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ABSTRACT

We note the similarity between BEC (Bose-Einstein Condensates) formed of atoms between which
we have long-range attraction (and shorter-range repulsions) and the field theoretic ”Q balls”. This
allows us in particular to address the stability of various putative particle physics Q balls made of
non-relativistic bosons (K0’s, B0’s and D0’s) using variational methods of the many-body NRS
equation.
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1 INTRODUCTION

Phase transitions occur when a change of
coupling or temperature makes the (free) energy
of a new phase lower than that of the preexisting
phase. In the field theoretic formulation, this
is manifest when the minimum of the effective
potential U(ϕ), with the field ϕ representing some
order parameter, is shifted from ϕ = 0 to nonzero
ϕ value or to a degenerate manifold of such
ϕ values. In a simple mechanical analog the
system represented by the single coordinate ϕ,
“rolls over” to the new stable minimum. Some
time ago, Sidney Coleman introduced [1] “Q
balls”: classical field configurations stabilized by
the global conserved charge (s) (Q) they carry.
These correspond to configurations of, say, a
charged field which are constant over a large
region of space but vary in time: [ϕ exp(−iw0t)]
and [(ϕ)+ exp(iw0t)]— corresponding to a
constant charge density j0 = ρ = ( d

dt
ϕ+ ·

ϕ − ϕ+ d
dt
ϕ)/2i. The simple mechanical analog

here is a system rotating with uniform angular
velocity in the ϕ1 − ϕ2 plane (with ϕ =
ϕ1 + i ϕ2). The “centrifugal” force generated
can then, under certain conditions specified
below, make the representing “particle” come
to equilibrium at a ϕ0 which is no longer a
minimum of U(ϕ). Coleman’s suggestion of
using the conserved baryon number as the global
charge of the Q balls has been followed up
in super-symmetric models [2]. Motivated by
advances in BECs (Bose-Einstein condensates),
we investigate in this paper their relation to Q
balls and use variational NRS (non-relativistic
Schrödinger) equation methods to prove the
stability against strong interaction decays of
Strangeness, Charm, and Beauty balls.

Field theoretic Q balls are more general than the
non-relativistic limit on which we focus here. Thus
[2] the above-mentioned baryonic Q balls, made
of squark condensates, are stable against “weak
interaction like” decays of the heavy individual
squarks by having the Q balls very tightly bound
with masses proportional to a fractional power of
the total baryon numberN (1−ϵ) rather thanN1 as
expected for non-relativistic weakly bound matter.

Still, the equivalence—in some limits—of the
field-theoretic and many-body descriptions of the
same “condensations” is interesting and helpful.

There are two distinct, though interrelated, types
of condensation. BECs are obtained when a
large number, N , of (bosonic) atoms are trapped
within a radius R and then cooled down to nano-
Kelvin temperatures. The BE condensation is in
momentum space: a finite fraction of the atoms
are in the lowest mode of the trap corresponding
to p = 0. This becomes manifest when the trap
is suddenly removed by having these p = v = 0
atoms hardly move. [3] Boson-boson interactions
modify the BEC but are not responsible for BEC
phenomenon in the first place. BEC is best
understood when the atoms are non-interacting
[4]. On the other hand the coordinate space
“condensation” of bosons into Coleman’s “Q
balls” is due to attraction between the bosons.
Thus in the field theoretical formulation Coleman
has proved that stable Q balls exist if and only
if the“potential” U(ϕ) in the effective low-energy
Lagrangian for the system satisfies:

(i)
U(ϕ)

ϕ2
has a minimum lower than

µ2

2
(1.1)

with µ the mass in the “free” part of U(ϕ) : µ2

2
ϕ2.

The size R of the spherical Q ball and its density
n = (3Q)/(4πR3) are fixed by the overall Q and
by ϕ0—the field for which the above minimum is
achieved.

Condition (i) holds for all attractive interactions
between the ϕ bosons, say, the kaons in
strangeness balls, at an appropriate density. In
particular, (i) holds if the coefficient of the lowest
(ϕ)4 term in U(ϕ) is negative:

(ii)U(ϕ) =
µ2

2
ϕ2 − λϕ4 + higher order terms

(1.2)
corresponding to attractive S-wave scattering
length (λ > 0 is implicit). Note that U(ϕ) is an
effective Lagrangian, which is not used in loops
inside Feynman diagrams. Therefore U(ϕ) can
have (and indeed has) higher-order positive non-
renormalizable (ϕ+ϕ)n terms-ensuring a finite ϕ0

and a spectrum which is bounded from below.

While (ii) → (i), namely, an attractive S-wave
scattering length (or, equivalently a negative ϕ4

term), implies stable Q balls, (ii) is not required.
Thus, a nontrivial minimum, ϕ0, of U(ϕ)/(ϕ)2 can
obtain with a negative (ϕ+ϕ)3 term overcoming at
some ϕ the positive µ2

2
(ϕ)2 + λ(ϕ)4. Still this can
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be problematic: the minimum of U(ϕ)/(ϕ)2 may
now be at a large ϕ0, say, ϕ0 >> µ where the NR
many-body approach that we want to compare
with next, fails.

Note that Condition (ii) alone, without knowledge
of the higher-order terms, does not fix the size
(R) or the density (n) of the Q balls: with only the
[−λϕ4] term present both ϕ0 and n are infinite.

2 FORMING A SPATIAL
DROPLET OF NON-
RELATIVISTIC BOSONS:
THE MANY-BODY APPROACH

Let N non-relativistic identical bosons of mass
m interact via potentials V (|ri − rj |). The basic
question we address is: “For which potentials
do the NR bosons coalesce into “Q balls” with
nonzero density when N → ∞ ?”

For finite range potentials the N-body
Schrödinger equation H|Ψ⟩ = E|Ψ⟩ with

H =
∑
(i)

p2i
2m

+
∑
(i>j)

[V (|ri − rj |)] (2.1)

is trivially solved by Ψ which is a product of
single particle wave functions, each of which
is (approaching) a constant. The spread-out
particles have vanishing kinetic energies and
vanishing mutual interactions and thus E = 0.
For many potentials a lower (negative) energy
state exists with the N bosons in a sphere of
radius R. Using the basic variational principle we
derive next several sufficient conditions for that to
happen. In Secs. III,IV below we argue that some
of these sufficient conditions are met in the case
of many K0’s, D0’s and B0’s which therefore
will make droplets or Strangeness, Charm and
Beauty balls which are strong interaction stable.

Let us first use a simple trial wave function with
all bosons in the same state—the ground state of
a large radius R spherical cavity:

Ψt =
∏
i

(ψ0(ri)). (2.2)

The expectation values of the kinetic and
potential energies appearing in ⟨Ψt|H|Ψt⟩ =

⟨K⟩+ ⟨V ⟩ are:

⟨K⟩ ≃ N~2/(2mR2) (a) (2.3)

and, if R >> r0 = the range of the potential,
⟨V ⟩ ≃ [Nnv] ∼ [N2/(4πR3/3)]v, with

v = 4π

∫
V (r) r2dr (b) (2.3)

and n = N/(volume) = N/(4πR3/3) the
particle number density. A possible relation to
the previous section stems from the fact that, up
to kinematic factors, v is the Born approximation
for the S-wave boson-boson scattering length.
For dilute systems with inter-particle separation
which far exceeds the range of the potential:

d = n−(1/3) >> r0 , (2.4)

only the integrated potential v effects the
threshold scattering. The threshold scattering
amplitude is therefore reproduced also by a
“pseudo-potential” of a local delta function form:
vδ3(r). Such attractive potentials roughly
corresponds to the negative local −λ(ϕ4) term—
which in the field theoretic formulation suffices to
ensure stable Q balls. To complete the analogy
with the NRS case we show that if v < 0, then
also the expectation value of the energy ⟨H⟩ < 0.
This readily follows from the different scalings
of the (expectation values of) the positive kinetic
and negative potential energy withN , the number
of bosons in the system: ⟨K⟩ ∼ N (1/3) <<
|⟨V ⟩| ∼ N for N → ∞. By the variational
principle the energy of the true N-body ground
state is lower than ⟨H⟩ and also negative and a
many-body bound droplet or Q ball stable state
indeed exists if:

(ii′) : v = 4π

∫
V (r) r2dr < 0 → a

“droplet” state exists. (2.5)

Like (ii), (ii′) does not fix the actual size/density
of the “droplet”. Still the two conditions are not
equivalent.

The quantity v, depends only on the potential
V (r) and not the mass m. It is proportional
to the actual S-wave scattering length or to the
coefficient of the ϕ4 term in U(ϕ) only in the Born
(or dilute system) approximation.

Scattering theory [5] implies that the S-wave
scattering length is attractive if and only if
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the NRS (non-relativistic Schrödinger) two-body
system has bound states. Thus the NRS
equivalent of the field theoretic condition (ii)
is having a two-body bound state of the NRS
equation. Indeed as we directly show below
having two-boson bound states guarantees N
bosons bound state. Note, however, the
independence of the two NRS criteria: The
criterion (ii′) ensuring N → ∞ NRS “droplets”
does not ensure an S-wave two-body bound
state. In three dimensions the latter requires not
only an “attractive” potential, but also sufficiently
strong attraction.

Various criteria for V (r) to have bound states
in a NR two-body system with reduced mass
m exist [6]. Yet there is no general if and
only if criterion, short of solving the Schrödinger
equation. Finding if a bound state of N →
∞ bosons exists need not be easier. Indeed
the field theoretic Criterion (i) requires the full
effective potential U(ϕ). The coefficients in the
power series for the latter are the threshold
scattering amplitudes for any number of particles
and cannot be found short of solving exactly the
field theory.

3 “STRANGENESS-BEAUTY
BALLS” AND THE NON-
RELATIVISTIC SCHRÖ-
DINGER EQUATION

For many atomic and other systems, the many-
body NRS treatment preceded field theoretic
approaches and Laughlin’s celebrated variational
wave function for the fractional quantum Hall
effect is a prime example of this. In recent
years much effort has been devoted to applying
field theory in general, and effective field theories
and effective Lagrangians in particular, to such
problems and this has been also the case for the
Q balls [7].

Chiral Lagrangians were used to check if
Coleman’s Criterion (i) holds for the K0 system.
These Lagrangians involve higher derivative
terms and are fixed by an overall fit to
data yet they do not offer much intuitive
understanding. Here we follow the reverse

program of “demystifying” Q balls and trying to
explain them—at least in the NRS regime—as
simple spatial condensations of many bosons
with appropriate potentials. Strangeness-balls,
and even more so, Charm/Beauty-balls with
densities n < m−3

K are NR. In all cases we
expect to have essentially the same boson-boson
potentials as the later are controlled by the
common light d quark. Hence, using K0 − K0

potentials, VK(r), to find if “K0, D0, and B0

Droplets” form—which we do next—is justified.

A first key observation is that the K − K
potential, as that between any two identical,
neutral, pseudo-scalars, is attractive at “large” ∼
Fermi distance. To show this we write V (r) as a
superposition (integral) of Yukawa potentials due
to all exchanges [8]:

V (r) ≃ −
∫
dµ σ(µ2)

e−µr

r
(3.1)

Parity conservation forbids a KKπ vertex and
the lightest exchanged system controlling V (r) at
r → ∞ is that of two pions. Further, the ℓ = 0
component dominates at the ππ threshold:

σ(µ2) near µ = 2m(π) ∼ |f(l = 0)(K+K̄ → ππ)|2
(3.2)

With f(ℓ = 0), the ππ ↔ KK̄ S-wave amplitude.
This expression is clearly positive and recalling
the minus sign in the definition of V (r) we
find that the longest range two-pion exchange
potential is indeed attractive. This can be also
directly shown to be the case for the exchange of
a 0++ state which can be an S-wave resonance
in the ππ S-wave system. The above reasoning
is similar to that used in [8] to derive the well-
known attractive Casimir Polder (i.e., retarded
van der Waals) and the regular van der Waals two
photon-exchange potential between two identical
neutral atoms.

At short distances of the order of the size of
the sd̄ composite state, which is the kaon in
quark models/QCD, the KK potential becomes
repulsive. As in atomic physics this is due to the
Pauli principle which here makes the interaction
betwee the here two d̄ or the two s quarks in the
two K0’s [9].

The repulsion can also be viewed as being due
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to the exchange of the ω (ρ) vector mesons. The
two K0’s have the same hypercharge (isospin) to
which ω (ρ) couple [10]. No light 0++, scalar “σ”
meson has been established. Yet, the exchange
of such an entity with appropriate mass and
coupling to nucleons g(σ;NN) can , along with
ω exchange, dominate nuclear binding [11].

Parameterizing,

VK(r) = −g(σ)2 e
−(mσr)

r
+ g(V )2

e−mV r

r
(3.3)

with V = ω or ρ at a common mass m(V ) and
g(V )2 the sum of the (squared) ρ and ω couplings
to kaons we find:

vK = − g(σ)2

m(σ)2
+

(g(ρ)2 + g(ω)2)

m(V )2
> 0 (3.4)

To evaluate (3.4) we take g(ρ,KK) =
g(ω,KK) ∼ (1/3)g(ω,NN) and g(σ,KK) ∼
(1/3)g(σ,NN), as suggested by counting the
numbers of non-strange quarks. Using the
values of g(ω,NN)2/m2

V and g(σ,NN)2/m(σ)2

suggested by fitting nuclear matter in Eq. (14.27)
in [11] we find that vK ∼ (−2.35+3.45)/m2

N > 0,
so that Criterion (ii′) is not satisfied.

The fact that the K0 is composite and cannot
be treated as a point source of the σ, ω fields,
suggests Cutting off VK(r) of Eq.(3.3) at ≈ 0.3
Fermi. This reduces the repulsive relative to
the longer range attractive contribution and a
negative vK is not excluded.

Still, vK > 0 is likely and we face the question:
“Does a positive vK exclude stable K0 droplets?”
This is the case if we insist on N-body wave
functions which are products of N identical one-
particle wave functions ψ(ri). However, including
the (Jastrow) product of N(N − 1)/2 two-particle
functions

Ψ(trial) =
∏
i

(ψ(ri))
∏
(i>j)

(f(|ri − rj |)) (3.5)

we can have an N-body bound state even if v > 0.

To illustrate this we fix the potential VK(r) (and
vK ) and increase the mass to m = mB ∼ 11mK

to discuss “Beauty” (rather than Strangeness)
balls. While vK ∼ vB ∼ v is still positive
the system can now have even two-body bound
states.

Indeed, in the m → ∞ limit, the two bosons are
localized around the minimum of V (r) at r =
r0, forming a “Vibrational Band” with spacings
∼ ([V ′′(r)|r = r0]/m)(1/2). Once the potential
V (r) has two-body bound states, N-body bound
states are guaranteed. This is verified by using
in Eq. (3.5) f(r) = ψ0(r) with r = |ri − rj |
satisfying:

(−~2

m

d2

dr2
+ V (r))ψ0(r) = E0ψ0(r) (3.6)

with E0 < 0 the negative energy of the two-
body bound state, and operating on the above
trial function with the N-body Hamiltonian of Eq.
(2.1) above. (Here, the reduced pair mass m∗ =
m/2 replaces the single particle mass in the
Schrödinger equation.)

Let us next consider the case when the potential
is too weak relative to the kinetic term to have a
two-body bound state. Using Eq. (3.5) with f(r)
of the above general form, namely, peaking at the
minimum of the potential and being small at small
r’s where V (r) is repulsive, lowers ⟨H⟩ relative to
its value for the product of one-particle functions.
As we show in some detail in the next section, this
can yield the desired N-body bound state even
when Condition (ii′) fails, and also there are no
two-body bound states. In this case we have
a fully symmetric N-boson bound state with the
f(r = |ri − rj |) factors peaking at r = r0, and
determining the density of the N-boson droplet to
be:

n ∼ ([(4π)/3]r30)
(−1) (a) (3.7)

or, equivalently, the radius of the droplet

R ∼ N (1/3)r0 (b) (3.14)

This is reminiscent of U(ϕ)/(ϕ)2 and its nontrivial
minimum at ϕ0—fixing the radius and density
of the Q balls in the field theoretic formulation.
There the nontrivial ϕ0 was obtained via the
interplay between a negative ϕ4 term and positive
higher-order terms. In the present NRS case
the minimum at r0 reflects attraction (repulsion)
at long (short) ranges. The higher positive (ϕ)n

terms are prominent at large densities—just like
the strong short-range repulsions in NRS.

Still, a U(ϕ) ↔ V (1/r) analogy is rather
limited: The effective potential U derives from
the fundamental Lagrangian of the field theory,

5
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say, QCD for the above cases, whereas the
potential V (r) is the primary entity in the NRS
approach. A closer analog of U(ϕ) is the derived
quantity [E/N ](n)—the energy per particle for a
given density [12] in the NRS. E = E[N ;R]
is the ground state energy of the Hamiltonian in
Eq.(2.1) of N = n[(4π)/3] · R3 bosons uniformly
distributed (after averaging over correlations) in
a sphere of radius R. When N and R tend to
∞ keeping n fixed, a stable droplet of density n0

obtains that if and only if the minimum of [E/N](n)
is at 0 < n0 <∞ and is negative [13].

4 BINDING AND BECS
IN THE PRESENCE OF
STRONG, SHORT-RANGE
REPULSIONS

Short-range repulsions do not hinder BEC for
dilute atomic systems in traps.

Let N-bosons be in the trap and add one more.
To see the issue most clearly, assume first that
the N-bosons are “frozen” at specific locations r0i
inside the trap. An additional boson will be in the
ground state of the total potential:

V = V(trap)(r) +
∑

(i=1,..N)

V (|r0i − r|) (4.1)

—provided that the potential of Eq. (4.1) can bind
a particle of mass m (which is clearly the case for
an attractive V(trap) and sufficiently dilute atoms).

Conceivably such a setup, of interest in its own
right, can be experimentally realized. Let the
trapped N atoms form a 3-D lattice generated
by a standing wave pattern of three lasers. Let
the added atoms be of a different species which
interact with the first N atoms via the potential
V in Eq. (4.1) above. In particular, we need to
choose a species which is almost unaffected by
the laser fields.

“Freezing” the first N out of N + 1 atoms is
artificial. Adding one extra boson causes the
distribution of each of the previous N -bosons
to change by order 1/N , modifying the binding
energy by O(1). A key point is that the
adjustments are likely to lower the energy and

neglecting those is appropriate if we only want to
verify that the extra particle binds.

As the system becomes denser, stronger
two-boson correlations and higher momentum
components build up. The completely symmetric
N-body state, while no longer factoring into
independent N single-particle wave functions, still
exhibits coherence features unique to BECs.

Our main interest however is the “droplet
formation” problem posed in the previous
section. To address this problem we use Eq.
(4.1) without V(trap) and two-body potentials
which are attractive (repulsive) at long (short)
distances (Fig. 1.)

Fig. 1. The KK, DD or BB NRS potential of
interest. It is repulsive at short distances r < r1
and attractive for r > r1 having an asymptotic
e−2mπr

r3
behavior due to two-pion exchange. The

minimum of the potential is indicated by the
dotted line is at r0.

A likely configuration the N particles is that of
occupying the vertices of a simple cubic lattice of
lattice constant d = n(−1/3). A simplified version
of the problem which serves as a criterion for
formation of a droplet of density n = d−3 is:

(iii)“Does a particle of mass m bind to a cubic
lattice with lattice constant d and common
potentials V (|r− ri|) centered at all lattice points
ri?”

—a problem which may also be useful in
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discussing trapping of light in some “dielectric
lattices” via the Helmholtz equation.

It is difficult to address it in the most general case,
yet the following suggests that bindings are likely
even when a single potential V (r) fails to bind
and/or to satisfy v < 0. Let r0, r1 with r0 > r1 be
the points indicated in Fig. 1 where the common
radial potential V (r) has its minimum and where
it changes sign, being repulsive (attractive) for
r < r1 (r > r1). Consider a unit lattice cell
of side of length d with eight potential centers
at its corners. We focus first on the “dilute”
case with d >> 2r0 > 2r1. Apart from the
eight spherical octants of radius r1 at the corners,
V of Eq. (4.1) above is attractive at all the
remaining part of the unit cell. The longer-range
tails of the other potential centers make for an
attractive, negative contribution in the form of a
“Madelung sum”. This increases the volume of
the connected region within the unit cell where V
(sum) < 0 beyond the minimal value:

d3 − 4π

3
r31 [∼ .93 d3 if d > 4r1 !] . (4.2)

Thus we find that the particle is inside a ( very
loose!) cage of size ∼ d3 “cornered in” by
the repulsive potentials centered at the eight
corners of the unit cell of the cubic lattice—as
in a three-dimensional analog of a carton egg
holder. Actually, in the dilute case considered
here, the particle can “roam” over all the lattice,
going into neighboring cells via the large circular
openings of radius d/2− r1 between neighboring
cells, lowering the energy. To show this more
clearly we simplify the problem by: (a) replacing
the repulsive potentials within spheres of radius
r1 centered at the vertices of the lattice by
infinite, positive, “square-well” potentials within
the circumscribing cubes of size 2r1. Similar to
the above spheres, the cubes are at the corners
of the lattice cell, and (b) replacing the attractive
potential within the remaining region by their
volume average,

− u0 = v−/d3 (4.3)

with v−, the integral over the attractive part of the
potential. (See Fig. 2.)

Step (a) increases the volume of the region where
the potential is repulsive by 6/π and the value of
the potential. This clearly increases the energy of

the particle in the lattice. It is less obvious but still
true that performing step (b), namely, replacing
the attractive part of the potential by its average
value, also increases the energy of the particle in
the lattice. To see this, note that the true ground
state wave function for the original potential tends
to concentrate away from the repulsive regions
and thus can sense better the attractive potential
prevailing around the center of the unit lattice
cell, and this attractive potential is stronger before
the averaging is performed. Hence, if after
performing steps (a) and (b) above the particle
still binds to the lattice, namely, (E(ground) < 0),
then even deeper bound states are likely for the
original problem.

Fig. 2. A schematic picture of the attractive
and repulsive regions (after step b has been
implemented) inside the unit cell—the overall
cube of side d. The repulsive regions (with
V = +∞) are the eight smaller cubes of side
r1 at the eight corners of the unit cell—the
big overall cube. Two of these are shown as
the full line small cubes in the figure. The
potential is attractive (negative) outside these
eight cubes with an averaged constant value.
Using additional dashed lines we show one of the
twelve rectangular parallelepiped (RP) along the
edges of the cube, between a pair of adjacent
repulsive boxes. These can be viewed as “wave
guides” for the particle in the potential where we
have vanishing boundary conditions on the small
(r21 in area) sides of the RP and the particle
is propagating in directions perpendicular to the
long (d − 2 r1 in length) sides of the RP eg., in
the top-front RP the wave guides in the up-down
and forward-backward directions.

To test for a bound state we estimate the
expectation value of the Hamiltonian ⟨H⟩ =
⟨V ⟩ + ⟨T ⟩ in the state |ψ(ground)⟩. Since
the (normalized) wave function is nonzero only

7
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outside the repulsive regions, the expectation
value of the constant attractive potential is:

⟨V ⟩ = −u0 = v−/d3. (4.4)

The kinetic energy stems from the boundary
conditions: ψ = 0 at the boundaries of the
repulsive cubes. The twelve regions, of volume
r21(d − 2 r1) each, between pairs of repulsive
corner cubes can be viewed as parts of “wave
guides”. The kinetic energy can be roughly
approximated as that of the lowest mode of the
“wave guides”: T = ~2/[2m(d − 2r1)

2] and its
expectation ⟨T ⟩ is weighted by the fraction of the
unit cell, f = 12r21 (d − 2r1)/d

3, occupied by the
“wave guide” sections, namely

⟨T ⟩ = fT =
~2

m

6r21
d3(d− 2r1)

. (4.5)

The condition for binding, ⟨T ⟩ + ⟨V ⟩ < 0 then
becomes

|v−| > ~2

m

6r21
d− 2r1

. (4.6)

Since v− is independent of d, the last condition
can clearly be satisfied for d≫ r1.

As we gradually decrease d (relative to the
distance scales r0 and r1 of the potential V (r)),
the average value of the attractive part, namely,
|u0| of Eq. (4.4) above increases, thereby
enhancing the binding.

However, once d ∼ r1 the “cages” trapping the
particle within each unit cell become tighter and
the particle can only tunnel between the different
cells. The energy then rises and the bound state
disappears.

Finding the optimal d (or density of the droplet
n) and the corresponding binding: [E/N ](n) at
this number density requires detailed calculations
beyond what we have attempted here [14, 15].

Showing that one extra particle can be bound in
a periodic box of size L where the previous N
are located at prescribed positions r0i (as we did
above when the r0i were the nodes of a regular
simple cubic crystal) is only one step towards
proving the existence of large Kaon droplets with
the specific KK potential above. Indeed:

i) While we optimize the inter-particle separation
d ∼ N (−1/3) ·L to minimize ϵN , the energy of the

N + 1th particle added to the lattice, we should
verify that the same d also allows each of the
original N particles to bind around the empty
lattice site that it occupies.
ii) We should show that the particular frozen r0i
arrangement at all lattice sites within the periodic
L3 box represents the “worst case” for binding the
N +1th particle and any rearrangement of the N
bosons inside the box allows stronger binding of
the N + 1th boson.
iii) Using i) and ii) above we then show that
enlarging the system from N to N + 1 bosons
and simultaneously letting the cube size adjust
to the new optimal length, L(N) → L(N + 1),
the energy is lowered by more than the above
binding:

E[(N + 1), L(N + 1)] < E[N,L(N)] + ϵN (4.7)

This last step is readily achieved by employing

E[(N + 1), L(N + 1)] =∫ ∏
d3r0i

∫
d3rN+1Ψ(rN+1; r

0
i )

×[(
∑

i=1,...N

− ~2

2m
∇2

i +
∑

i>j=1...N

V (r0i , r
0
j ))

− ~2

2m
∇2

(N+1) +
∑

i=1...N

V (r0i , r(N+1))]

Ψ(rN+1; r
0
i ). (4.8)

We use the 0 superscript on the first N
coordinates to emphasize that in evaluating
the expectation of the kinetic energy and N
interactions of the N + 1th particle by doing
the innermost r(N+1) integration, these first N
coordinates are “frozen”. This integral then
yields ϵ[r01, .., r

0
N ], the binding energy of the

extra particle to the first frozen N which is then
further averaged over all r0i using the normalized
measure provided by the density function of the
first N particles. If (ii) holds this yields a value
smaller than than ϵN above corresponding to the
special case where the sites r0i are vertices of a
cubic lattice of size L(N).

Next consider the first term in the last integral,
namely, H(N), the part of the Hamiltonian
pertaining to the first N bosons. Since H(N)
does not depend on r(N+1), the Normalized
integral over H(N) simply yields E[N,L(N +

8
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1)] which exceeds E[N,L(N)]. Adding the two
terms we find at the desired inequality (4.7).

Summing these over n < N we yield a lower
bound on the binding of the droplet;

EN < NϵN (4.9)

For a potential which is an attractive constant
apart from hard core cubes of size 2r1 around
each boson, i.e., the case studied above this last
inequality, is directly proven in one dimension in
Appendix I. Unfortunately, this particular elegant
method does not readily generalize to three
dimensions.

Next we come back to points (i) and (ii).

Putting the added boson inside a pre-existing
full simple cubic lattice with the previous N
bosons at its vertices is energetically less favored
that the case where we leave one “hole” i.e., a
vacant lattice site where the extra particle can
fit. This is because the volume the “cage” in
which the added particle is free to roam is larger
reducing its kinetic energy. Also the attractive
potential energy 6V [d] + 12V [d

√
2] + .... is

similar to that in the previous full lattice case
{8V [(

√
3/2)d] + 24V [(

√
11/2)d] + ...} if we take

d ∼ r2 ∼ 2mσ−1.

Hence, we find that certain d values which allow
binding of the N + 1th particle to a perfect lattice
make for even stronger binding inside the lattice.

Next, let us consider a random rearrangement of
the r0i inside the L3 cube with the same average
number density Rd−3. It will contain pairs, triplets
etc., of particles which are nearer to each other
than d and this will be compensated by having
nearby regions of lower than average density.
The latter constitute ideal placements of the extra
N + 1th particle: It will have more free space to
move and at the same time will be more strongly
attracted to the dense “clusters”. Note that in
evaluating ϵ[r01, r02, ..., r0N ] the binding of the extra
N+1th particle to the frozenN particles at r0i , we
need not worry about the fact that the “crowding”
of some of the frozen vertices raises their mutual
interaction energies.

5 SOME CONCLUDING
REMARKS

In this paper we have shown a close
correspondence between the field theoretic
concept of Q balls and droplets of coherent NR
bosonic matter and elaborated at some length on
the criteria, in a NRS picture, for forming the such
droplets.

While field theoretic/effective Lagrangian
methods—such as those used by Coleman
in predicting Q balls—are broadly applied to
many-body physics, we find that the traditional
variational NRS approaches can be used to
suggest] the existence of some “particle physics”
Q balls. Unfortunately these Q balls with
Q = Strangeness, Charm and Beauty, while
stable against decays via strong interactions do
decay rather quickly via weak interactions. A
single K0 decays in ∼ 10−10 sec (and D0, B0

decay 100 times faster). A droplet of N non-
relativistic, weakly bound neutral bosons will start
disintegrating after times which are 1/N shorter
than the decay time of a single boson. If the
minimal number of K0’s can be viewed as an
N → ∞ “droplet” is ∼ 100, then we will need to
assemble within ∼ (5 Fermi)3 100 slow K0’s in a
picosecond. This seems impractical.

We would like to note, however, that the general
features of the KK potential facilitating droplet
formation, namely, attraction at “long” ∼ 0 (Fermi)
distances and repulsion at “short” 1/3 Fermi
distances, hold also for the K-Nucleon system.
While there are both few body bound states and
“droplets” of nucleons (a.k.a. “Stable Nuclei”) no
K−N bound states exist and the K−N S-wave
scattering length is known to be repulsive.

Nevertheless, we argued that K0 droplets can
exist despite the absence of a KK bound state.
Could aK0 which is free to move in a pre-existing
large nucleus (so long as it avoids getting too
close to the nucleons) bind to the latter? This is
clearly not evident since the nuclear density and
size are fixed by nucleon-nucleon interaction and
not by K −N physics.

9
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It is amusing to remark that the existence of such
states may be experimentally manifest as follows:
Let a beam of slow K+ charge exchange on a
heavy nucleus with the resulting K0 binding to
the nucleus. The subsequent K0 → π+π− decay
∼ 10−10 sec later is likely to break the nucleus,
yielding a spectacular multi-prong event which, in
the absence of a K0-nucleus bound state, should
not occur.
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APPENDIX I

In the “frozenN ” variant, theN+1th particle is restricted to theN intervals of size L′/N between pairs
of existing particles (periodic boundary conditions avoid half size end intervals) with L′ = L − 2Nr1
the effective length allowed by the constraints. There is no tunneling between these N intervals and
the energy is :

ϵN = ~2/[2m(L′/N)2] (5.1)

Note that NϵN is the energy of one fictitious representative particle moving in an N dimensional
cube of side L′/N . The no-tunneling rigidity which is an artifact of one dimension, reflects also in the
full N -body problem of finding the ground state of the Hamiltonian − ~2

2m

∑
∂2

∂x2
i

for N particles in the

(0, L′) interval via the impenetrability—or ordering condition—

0 < x1 < x2 < ....xN < L′. (5.2)

Equivalently we have one particle restricted to the aboveN dimensional parallelepiped (PN ) satisfying
the free Schrödinger equation in N dimensions.

(The N ! parallelepipeds PN ’s obtained by permuting the xi have the same volume L′N/N ! and their
union constitutes a cube of side L′). PN contains the N -dimensional cube CN of side L/N :

0 < x1 < L/N,

L/N < x2 < 2L/N,

...,

(k − 1)L/N < xk < kL/N,

...,

(N − 1)L/N < xN < L,

and ||PN || > ||CN ||. (5.3)

The variational principle and the above containment relation imply a lower energy for the full problem.
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