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Abstract

Global progress towards reducing high Maternal Mortality Rates (MMR) turned to be defeated
by high maternal mortalities originating from developing countries. In rural Ghana, the lack of
logistics, medical and laboratory equipment are among other key factors responsible for the high
MMR despite several interventions structured to curb this menace. Improvement in the country’s
health care delivery will require substantial investment into maternal and child health especially,
in order to meet the national SDG target on MMR.This paper demonstrates societal benefits of
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investment in maternal and child health in order to stimulate stakeholders interest in resource
mobilization by the correlation of MMR with such economic and demographic indicators as
Gross Domestic Product (GDP) and Total Fertility Rate (TFR). The underlying probability
distributions for MMR, TFR and GDP were determined using the corrected Akaike Information
Criteria (cAIC) with parameters estimated via the maximum likelihood framework. MMR and
TFR showed a positive association (0.83) whilst an inverse relation exist between MMR and
GDP (-0.67) and TFR and GDP (-0.76). The contour and joint density plots from appendix
A and B indicate a strong lower tail dependence for the bivariate Frank copula with Gamma
and Lognormal margins whereas the Gumbel copula with Gamma and Lognormal margins
shows strong upper tail dependence. Correlation figures tend to suggests that improved GDP
as a consequence of improved socio-economic conditions of a Ghanaian mother tend to reduce
Maternal Mortalities whilst increased fertility rates turn to increase MMR. Generally, evidence
has been drawn to improvement in GDP.

Keywords: Maternal mortality ratio; total fertility rate; gross domestic product, copula; aikaike
information criteria(AIC).

2010 Mathematics Subject Classification: 53C25; 83C05; 57N16.

1 Introduction

Global statistics indicate that there has been a significant reduction in Maternal Mortality Rate
(MMR) from an estimated MMR of 385 in 1990 to an estimated 216 maternal deaths per 100 000
live births in 2015 representing an approximate reduction of 44%. There have also been records
of reduced annual counts on maternal deaths from approximately 5.32 million to an estimated
3.03 million (43% decrease) with an approximate global lifetime risk of a maternal death falling
considerably from 1 in 73 to 1 in 180 in the same period [1]. Although this progress is quite
remarkable, global progress is reversed by high levels of MMR still recorded in developing nations.
As stated by same, developing countries account for approximately 99% (3.02 million deaths) of the
global maternal deaths in 2015, with sub-Saharan Africa alone accounting for roughly 66% (2.01
million).

A country-wise comparison indicated that Nigeria and India were estimated to account for over
one third of all maternal deaths worldwide in 2015, with an approximate 58,000 maternal deaths
(19%) and 45,000 maternal deaths (15%), respectively. Eighteen (18) other countries in sub-Saharan
Africa were estimated to have very high MMR in 2015 ranging from 500 upwards to 999 deaths per
100,000 live births. Although, Ghana was not listed as part of these 18 countries, a national MMR
of 350 deaths per 100,000 live births was too high for Ghana to have achieved the MDG 5 target of
185 per 100,000 live births by 2015 (ARHR2016).

In sub-Saharan Africa, some notable causes associated with MMR are HIV/AIDS, hemorrhage,
sepsis and eclampsia. Other socioeconomic and intermediate factors include inadequate investment
in health care systems and population growth characterized by high fertility rates (see [2]). For
Ghana, most maternal deaths are preventable with postpartum haemorrhage, hypertensive disorders,
abortion and sepsis contributing about 65% of all causes. It is believed such deaths could have
been averted by more than half if accelerated investment were made into providing access to
essential reproductive health services such as family planning, skilled attendants, administration
of oxytocin and misoprostol for management of postpartum haemorrhage, and magnesium sulphate
for treatment of pregnancy-induced hypertensive disorders.. In rural Ghana in particular, the
lack of logistics, medical and laboratory equipment are identified as factors responsible for the
teaming number of maternal deaths in rural Ghana despite several interventions towards reducing
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this menace [3]. Especially, in this new era of Sustainable Development Goals (SDGs), if proper
interventions are not taken, it will push the national goal of zeroing maternal deaths down to an
unwanted direction.

While global commitment to address this ”Canker” was fashioned as improving infants and maternal
health in the Millennium Development Goals 4 and 5 and now SDG 3 to reduce the global MMR to
less than 70 per 100,000 births with countries targeting a maternal mortality rate below twice the
global average, improving the country’s health care systems in order to achieve the SDG targets on
maternal and child health and other health related targets will require additional investments. To
demonstrate the accrued societal benefits of investing into maternal and child health is crucial in
stimulating stakeholders interest in resource mobilization [4].

According to [2], the root causes and correlates of maternal mortality must be understood in attempt
to address the high MMR we are confronted with. Consequently, we seek to understand how MMR
relates TFR and GDP in Ghana.

Definitions

Maternal mortality is defined as deaths occurring in women, while pregnant or within 42 days of
termination of pregnancy irrespective of the duration and site of the pregnancy, from any cause
related to or aggravated by the pregnancy or its management, but not from accidental or incidental
causes [5].

It measured using the Maternal Mortality Ratio (MMR) which is defined as the number of maternal
deaths per every 100,000 live births. That is

MMR =
NMD

NLB
× 100000 (1.1)

where NMD: is the number of maternal deaths, NLB : Number of live births.

In this paper, we seek to study how Ghana’s MMR is related to the Gross Domestic Product
(GDP) and the rapid population growth which is characterized by the Total Fertility Rate (TFR).
According to the Population Reference Bureau, Total Fertility Rate (TFR) is the average number
of children a woman would have assuming that current age-specific birth rates remain constant
throughout her childbearing years. It is calculated by summing across the average number of births
per woman in five-year age groups. That is

TFR = 5×
∑

(ASFR) = 5×
(
Nbw[15− 19]

Pw[15− 19]
+ · · ·+ Nbw[45− 49]

Pw[45− 49]

)
, (1.2)

where Nbw: number of births to women aged, Pw: population women aged. This means that TFR
depends not only on the number of births but also on the number of women across the childbearing
age groups; hence it is important to note that an increase in the number of births does not necessarily
lead to an increase in TFR. The GDP, on the other hand, is the sum of consumption (C), investment
(I), government spending (G) and net exports (X −M) that is :

GDP = C + I +G+ (X −M).

2 Method and Material

2.1 Data and Source

The Data used for this study contains MMR, TFR and GDP indicators of Ghana from 1990 to
2018 obtained on-line from the Ghana Economic Outlook[6] and World-Bank[7]. The R statistical
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software as used for the analysis.

2.2 Definition: Copulas and Sklar’s theorem

For an n−variate distribution F ∈ F (F1, . . . , Fn), with ith univariate marginal Fi, the copula
associated with F is a distribution function C : [0, 1]n → [0, 1] that satisfies F (y) = C(F1(y1),
. . . , Fn(yn), y ∈ Rn. If F is a continuous n-variate distribution function with univariate marginals
F1, ..., Fn, and quantile functions F−1

1 , . . . , F−1
n , so that C(u1 . . . un) = F (F−1

1 (u1), . . . , F−1
n (un))

then, the function C is called a Copula. The theorem by Sklar[8] states that for a joint distribution
function F , there is a unique copula C that satisfies

F (y) = C(F1(y1), . . . , Fd(yd)) = P (U1 ≤ F1(y1), . . . , Ud ≤ Fd(yd)), y ∈ Rd

.

2.3 Modeling with Copula

The joint CDF (Cumulative Distribution Function) of a multi-dimensional copula, R(x, y, z) for
the random vector (x, y, z) can be defined as

R(x, y, z) = C(F (x), G(y), H(z)), x, y, z ∈ R, (2.1)

where F (x),G(y), H(z) are marginal distributions and C : [0, 1]3 → [0, 1]. The Sklar theorem
suggest that, with R(x, y, z) known, C,F (x), G(y), H(z) can be uniquely determined. As a direct
consequence of equation (1), a model for (X,Y, Z) can be structured with

C ∈ C(θ), F ∈ F (σ), G ∈ G(ω), H ∈ H(τ)

selected from a known parametric family. Needless to say that the choice of an appropriate copula,
therefore, is very crucial and achievable through the so-called Frechet-Hoeffding bounds. The joint
cdf of the n-variate cdf with uniform marginals is bounded both below and above by Frechet-
Hoeffding bounds FL and FU defined as

FL(y1, . . . , yn) = max

[ n∑
i=1

Ui − (n− 1), 0

]
= W (2.2)

and

FU (y1, . . . , yn) = min(F1(y1), . . . , Fn(yn)) = M (2.3)

so that

max

[ n∑
i=1

Ui − (n− 1), 0

]
≤ (F1(y1), . . . , Fn(yn)) ≤ min(F1(y1), . . . , Fn(yn))

except that for some n > 2, F may or may not be a cdf under certain conditions( see theorem
3.6, [9]), both FL and FU are cdf when n = 2. More generally, the copula representation for the
Freechet-Hoeffding bounds is defined as

CL(y1, . . . , yn) ≤ C(y1, . . . , yn) ≤ CU (y1, . . . , yn)

= W (u, v) ≤ C(u, v) ≤M(u, v), u, v ∈ [0, 1],

see [10].
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Theorem : 1

If C is an n-dimentional copula, then for every u in [0, 1]n,

Wn(u) ≤ C(u) ≤Mn(u)

In our case where n = 3, the Frechet-Hoeffding lower bound W 3 is not copula in the sense of the
aforementioned. However, it is the best possible lower bound in this regards:

Theorem 2

For n > 3 and any u in[0, 1]n, there is an n-copula C which depends on u such that

C(u) = Wn(u)

For every n ≥ 2,C : [0, 1]2 > W 2(the Frechet-Hoeffding lower bound ),and every C : [0, 1]n <
Mn(the Frechet-Hoeffding upper bound). See [11].

2.4 Fitting Marginal Distributions

To select the appropriate marginal distribution, the dataset is fitted to : Exponential, Normal,
Lognormal, Weibull, Pareto Gamma and Gumbel distributions and with their model parameters
estimated via Maximum Likelihood Estimation(MLE). The model selection procedure is based on
the Akaike Information Criterion (AIC) as discussed briefly below.

Akaike Information Criterion (AIC)

The Akaike Information Criterion (AIC)is based on Kullback-Leibler (K-L) information loss (due
to Kullback and Leibler, 1951). Let f denotes full reality or truth (f is non-parametric) and let
the distribution g denote an approximation to the truth f . Also let I(f, g) be the information loss
when model g is used to approximate f ; this is defined for continuous functions as;

I(f, g) =

∫
f(y) log

(
f(y)

g(y | θ)

)
dy.

This can be expressed as the difference between statistical expectations with respect to the truth
f .

I(f, g) = Ef [log f(y)]− Ef [log(g(y | θ))],
Ef [log f(y)] is an unknown constant that depends only on the unknown true distribution so that;

−Ef [log(g(y | θ))] = I(f, g)− C

Multiplying the left hand side by −2 and rearranging yields the so-called Akaike Information
Criterion.

AIC = −2 log(L(θ̂ | y)) + 2K.

An additional bias adjustment criterion called AICc (Hurvich and Tsai, 1989 cited in [12] Burnham
and Anderson,1998) is used and defined as follow;

AICc = −2 log(L(θ̂ | y)) + 2K +
2K(K + 1)

n−K − 1
, (2.4)

since the data points used is < 40. To allow for quick comparison and ranking of candidate models,
the ∆iAICc is used. If ∆iAICc ≤ 2, there is substantial support for making inferences with the
model, for 4 ≤ ∆iAICc ≤ 7 there is less substantial evidence and for ∆iAICc > 10 there is no
substantial evidence and such models fail to explain the random variation inherent in the data. (see
[12]).
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2.5 Fitting Copula Models

Since the fitting of marginal distribution herein is based on MLE, let (x1, · · · , xn) be some observation
with fj(.; θj) and Fj(.; θj) as the jth marginal density and distribution function respectively. Then
the MLE involves maximizing the likelihood

L(x; θ) =

d∏
j=1

c(Fi(xi,j ;βj);α)fi(xi,j ;βj), i = 1, . . . , n,

where α denote the parameter of the copula C and θ is a parameter vector. The loglikelihood
function is

l(θ) =

n∑
i=1

log c

(
F1(xi,1;β), . . . , Fi(xi,d;β), α) +

n∑
i=1

d∑
j=1

log fi(xi,j ;β)

)
.

The Parameter estimation is based on the two-staged Inference Functions for Marginals(IFM)
method [13]. To be precise;

α̂IFM = argmax

n∑
i=1

log c

(
F1(xi,1; β̂IFM ), . . . , Fi(xi,d; β̂IFM ), α

)
(2.5)

and

βIFM = argmax

n∑
i=1

log fi(xi,j ;βj). (2.6)

2.6 Dependence Measure

For the random vector (X,Y, Z), the dependence structure is obtained through pairwise comparison
of the outcomes (X,Y ),(X,Z) and (Y,Z). A basic measure of association between two random
variables is the Pearson’s correlation coefficient which is regarded as inappropriate and often
misleading [11]. The Spearman’s rho and Kendall’s tau coefficients which are the most commonly
used provide the best alternative as a measure of dependence for non-elliptical distributions to
which the linear correlation coefficient is inefficient.

2.6.1 Kendall’s tau and Spearman’s rho

A : Spearman’s rho

The copula C model by itself characterize the dependence in a pair (X,Y ). Suppose that a random
sample pair (X1, Y1), . . . , (Xn, Yn) is given from some pair (X,Y ). Also let (Si, Ti) denote the
ranked pair of (X,Y ). Rescaling the axes by a factor of 1

n+1
, we obtain a set of points in the unit

square [0, 1]2. The rational is to compute the correlation between the rank (Si, Ti) via the Pearson’s
approach so that

ρn =

∑n
i=1(Si − Si)(Ti − Ti)√∑n
i=1(Si − Si)2(Ti − Ti)2

∈ [−1, 1],

where

Si =

∑n
i=1 Si

n
=
n+ 1

2
=

∑n
i=1 Ti

n
= Ti

ρn =
12

n(n+ 1)(n− 1)

n∑
i=1

SiTi − 3
n+ 1

n− 1
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ρn shares with Pearson’s classical correlation coefficient, rn, the property that its expectation
vanishes when the variables are independent. An asymptotically unbiased estimator of ρ is

ρ = 12

∫
[0,1]2

uvdC(u, v)− 3 = 12

∫
[0,1]2

C(u, v)dudv − 3 (2.7)

which also takes the form

ρ = 12

∫
[0,1]2
{C(u, v)− uv}dudv,

see [14].
This can also be written as

ρ = 12E(UV )− 3,

where

E(UV ) =

∫ ∞
0

∫ ∞
0

UV dC(U, V )

, see [11].

B : Kendall’s tau

The Kendell’s tau just like the Spearman’s rho is based on ranks. Kendall’s correlation coefficient,
defined as follows Definition : Consider two independent and identically distributed continuous
bivariate random variables (X,Y ) and (X∗, Y ∗) with marginal distribution F (X) for X and (X∗

and marginal distribution F (Y ) for Y and Y ∗.The measure of association, Kendall’s tau, τk(X,Y ),
is given by

τk(X,Y ) = P [(X −X∗)(Y − Y ∗) > 0]− P [(X −X∗)(Y − Y ∗) < 0]

This can be interpreted as the difference between probability of concordance and the probability of
dis-concordance between the random variables. Two pairs (u1, u2),(v1, v2) ∈ [0, 1]2 are concordant,
if both components(u1, u2) are either both greater or both less than their respective components of
the second pair, (v1, v2), i.e. if

(u1 − v1)(u2, v2) > 0

else, they are discordant. In copula terminology, Kendall’s tau is defined as

τk(X,Y ) =

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1 (2.8)

= 4E[C(UV )]− 1

(see Frees and Valdez, 1998; Klugman et al, 2012).

2.6.2 Tail Dependence

It may interest one wanting to know for example; the probability that MMR fall below (or exceed)
some level given that the TFR is also below (or exceed) another value. This conditional probability
that one index is extreme given another extreme event often requires a dependence measure for
upper and lower tails of the distribution. Now lets consider the random variables X and Y with
marginal distributions G(X)and H(Y ). The index of upper tail dependence, IU

IU = lim
v→1

P{X > G−1(v) | Y > H−1(v)}

this is equivalent to
IU = lim

u→1P
{G(X) > u | H(Y ) > u}

= lim
v→1

P{U > v | V > v} = lim
v→1

P{U > v, V > v}
P (V > v)

, U, V ∈ [0, 1]
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= lim
v→1

1− P (U ≤ v)− P (V ≤ v) + P (U ≤ v, V ≤ u)

1− P (V ≤ v)

IU = lim
v→1

1− 2v + C(v, v)

1− v . (2.9)

This justifies the assertion that the copula in itself is a measure of dependence and that the tail
dependency of Xand Y can be measured via the Copula rather than their marginal distributions.
The index of lower tail dependence, IL is obtained by substituting v = 1− v. so that

IL = lim
u→0

C(v, v)

v
, v ∈ [0, 1], (2.10)

see [15].

2.7 Goodness-of-fit tests on Copula

The goodness-of-fit tests on copula are based on empirical copula.

Cn(u) =
√
n(Cn(u)− Cθn(u)), u ∈ [0, 1], (2.11)

where Cn is the empirical copula defined by

Cn(u) =
1

n

n∑
i=1

I(Û ≤ u), u ∈ [0, 1]d

and Cθn is an estimator of C under the null hypothesis that

H0 : C ∈ {Cθ}.

The estimator θn is based on ranks via the inversion Kendall’s tau and Spearman’s rho, or the
maximum pseudo-likelihood estimator as proposed by [16].

3 Numerical Results and Discussions

3.1 Correlation Analysis

The figure 3.1 shows a pairwise correlation obtain via Kendall’s tau along with scatter plot and
probability histogram. It is observed that while all the pairs are highly correlated, both MMR and
TFR are inversely proportional to GDP.
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Fig. 1. Correlation analysis on MMR, TFR and GDP of Ghana

3.2 Choice of Bivariate Copula Model

MMR and TFR

The table 3.2 shows results obtained from fitting bivariate Copula models to Maternal Mortality
Rate and the Total Fertility Rate data with their standard errors in brackets.

Table 1. Results for fitting Bivariate Copula to MMR and TFR data

Copula Parameter τk IL IU AICc ∆ AICc
Estimate

Gaussian alpha =0.740 0.530 0.000 0.000 -67.90 24.74

Clayton alpha =3.386 0.629 0.815 0.000 -31.600 61.04
(0.831 )

Gumbel alpha =4.025 0.752 0.000 0.812 -45.31 47.33
(0.683 )

Frank alpha =18.550 0.803 0.000 0.000 -52.95 39.69
(3.491 )

Joe alpha =4.957 0.675 0.000 0.850 -39.11 53.53
(0.953 )

Tawn Par 1=13.180 0.800 0.000 0.850 -92.64 0.000
Type 2 Par 2= 0.860

The copula fitting process selects the Tawn type 2 copula model as the best candidate among the
6 fitted models with a correlation value 0f 0.80 against the empirical correlation value of 0.83;
explaining a strong dependence in the upper tail (i.e IU = 0.85).

MMR vs GDP and TFR vs GDP

From the empirical correlation figures both MMR versus GDP and TFR verses GDP move in the
opposite direction. Only the Gaussian and Frank Copulae allow for negative values of τ . The fitted
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results are shown in the tables 3.2 and 3.2 below.

Table 2. Model Summary for MMR and GDP data.

Copula Parameter τk IL IU AICc ∆ AICc
Estimate

Gaussian α = -0.71 -0.50 0.00 0.00 -23.19 5.58

Frank α = -8.98 -0.64 0.00 0.00 -28.77 0.00
( 1.965)

The corresponding copula model for this data is given by

C(u1, u2) =
1

−8.98
ln

(
1 +

(e−8.98u1 − 1)e−8.98u2 − 1)

e−8.98 − 1

)
, u1, u2 ∈ [0, 1].

Table 3. Model Summary for TFR and GDP data.

Copula Parameter τk IL IU AICc ∆ AICc
Estimate

Gaussian alpha =-0.875 -0.67 0.00 0.00 -33.34 8.04

Frank alpha = -13.03 -0.73 0.00 0.00 -41.38 0.00

Also, the copula model for this data is

C(u1, u2) =
1

−13.03
ln

(
1 +

(e−13.03u1 − 1)e−13.03u2 − 1)

e−13.03 − 1

)
, u1, u2 ∈ [0, 1].

3.3 Selecting Marginal Distributions

The following tables show the summary of results obtained by fitting the three indicators to
distributions from the ”fitdistplus” and ”actuar” add on packages along with their AIC difference.

Table 4. Results for Fitting MMR in Ghana

Distribution Parameter AICc ∆AICc
Estimate

Exponential rate=0.002(0.000) 408.99 57.16

Gamma shape=17.274( 4.437) 351.83 0.00
rate=0.042(0.011)

Lognormal meanlog=5.985(0.045)
sdlog=0.243 (0.032) 351.94 0.11

Gumbel a=361.995(16.696) 352.48 0.65
b=85.134(12.140)

Weibull shape=4.575 (0.659) 353.34 1.51
scale=0.329(1.000)

Normal mean=409.345(18.251) 352.86 1.03
sd=98.287(12.906)

Student t df=0.142(0.028) 565.63 213.80

10
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Table 5. Summary results from Fitting TFR in Ghana.

Distribution Parameter AICc ∆AICc
Estimate

Exponential rate= 0.216(0.040 ) 149.13 104.581

Gamma shape=89.201(23.382) 351.839 307.283
rate=19.237(5.056 )

Lognormal meanlog=1.528(0.020)
sdlog=0.106(0.014) 45.06 0.520

Gumbel a=4.399(0.081) 44.552 0.000
b=0.413(0.061)

Weibull shape=9.969( 1.405) 48.720 4.231
scale=4.864(0.096 )

Normal mean=4.637(0.092) 45.920 1.374
sd= 0.495(0.064)

Student t df=0.564(0.131 ) 242.373 197.8202

Table 6. Summary results from Fitting GDP in Ghana.

Distribution Parameter AICc ∆AICc
Estimate

Exponential rate= 0.049(0.009) 234.731 2.915

Gamma shape=1.539(0.369) 234.14 2.334
rate=0.076(0.021)5

Lognormal meanlog= 2.651(0.160)
sdlog=0.860(0.113) 231.827 0.000

Gumbel a= 12.783(2.290) 242.41 10.592
b=11.765(1.893)

Weibull shape=1.267(0.186) 234.678 2.852
scale=21.955(3.409)

Normal mean=20.287(3.009) 248.306 16.485
sd= 16.204 (2.1276 )

Student t df=0.308(0.064) 333.324 101.504

From tables 3.3, 3.3 and 3.3 (marginal distributions), those with ∆AICc < 2 indicate a strong
support for making inferences.GDP can be described by the Lognormal distribution. All distributions
fitted except the exponential and student t distributions are insufficient evidence for MMR while
the Gumbel, Lognormal, Gamma favors the TFR.

3.4 Fitting Copula with Continuous Marginals

Here we consider only MMR and TFR data where a positive association exists. The best-fitted
copula for this data is the Tawn-Type 2 copula (which extreme value family), however since we
cannot specify the dimension of this copula through the extreme value copula, we considered the
Tawn, Gumbel and Frank families for situations where the margins are gamma and lognormal for
MMR and TFR respectively. Figure 3.4 below shows the panel plots obtained from a 2000 simulated
samples from the respective families and marginals;
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Fig. 2. Panel Plot Frank Copula Gamma and Lognormal margins

C(x, y) = exp−[(− lnx)18.55 + (− ln y)18.55]0.248447

Fig. 3. Panel Plot Gumbel Copula with Gamma and Lognormal margins

C(x, y) = exp−[(− lnx)4.025 + (− ln y)4.025]0.248447
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Fig. 4. Panel Plot Tawn Copula with Gamma and Lognormal margins

C(x, y) = x1−ay1−b exp{−[(1− a lnx)0.98 + (−b ln y)0.98]1.02041}
These results indicate that Kendall’s tau of the Frank copula for α = 18.55(0.80) with gamma and
lognormal marginals is very close to the empirical estimate(0.83). In addition, the contour and joint
density plots suggest a strong lower tail dependence between MMR and TFR.

4 Conclusion

The empirical results revealed a strong correlation between indicators; MMR and TFR showed a
positive association(0.83) whilst an inverse relation exist between MMR and GDP(-0.67) and TFR
and GDP(-0.76). The contour and joint density plots from appendix A and B indicate a strong lower
tail dependence for the bivariate Frank copula with Gamma and Lognormal margins whereas the
Gumbel copula with Gamma and Lognormal margins shows strong upper tail dependence. These
correlation figures tend to suggests that improved GDP as a consequence of improvement in socio-
economic conditions of a Ghanaian mother tend to reduce Maternal Mortalities whilst increased
fertility rates (population growth) turn to increase MMR. Generally, evidence has been drawn to
improvement in GDP: logistics, number of skilled birth attendants, access to health fertilities and
services, and general well-being as areas that require attention. Other indirect intervention schemes
and programs such as family planing and contraceptive use targeted at reducing the high TFR also
requires some considerable level of investment as well as stakeholders recommendation.
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Appendix A: Contour plots
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Appendix B: Density plots
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