect of thermal 
conductivity, relaxation time and Stokes drag 
parameters on the growth rate of self-
gravitational instability. The results are shown in 
Figs. 1-4 which have depicted the 
nondimensional growth rate versus the 
nondimensional wave number of various arbitrary 
values of the thermal conductivity !A∗', relaxation 
time ! ?∗' , viscosity (υ*) and Stokes drag 
parameters !�/∗'. 
 
For these results, Fig. 1 shows the growth rate of 
an unstable mode !�������� ���� ���� ��  ∗'  
against the wave number !�∗'  with a variation                  
in the thermal conductivity !A∗'  parameter. We 
see that the growth rate of the instability 
increases with increases is !A∗' . The peak                
value of the growth rate is increased by 
increasing the thermal conductivity parameters. 
The present results are different to those of 
Prajapati et al. [13]. Where the growth rate is 
unaffected by the presence of the thermal 
conductivity. 

 
 

Fig. 1. The growth rate of instability is plotted 
against the dimensionless wave number  x∗ 
with variation in the thermal conductivity            ¡∗= 0, 2, 4, with taking the values x¢∗, υυυυ∗, x£∗  

and  ¤∗ as unity 
 
The variation of growth rate  !f∗'  of instability 
against wave number !�∗' for the different value 
of relaxation time ! ?∗' parameter is shown with 
Fig. 2. It is observed that the relaxation time 
parameter has a reverse effect on the growth 
compared to that of the thermal conductivity 
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parameters. In other words, due to an increase in 
the relaxation time parameter, the growth rate of 
the instability decreases. Thus, the relaxation 
time parameter has a damping effect on the 
growth rate of the system. Also, the peak value 
of the growth rate is decreased by increasing ! ?∗'. 
 

 
 

Fig. 2. The growth rate of instability is plotted 
against the dimensionless wave number  x∗ 
with variation in the relaxation time  ¥∗= 0, 2, 

4, with taking the values of x¢∗, υυυυ∗, x£∗  and             ¦∗ as unity 
 

 
 

Fig. 3. The growth rate of instability is plotted 
against the dimensionless wave number  x∗ 

with variation in the Stokes’ drag constant  §�∗ 
= 0, 2, 4, with taking the values of ¦∗, υυυυ∗, x£∗  

and  ¤∗ as unity 
 
Growth rate of the instability against wave 
number of different values of the Stokes                  
drag !�/∗'  parameter is seen in Fig. 3. From                   
the curves, we see that Stokes drag parameter 
shows the similar effect as shown by                
relaxation time parameter ! ?∗' . Thus, the         

Stokes drag force has a stable influence on the 
self-gravitational instability of the system. 
 

 
 

Fig. 4. The growth rate of instability is plotted 
against the dimensionless wave number  x∗ 

with variation in the viscosity υυυυ∗ = 0, 2, 4, with 
taking the values of  ¦∗,  x£∗ ,  §�∗ and  ¤∗ as unity 
 
The growth rate of the instability against wave 
number of different values of the viscosity !υ∗' 
parameter is observed in Fig. 4. From the curves, 
we find that viscosity parameter shows the 
similar effect as shown by relaxation time ! ?∗' 
Stoke drags !�/∗' parameter. Thus, viscosity has 
a stable influence on the self- gravitational 
instability of the system.  
 

4.2 Transverse Mode of Propagation !x⊥ z' 
 
In this case, we assume all the perturbations 
transverse to the direction of the magnetic field 
i.e. !x{ = x,    x} = |' . Thus, the dispersion 
relation (14) reduces to the simple form to give 
us, 

 

d�� ¨fd�� + d� qΩS� + f��e�
��

w + !υ���'�f© = 0 !21' 

 
This dispersion relation is the product of two 
independent factors. These factors show                 
the mode of propagations incorporating different 
parameters as discussed below. The first factor 
of this dispersion relation is a stable mode                 
as discussed in the previous case. The                 
second factor of the dispersion relations (21) 
simplification written as 
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f�?�E + f�?~?\Ωl + E!2� + 2Ωo + mT'` + 2E�
+ f��?��E4Ω��  + Ωo� + ��6 + Ωl!2� + 2Ωo + mT' + 2�E!Ωo + mT' + EΩo!Ωl + mT'�
+ 2?\Ωl + E!� + 2Ωo + mT'` + E�
+ f��?��!� + Ωo'42ΩlmT + EΩoΩl + �Ωl + ΩlmT + EΩ��6 + EΩo!Ωo + �Ωl'
+ EmT4Ω�′� + ��6 + ΩlΩ���
+ ?�!� + Ωo'!2Ωl + 2EΩo + 2EmT' + 42EΩ�� + ��e� + υ����E6 + 2Ωo!Ωl + EmT'
+ 2ΩlmT� + Ωl + E!2mT + 2Ωo'�
+ fp�?�!� + Ωo'�EmTΩ�′� + ΩlΩ�� + ΩlmT!� + Ωo' + ΩlmTΩ�′��
+ ?�mT42EΩ�′� + ��e� + υ����E6 + Ωl42Ω�� + υ����6
+ !� + 7T'4EΩ�� + ��e� + 2ΩoΩl + EΩomT6 + mTE4Ω�� + �Ωl + mTΩo6 + �ΩlmT�  
+ EΩ�� + ��e� + ��υ�� + EΩo!Ωo + 2mT'�
+ f��?��ΩlmTΩ�′�!� + Ωo'�   
+ ?�!� + Ωo'mT4EΩ�′� + ��e� + ΩlmT6 + !� + Ωo'4Ω�� + mTΩo6Ωl+ mTΩ�′�!2Ωl + EΩo' + Ωl4Ω��Ωo + �mT + υ����mT6� + mT4EΩ�′� + ��e� + υ����E6
+ Ωo4EΩ�� + ��e� + EmTΩo6 + Ωl4Ω�� + Ωo� + 7����6 + 2mTΩlΩo�
+ f�?�ΩlmTΩ�′�!� + 2Ωo'� + mTΩo4Ω�′� + ��e�6 + ΩlmTυ��Ω��Ωo� + mTΩoΩlΩ�′�  
= 0                                                                                                                                                            !22' 

 
This dispersion relation (22) is self-gravitating Alfven mode and represent the effect of the 
simultaneous inclusion of the suspended particles, finite Larmor radius, finite electron inertia, thermal 
conductivity, electrical resistivity, and viscosity on the self-gravitational instability of the system for the 
transverse propagation. The condition of instability and the expression for the critical Jeans length are 
obtained from the constant term of (22), which is identical to that for longitudinal propagation. We find 
that in the dispersion relation (22) some terms are multiplied by terms due to the suspended particles 
and finite electron inertia, but the constant term is independent of the suspended particles, finite 
Larmor radius and finite electron inertia. Hence, the conditions of instability will not be affected by the 
presence of suspended particles, finite Larmor radius and finite electron inertia, but the growth rate of 
the system will be changed. In the absence of electrical resistivity, the condition of instability is 
changed and the expression of the critical Jeans wavenumber is given by  
 

� < �� = 8 43>�
<′� + e�9

��                                                                                                                                        !23' 

 
From (23) we note that for the electrically infinite conducting system the Jeans criteria of the instability 
of instability are not affected by finite electron inertia, finite Larmor radius and suspended particles but 
Jean's condition is modified by a magnetic field. 
 
Now in order to see the effect of suspended particles, finite electron inertia, finite Larmor radius, 
viscosity and thermal conductivity on self-gravitational instability of the system we reduce the 
dispersion relation (22) for infinitely conducting mediums. Thus, on putting Ωl = 0 in (22) we get. 

 

 
 
In order to study the effects of various physical parameters on the growth rate of gravitational 
instability, we have reduced the dispersion relation (24) in non-dimensional form in terms of self-
gravitation as from defined as, 
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 Where the various non dimensional parameters are defined as, 
 

f∗ = r
k���� ,   �/∗ = T
R

�k���� ,    A∗ = n
�	hk���� ,  �∗ = T	

k���� ,   υ∗ = ok����
	 ,   ��∗ = T�k����

	 ,         ?∗ =
?k43>�,      e∗ = ªk����

	 ,      υ�∗ = o«k����
	                                                                                                    !26'   

 
In order to see the effects of various physical 
parameters [relaxation time  τ∗,  stokes drag  �/∗ , 
finite electron inertia E∗ and finite Larmor radius 
υ�∗ ] on the growth rate instability, we have 
performed numerical conclusions of the 
dispersion relation  to locate the positive real 
roots of the non-dimensional growth f∗  against 
the non-dimensional wave number �∗ for various 
values of relaxation time ?∗ , Stokes drag  �/∗ , 
finite electron inertia E∗ and finite Larmor radius 
υ�∗ . These calculations are presented in figures (5 
to 8) to show the variations of the growth rate 
(f∗) with wave number (�∗), of the considered 
system for different values of relaxation time ( τ∗), 
Stokes drags ( �/∗), finite electron inertia (E∗) and 
finite Larmor radius (υ�∗ ) respectively. 
 
The variation of the real part of the growth rate 
(f∗) with the wave number (�∗) for various values 
of the relaxation time parameter  τ∗ = 0, 2, 4 
respectively is seen in Fig. 5. It is clear from this 
figure that for any wave number value the growth 
rate of instability decreases as increasing the 
relaxation time ( ?∗ ). Hence, the relaxation time 
has a stabilizing influence on the system. 
 
The variation of the positive real part of growth 
rate ( f∗ ) with wave number ( �∗ ) for various 
values of Stokes drags parameter  �/∗ = 0, 2, 4 
respectively, if   τ∗ = 1, E∗ =  1,  υ�∗ = 1,                   

υ∗ = 1,  λ∗ = 1,  V∗ = 1 . Is demonstrated in                
Fig. 6. It is clear from this figure that, for any 
wave number value, the real positive root of 
growth rate f∗  decreasing by increasing the 
Stokes drag parameters by indicates that the 
Stokes drag �/∗ has a stabilizing effect. 
 

 
 

Fig. 5. The growth rate of instability is plotted 
against the dimensionless wave number  x∗ 
with variation in the relaxation time  ¥∗= 0, 2, 
4, with taking the values of x¢∗,  ∗, υυυυ|∗ , ®∗ , �∗ 

and ¦∗ as unity 
 

The variation of the positive real part of growth 
rate ( f∗ ) with wave number ( �∗ ) for various 
values of finite electron inertia parameter E∗ = 0, 
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2, 4 respectively, if  τ∗ = 1,  �/∗ = 1, υ∗ = 1, υ�∗  = 1, 
λ

∗ = 1,  V∗ = 1. It is clear from the Fig. 7  that, 
any wave number value, the real positive root of 
the growth rate of instability f∗  increases  by 
increasing the finite electron inertia ( E∗ ) 
parameter which  indicates that the finite electron 
inertia has a destabilizing effect. 

 

 
 

Fig. 6. The growth rate of instability is plotted 
against the dimensionless wave number  x∗ 

with variation in the Stokes’ drag constant  §�∗ 
= 0, 2, 4, with taking the values of   ¦∗,  ¯∗, υυυυ|∗  , �∗, υυυυ∗ and  ¤∗ as unity 

 

 
 

Fig. 7. The growth rate of instability is plotted 
against the dimensionless wave number  x∗ 

with variation in the Electron inertia  �∗ = 0, 2, 
4, with taking the values of  x¢∗, υυυυ∗ ¦∗,  ¯∗, υυυυ|∗  

and  ¤∗ as unity 
 
Variations of the positive real root of growth rate 
(f∗) of unstable mode with the wave number (�∗) 
for various values of finite Larmor radius  υ�∗  = 0, 
2, 4 respectively, if   τ∗ = 1, υ∗ = 1,  �/∗ = 1, E∗=1,  λ∗ = 1,  V∗ = 1. Is seen on Fig. 8. It is clear from 
this figure that, any wave number value, the real 
positive root f∗  Of instability slightly decreases 

with increasing the finite Larmor radius 
parameter, which indicates that the finite Larmor 
radius parameter has to stabilize effect. 
 

 
 

Fig. 8. The growth rate of instability is plotted 
against the dimensionless wave number  x∗ 

with variation in the finite Larmor radius  υυυυ|∗  = 
0, 2, 4, with taking the values of  x¢∗,   υυυυ∗,        ¦¦¦¦∗∗∗∗, , , ,     ¯̄̄̄∗∗∗∗, , , , ����∗∗∗∗ and     ¤¤¤¤∗∗∗∗ as unity 

 
5. CONCLUSION 
 
We have studied the gravitational instability of a 
self-gravitating media under the combined 
influence of FLR correction, finite electron inertia, 
suspended particles, viscosity, thermal 
conductivity and electrical resistivity in the 
presence of a transverse magnetic field. The 
general dispersion relation is obtained using 
normal mode analysis. The analytical expression 
of the general dispersion relation is obtained with 
the help of linearized perturbation equations. The 
general dispersion relation is modified due to the 
presence of these parameters. The Jeans 
criterion of instability remains valid, but the 
critical Jean's wave number is modified. The 
viscosity parameter has a stabilizing effect on the 
system in the longitudinal modes of propagation. 
The Thermal conductivity has a destabilizing 
influence on the longitudinal wave propagation. 
The Relaxation time and Stoke drag parameter 
have to stabilize the system in both the 
longitudinal and transverse mode of propagation. 
From the curves, it is found that the thermal 
conductivity and viscosity show mutually reverse 
effects on the growth rate of the instability. In 
other words, the thermal conductivity has a 
destabilizing influence, while the viscosity has a 
stabilizing role in the growth rate of the system. 
The FLR corrections have a stabilizing influence 
on the transverse wave propagations. In the case 
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of longitudinal propagation, the gravitating mode 
is influenced by viscosity, thermal conductivity, 
permeability and suspended particles, but not 
affected by finite electron inertia, magnetic field 
and FLR correction. The parameters of the 
magnetic field, finite electron inertia, FLR (finite 
Larmor radius) corrections and suspended 
particles do not change the Jeans condition in 
this case. The dynamical stability of the system, 
in this case, is analyzed by applying the Routh-
Hurwitz criterion. In the transverse mode of 
propagation, the self-gravitating Alfven mode is 
influenced by finite electron inertia, FLR, 
suspended particles, viscosity, permeability and 
thermal conductivity of the medium. The Jean's 
condition of instability is modified by finite 
electron inertia, thermal conductivity and 
magnetic field, but not affected by viscosity and 
suspended particles. In this case, curves depict 
the effects relaxation time (?∗), Stokes drag (�/∗), 
electron inertia !E∗'  and FLR corrections (υ�∗ ) 
parameters. From the curve, it is found that 
thermal conductivity and FLR correction shows 
mutually reverse effects on the growth rate of 
instability. In other words, the thermal 
conductivity has a destabilizing influence, while 
the FLR correction has a stabilizing role in the 
growth rate of the instability. The finite electron 
inertia has a destabilizing influence on the growth 
rate of instability. Also, it decreasing the peak 
value of the growth rate means that the system 
becomes more and more unstable for higher 
values of the finite electron inertia parameter. 
Also, the system becomes more unstable in the 
presence of finite electron inertia effects and it is 
more probable to have larger clouds comparing 
to the ideal system. Despite the vital role of FLR 
corrections in the very dense interstellar cloud is 
a key process in the standard theory of star 
formation, our results show that such non-ideal 
mechanisms may operate thermally unstable 
systems such as warm interstellar medium and 
astrophysical problem.  
 
COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 
 

REFERENCES 
 
1. Jeans JH. The stability of spherical nebula. 

Phil. Trans. Roy. Soc. London 
1902;A199:1. 

2. Chandrasekhar S. Hydrodynamic and 
hydromagnetic stability. Oxford: Clarendon 
Press; 1961. 

3. Langer WD. The stability of interstellar 
clouds containing magnetic fields. The 
Astrophysical Journal. 1978;225:95. 

4. Vyas MK, Chhajlani RK. Gravitational 
instability of a thermally-conducting plasma 
flowing through a porous medium in the 
presence of suspended particles. 
Astrophysics and Space Science. 
1988;149:323.  

5. Chhajlani RK, Sangvi RK. Finite larmor 
radius and hall current effects on magneto-
gravitational instability of a plasma in the 
presence of suspended particles. 
Astrophysics and Space Science. 
1986;124:33. 

6. Kumar N, Srivastava KM. Gravitational 
instability of partially ionized plasma 
carrying a uniform magnetic field with 
Hall effect.  Astrophysics Space Science. 
1990;174:211. 

7. Ali A, Bhatia PK. Gravitational instability of 
partially ionized plasma in an oblique 
magnetic field. Astrophysics and Space 
Science. 1992;195:389. 

8. Bhatia PK, Rajib Hazarika AB. 
Gravitational instability of partially ionized 
plasma in an oblique magnetic field. Phys. 
Scr. 1995;51:775. 

9. Mamum AA. Effects of dust temperature 
and fast ions on gravitational instability in a 
self-gravitating magnetized dusty 
plasma. Physics of Plasmas. 1998;5:3542. 

10. Lima LAS, Silva R, Santos J. Jeans 
gravitational instability and nonextensive 
kinetic theory. Astron. Astrophys.  
2002;396:309.  

11. Sunil, Sharma D, Sharma RC. Effect of 
dust particles on thermal convection in 
ferromagnetic fluid saturating a porous 
medium. Journal of Magnetism and 
Magnetic Materials. 2005;288:83.  

12. Sheikh S, Khan A, Bhatia PK. Thermally 
conducting partially ionized plasma in a 
variable magnetic field. Plasma Physics. 
2007;47:147. 

13. Prajapati RP, Pensia RK, Kaothekar S, 
Chhajlani RK. Self-gravitational instability 
of rotating viscous Hall plasma with 
arbitrary radiative heat loss functions and 
electron inertia. Astrophys. Space Science. 
2010;327:139. 

14. Ren H, Wu Z, Cao J, Chu PK. 
Magnetorotational instability in a 
collisionless plasma with heat flux vector 
and an isotropic plasma with self-



 
 
 
 

Sutar and Pensia; PSIJ, 10(1): 1-12, 2016; Article no.PSIJ.22850 
 
 

 
12 

 

gravitational effect. Physics of Plasmas. 
2011;18:092117. 

15. Bashir MF, Jamil M, Murtaza G, Solimullah 
M, Shah HA. Stability analysis of self-
gravitational electrostatic drift waves for a 
streaming nonuniform quantum dusty 
magneto plasma. Physics of Plasma. 
2012;19:043701. 

16. Prajapati RP, Chhajlani RK. Self-
gravitational instability in magnetized 
finitely conducting viscoelastic                     
fluid. Astrophys Space Science. 
2013;344:371. 

17. Sharma P, Chhajlani RK. The effect of spin 
induced magnetization on Jeans instability 

of viscous and resistive quantum plasma. 
Physics of Plasmas. 2014;21:032101. 

18. Joshi H, Pensia RK. Jeans instability of 
rotating magnetized quantum plasma 
influence of radiation. Physics of Plasmas. 
2015;1670:030014.  

19. Roberts KV, Taylor JB. 
Magnetohydrodynamic equations for finite 
larnor radius. Phys. Rev. Letters. 
1962;8:197. 

20. Kaothekar S, Chhajlani RK. Jeans 
instability of self-gravitating rotating 
radiative plasma with finite larmor radius 
corrections. Journal of Physics: 
Conference Series. 2014;534:012065. 

_________________________________________________________________________________ 
© 2016 Sutar and Pensia; This is an Open Access article distributed under the terms of the Creative Commons Attribution 
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited. 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here: 

http://sciencedomain.org/review-history/13709 


