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ABSTRACT 
 

In the paper, in view of a railway ballasted track, a new concept of transition curve of linear form of 
curvature along its length and smoothed extreme regions is presented. For this purpose use has 
been made of an original, universal method for identifying transition curves by means of differential 
equations. Some general curvature equations for three regions investigated have been determined 
to be followed by appropriate parametric formulae. The possibility of determining the rectangular 
coordinates by numerical integration has been indicated. Taking into consideration the criterion of 
practical execution, and on account of very small horizontal ordinates in the initial region, a 
suggestion is made to reduce the length of the extreme regions and for such a case some particular 
theoretical relations have been worked out. 
 

 

Keywords: Railway route; geometric layout; transition curve; curvature modeling. 
 

1. INTRODUCTION 
 
The transition curve issues related to vehicular 
roads and railway tracks are still under 

investigation. The search for new forms of curves 
[1-13] is going on, including among others the 
dynamic model of the rail carriage – track 
system.  
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Most of the transition curves are connected 
together by a common algorithm to determine the 
curvature using differential equations [14-16]. 
The curvature function )(lk  should be searched 

for among the differential equation 
 

 )1(''')( ,...,,,,)(  mm kkkklflk                  (1) 

 

with conditions 
 

0)0()( ik           for  1,...,3,2,1 ni   

                  
R

1
       for 0j        

 )()( k
j lk                (2) 

    0       for 2,...,3,2,1 nj   

Where 
 

 R   –   radius of the circular arc, 

 kl   –  length of the transition curve. 

 
Making use of conditions (2) caused function  

)(lk  to be in class nC  within the interval 

kll ,0  where ),min( 21 nnn  . Differential 

equation (1) could be a linear differential 
equation of constant or variable coefficients, 
homogeneous or nonhomogeneous. In most 
commonly applied solutions an equal number of 
conditions is assumed on both ends of the 

interval, i. e. 21 nn  . For two conditions, that is, 

0 ji  it is possible to obtain a linear 

curvature. With regard to a greater number of 
conditions the curvature along the whole length 
indicates a nonlinear form. 
 

The presented way of proceeding leads, in 
principle, to the acquisition of nonlinear curvature 
along the transition curve length. Only in one 

case, for 21 nn  , one can obtain the linear 

curvature. And such a solution has been 
commonly used for a number of years in 
vehicular, railway and water-way traffic. The 
transition curve which corresponds to it is a 
clothoid. However on railway roads use is made 
of its simplified form known as third degree 
parabola (although at present taking into 
consideration the calculation capabilities it has 
no justification).  
 
At this point it is necessary to note that the 
curvature of the transition curve determines also 
the shape of the gradient due to cant. The linear 
curvature along its length indicates a necessity to 
apply a linear gradient due to cant. But, for the 

reason that the exploitation of the railway track 
causes its vertical deformations, the damaged 
shape of the gradient due to cant should 
constantly be restored and it is undoubtedly 
easier to do by some attempts at linear 
exploitation. Therefore such a solution that has 
commonly been applied for a long time, should 
not cause any astonishments. For many years a 
superstructure using a broken stone has become 
a standard railway track construction requiring, in 
principle, a constant execution of maintenance 
works.  
 

The major drawback of the clothoid (of linear 
curvature) is the occurrence of bends on the 
diagram of its curvature in the initial and end 
regions. This is adverse from the view point of 
the dynamic interactions in the rail carriage – 
track system. An improvement of the situation 
should therefore be based on smoothing the 
curvature in these regions. Meanwhile an 
alternative to the linear curvature are the 
solutions relating to its nonlinear form along the 
entire length of the transition curve. And this fact, 
in exploitation of broken stone superstructure, 
can cause adversion to practical use of smooth 
transition curves which are known for a very long 
time. The occurrence of the nonlinear curvature 
along the transition curve indicates a necessity to 
apply a nonlinear gradient due to cant.  
 

This situation is subject to a radical change in 
consequence of a wide use of ballastless track, 
e. g. the use of concrete plate. This occurs 
mainly on high speed railways. The vertical 
deformations that can be found in such a 
superstructure are relatively small and can easily 
be eliminated. For this reason smooth transition 
curves are fully applied here. 
 

However, if in a given country the classic 
superstructure is still used on crushed-stone bed, 
the linear curvature is furtheron preferable. For 
instance, in France and in the USA in order to 
improve the existing disadvantageous situation 
the extreme regions of the transition curves in 
clothoidal form are modified for the purpose of 
eliminating bends on the curvature diagram and 
obtaining its nonlinear performance. French 
railway systems take advantage of such 
solutions not only with regard to high speed 
railway lines, but also in conventional systems 
where speeds exceed 100 kph [17]. It is also 
worthy of mention that the benefits resulting from 
the linear proceeding of the curvature (and the 
linear gradients due to cant) are indicated also by 
some model testes of the rail carriage – track 
system.  
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Of course the bends found on both sides of the 
curvature diagram (by making use of linear 
curvature) correspond to the two bends of the 
gradient due to cant.  And, just the two bends are 
responsible for the fundamental realizability 
problem. The realizability practice univocally 
proves that just in these regions the accuracy of 
the tamping machine leaves much to be 
expected. In paper [18] an attempt has been 
made to smooth out only the regions of the 
gradient due to cant itself. This indicated an 
intentional departure from principles relating to 
the modeling of the transition curve formation 
and the gradient due to cant and caused certain 
disturbances in the system of the occurring 
unbalanced accelerations. However, the effects 
of the disturbances were certainly minor then the 
real ones, resulting from incorrect operation of 
the tamping machine. 
 

Under conditions of this situation it seems 
purposeful to elaborate the theoretical 
fundamentals for a new transition curve of a 
linear form of curvature along its length and 
smoothed out extreme regions. For this purpose 
use will be made a universal method of 
identifying the transition curves by means of 
differential equations [15,16,19].  
 

2. DETERMINATION OF GENERAL 
CURVATURE EQUATIONS 

 

After the adoption of coefficient 25.0C  the 

transition curve of length kl  is divided into three 

zones (Fig. 1):  
 

 initial region of length klC   provided with 

a smooth curvature diagram, 

 mid-region of length klC)21(   provided 

with linear curvature, 

 final region of length klC   provided with 

smooth curvature. 
 

At the outset of the transition curve, curvature 

0)0( k , whereas at its end 
R

lk k

1
)(   .  

As it follows from Fig. 1, the mid-region                

( kkk CllCll  , ) of linear characteristic of the 

the curvature should have a slope coefficient 
bigger than the mean value along the entire 
length of the transition curve. Thus it is assumed 

that 
kRl

D
lk )(' , where 1D  (precise boundaries 

for this parameter will be determined using the 
solution analysis for the curve initial region). Due 
to such an assumption it is possible to find the 
curvature values at the beginning and end of the 
mid-region. 
 

2.1 Initial Region  kCll ,0  
 

The following boundary conditions and the 
differential equation (for polynomial solution) are 
assumed: 
 

     0)0( k   ,      
R

CD
Clk k

2

)21(1
)(


   , 

                                                  (3) 

     0)0(' k   ,     
k

k
Rl

D
Clk )('     

                  

0)()4( lk                          (4) 

 

 
 

Fig. 1. Schematic diagram of solving the problem (for R = 500 m and lk = 100 m) 
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In consequence of solving the differential 
problem (3), (4) the following curvature equation 
is obtained: 
 

3
12

2
11)( lalalk               (5)

        
Where 
 

2211
2

)1(33

kRlC

CDCD
a


   ,

 
3312

)1(1

kRlC

CD
a




  . 

 
The correct solution makes it necessary to select 
appropriate set of parameters C and D. For the 
adopted C it is not sufficient to satisfy condition 

1D . Curvature function )(lk  must be a 

monotonic one rising for 0l ;  hence the 
condition 

                

0
33

)1(33

22

)1(33
)(' 





















 ll

k
RlC

CD

k
RlC

CDCD
lk

             (6) 

 

By here may be no inflexion points, and the 
required convexity down sets another condition 
 

0
)1(66)1(33

)(
3322

'' 





 l
RlC

CD

RlC

CDCD
lk

kk

          (7) 

 
Condition (6) indicates that 

 

0
)1(33)1(33

3322






l

RlC

CD

RlC

CDCD

kk

 

 
The boundary of the area is given by a straight 
line, while the adopted condition should be 
fulfilled on both its ends. The transformation and 

the use of the random variable  
kl

l
   provides 

0)1(3433 2  CDDDCCDC   , C,0  

 
At the initial point  for  0   ,   

0433 2  DCCDC   , hence 
 

C
D

43

3


                          (8) 

 
At the end of the inteval, for  C  ,   

0)1(3433 2  CCDDDCCDC  , hence 

it follows that  02 DC  , where the condition is 
always satisfied. 
 

From Equation (7) it also follows that the 
boundary of the region is marked by a straight; 
after transformation and application of random 
variable  �   
      

0)1(6433 2  CDDDCCDC   , C,0  

 
For  0   condition (8) is obtain again, while for 

C    

 

0)1(6433 2  CCDDDCCDC , 

 
 
hence  

       

C
D

23

3


                          (9) 

  
Conditions (8) and (9) provide an interval of 
parameter values D. 
 

C
C

C 43

3

23

3





                       (10) 

 
The boundary values of parameter D have been 
presented in Table 1.  
 

2.2 Middle Region kkk CllCll  ,  

 
The middle section is bound by conditions 
 

R

CD
Clk k

2

)21(1
)(


 ,  

R

CD
Cllk kk

2

)21(1
)(


     (11)   

 
and the differential equation 
 

0)('' lk                        (12) 

  
This provides the linear curvature equation 
 

laalk 2221)(                          (13) 

 

where       
R

C
a

2

1
21


   ,      

kRl

D
a 22    . 

 

2.3 Final Region kkk lClll ,   

 

The final segment is encumbered with differential 
equation (4) and the following boundary 
conditions 
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R

CD
Cllk kk

2

)21(1
)(


   , 

R
lk k

1
)(     , 

                                                (14) 

    
k

kk
Rl

D
Cllk  )('   ,  0)(' klk   . 

  
 
The curvature function is described by  
 

3
34

2
333231)( lalalaalk                     (15) 

 
where 
     

RC

DDCCDCC
a

3

23

31
2

245232 
   ,     

kRlC

DDCCDC
a

3

2

32

34633 
   ,   

 

 
23

2

33
2

64936

kRlC

DDCCDC
a


   ,         

3334

1

kRlC

DCD
a


   . 

  . 
Fig. 2 gives an example of solution of the 
problem relating to the following data: R = 500 m,  
�� = 100 m, C = 0.2 and D = 1.3. 
 

3. DETERMINATION OF PARAMETRIC 
EQUATIONS 

 
The parametric equations of the smoothed 
transition curve are determined using the 
following formulae: 
 

 dllΘlx )(cos)(                        (16) 

 

 dllΘly )(sin)(                       (17) 

 

 dllklΘ )()(                         (18) 

 
An analytical solution of the problem requires an 
expansion of semi-differential functions )(cos lΘ  

and )(sin lΘ  into a Taylor (or Maclaurin) series 

and an integration of individual expressions. To 
expand the function into a series use has been 
made of the Maxima programme [20]. Further 
part of the paper gives a comparison of 
parametric equations obtained for particular 
regions of the transition curve (not involving any 
insignificant expressions). 

 

3.1 Initial Region  kCll ,0  

 
4

12
3

11)( lAlAlΘ                         (19) 

 
where  
 

22

11
11

6

)1(33

3
kRlC

CDCDa
A




,

 
33

12
12

4

)1(1

4
kRlC

CDa
A


    

 
The parametric equations are as follows: 
 

llx )(                          (20) 

 

512411

54
)( l

A
l

A
ly                         (21)

Table 1. Boundary values of parameter D for various characteristics of C 
 

C ���� ���� C ���� ���� 
0 1 1 0.13 1.09489 1.20968 
0.01 1.00671 1.01351 0.14 1.10294 1.22951 
0.02 1.01351 1.02740 0.15 1.11111 1.25000 
0.03 1.02041 1.04167 0.16 1.11940 1.27119 
0.04 1.02740 1.05634 0.17 1.12782 1.29310 
0.05 1.03448 1.07143 0.18 1.13636 1.31579 
0.06 1.04167 1.08696 0.19 1.14504 1.33929 
0.07 1.04895 1.10294 0.20 1.15385 1.36364 
0.08 1.05634 1.11940 0.21 1.16279 1.38889 
0.09 1.06383 1.13636 0.22 1.17187 1.41509 
0.10 1.07143 1.15385 0.23 1.18110 1.44231 
0.11 1.07914 1.17187 0.24 1.19048 1.47059 
0.12 1.08696 1.19048 0.25 1.20000 1.50000 
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Fig. 2. Diagram of curvature smoothed for R = 500 m, lk = 100 m, C = 0.2 and D = 1.3 
 

3.2 Middle Region kkk CllCll  ,  

 
2

232221)( lAlAAlΘ                                                                                                (22) 

 
Where 
 

kCl
R

CDD
A

12

33
21


  ,

R

D
aA

2

1
2122


   ,

kRl

Da
A

22
22

23     . 

 
The coordinates for this region are described by the following parametric equations: 
 

 
 

�(�) =

��(���) + sin ��� (� − ���) +
�

�
(��� + 2 ��� ���) cos ��� (� − ���)� −

�

�
 [(���

� + 4 ��� ��� �� + 4 ���
�  ��

�) sin ��� − 2  ��� cos ���](� − ���)�     (24)

      
Where 
 

)(1 kClx  ,   )(1 kCly      ̶    from the initial region 

 

kCll 20   , 2
202320222120 lAlAAA    . 

 

3.3 Final Region kkk lClll ,  

 
4

35
3

34
2

333231)( lAlAlAlAAlΘ                                                           (25) 

 
 
 
 

where 

-0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0 20 40 60 80 100 120 140

k 
[r

ad
/m

]

l [m]



 
 
 
 

Koc; CJAST, 22(3): 1-10, 2017; Article no.CJAST.35006 
 
 

 
7 
 

RC

DDCCDCC
A

3

23

31
12

389663 
   ,

RC

DDCCDCC
aA

3

23

3132
2

245232 
  

kRlC

DDCCDCa
A

3

2
32

33
2

34633

2


  , 

23

2
33

34
6

64936

3
kRlC

DDCCDCa
A


   , 

33

34
35

4

1

4
kRlC

DCDa
A


   . 

 
Parametric equations �(�) and �(�) are: 
 

 

 

 
where 

  klCx )1(2    ,    klCy )1(2       ̶    from the middle region 

 klCl )1(30    ,    4
3035

3
3034

2
303330323130 lAlAlAlAAA   

 

4. NUMERIC INTEGRATION METHOD  
 

The analytical form of equations for horizontal 
coordinates, especially in the middle and final 
regions, is quite complex, which does not comply 
with the users expectations. This can be 
indicated, among others, in commercial computer 
design aided programmes for track geometric 
layouts [21,22]. The Cartesian coordinates are 
obtained here by numerical integration. For this 
purpose it is necessary to adopt an adequate 
calculation step d, and to divide the transition 

curve into � =
��

�
  intervals. Other coordinates are 

determined by the use of the following formulae: 
 





p

i

iip lΘlΘdlx
1

1 )(cos)(cos
2

1
)(           (28) 

 





p

i

iip lΘlΘdly
1

1)(sin)(sin
2

1
)(           (29) 

 

where  np ,...,2,1   . 

 

The numerical procedure has been proved in 
numerous cases by taking advantage of 
calculation step 0.5 m and 1 m. Following this 

procedure it was possible to obtain a complete 
conformity with the results of the analytical 
technique. Undoubtedly this is connected with 
the regular form of function )(lΘ . However, it 

does not mean to avoid using the analytical 
method which has a universal character and 
creates additional interpreting capabilities.  

 
5. PREFERABLE FORM OF CURVE 
 
When applying the transition curve one should 
take into consideration the occurrence of very 
small horizontal ordinates in the initial region. 
Very often they are hard to execute and in 
practice it causes elongation of the track straight 
segment. Therefore the lengths of extreme 
regions should be limited. By adopting this 
procedure the length of the mid-region becomes 
bigger and assumes a linear form of the 
curvature. An assumption has been made that 
the value of factor C for the preferred form of 
curve will reach C = 0.05, and coefficient D 
(using table 1) – D = 1.06. In this way it is 
possible to obtain equations for curvature and 
the adequate parametric formulae for some 
specific transition curve regions. 
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5.1 Initial Region  kll 05.0;0  

 

 3

3

2

2

56

5

32
)( l

Rl
l

Rl
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kk

           (30) 

  
llx )(                          (31) 
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8
)( l

Rl
l

Rl
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kk

           (32) 

 

5.2 Middle Region kk lll 95.0;05.0  
 

l
RlR

lk
k50

53

100

3
)(              (33) 

 

 
 

 
 

where  kl
R

A 3
20 10

48

17    . 

 

5.3 Final Region kk lll ;95.0
 

 

3

3

2

2

56

5

872

5

904

5

307
)( l

Rl
l

Rl
l

RlR
lk

kkk

                                                       (36) 

 

�(�) = ��(0,95 ��) + cos ��� (� − 0,95 ��) − (
���

� �
10��) sin ��� (� − 0,95 ��)�                            (37) 

 

�(�) = ��(0,95 ��) + sin ��� (� − 0,95 ��) + (
���

� �
10��) cos ��� (� − 0,95 ��)�                            (38) 

 

where  kl
R

A 7
30 10

3

13510625    . 

 

 
 

Fig. 3. Diagram of smoothed curvature for R = 500 m, lk = 100 m, C = 0.05 and D = 1.06 
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Fig. 4. Diagrams of ordinate variations for transition curves with smoothed curvature  
C = 0.2, D = 1.3 and C = 0.05, D = 1.06 with regard to clothoid (R = 500 m, lk = 100 m) 

 

Fig. 3 illustrates the curvature diagram for the 
following data: R = 500 m, ��  = 100 m, C = 0.05 
and D = 1.06 while Fig. 4 provides schemes of 
variations of ordinates ∆�(�) for transition curves 
of Figs 2 and 3 with regard to clothoid described 
by parametric equations:  
 

�(�) = � −
�

�� �� ��
� �� +

�

����  �� ��
� 

�� −
�

������ �� ��
� ��� + ⋯  (39) 

 

�(�) =
�

� � ��
�� −

�

��� �� ��
� �� +

�

����� �� ��
� ��� − ⋯           (40) 

 

As can be seen the transition curve ordinates 
with smoothed curvature along their total length, 
are smaller than the clothoid ordinates. From Fig. 
4 it follows that the differences are not big, in 
particular in the case of curve C = 0.05. This 
indicates that the indispensable cross-wise shift 
of the circular arc should not cause any 
significant location problems. An improvement of 
the situation, i. e. replacement of the clothoid by 
transition curve provided with smoothed 
curvature can be carried out in compliance with 
the standard regulation of the track axis. 
 

6. CONCLUSIONS  
 

The basic failure of the transition curve in the 
form of clothoid provided with linear curvature, is 
the appearance of bends on the diagram of its 
curvature in initial and end regions. This is a 
disadvantage from the viewpoint of dynamic 
interactions in the rail carriage – track system. An 
improvement of the situation should therefore be 
based on smoothing the curvature just in these 
regions. At the same time it will be advantageous 
to retain the linear character of the curvature in 
the remaining part of the curve for the reason 
that the straight gradient due to cant situated 
right there is relatively easy for current 
maintenance. 

The problem is of particular significance when 
classic surface is still used in a country, where 
broken stone bed is used, and linear curvature is 
preferable. However, such a situation is subject 
to radical changes connected with the use of 
ballastless construction of the track, for instance, 
on a concrete plate. This procedure is mainly 
noted in areas of high speed railway systems. 
The vertical deformations that occur in such 
surfaces are relatively small and can be 
eliminated with ease. For this reason a full range 
of smooth transition curves finds application 
here, where the curvature along the whole length 
is nonlinear.  
 

In the paper, in view of a track provided with 
broken-stone bed, a new concept of transition 
curve of linear form of curvature along its length 
and smoothed extreme regions is presented. For 
this purpose use has been made of an original, 
universal method for identifying transition curves 
by means of differential equations. Some general 
curvature equations for three regions 
investigated have been determined to be 
followed by appropriate parametric formulae. The 
possibility of determining the rectangular 
coordinates by numerical integration has been 
indicated. Taking into consideration the criterion 
of practical execution, and on account of very 
small horizontal ordinates in the initial region, a 
suggestion is made to reduce the length of the 
extreme regions and for such a case some 
particular theoretical relations have been worked 
out. 
 

The application of the analyzed transition curve 
can become an alternative to smooth transition 
curves. It is possible to note a certain aversion in 
relations to their practical implementation. As can 
be expected this is presumably connected with 
the nonlinear gradient due to cant which occurs 
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on the curves. Under practical exploitation it is 
vertically deformed and its shape should 
constantly be renovated; undoubtedly it is easier 
to do this by making attempts to maintain the 
linear procedure. 
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