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Abstract

Aims/Objectives: In this paper, we investigate some of the algebraic properties of inverse
fuzzy languages. We proved that a fuzzy automaton is inverse if and only if the transition
monoid is an inverse monoid. A fuzzy language is an inverse fuzzy language if the minimal fuzzy
automaton recognizing that fuzzy language is an inverse fuzzy automaton. We also discuss some
more properties of an inverse fuzzy language based on the fact that an inverse monoid is one
which is regular and idempotent commute.
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1 Introduction

Fuzzy sets were introduced by L. A. Zadeh as a generalization of the classical notion of sets [1] and
since then it is applied in many fields of sciences. W. G. Wee introduced fuzzy automata theory.
Zadeh and Lee [2] generalized the classical notion of languages to the concept of fuzzy languages.
Algebraic automata theory deals with the study of the transition structure associated with fuzzy
automata. Corresponds to every fuzzy automata there exists a finite monoid of fuzzy transition
matrices and correspond to every finite monoid we can construct a fuzzy automata. This one-one
correspondence allow us to study the structure of a fuzzy automaton through the study of the
structure of the associated transition monoid.

Eilenberg-type variety theorem is proved for fuzzy languages by Tatjana Petkovic [3] and it says
that there is a one to one correspondence between the variety of finite monoids, variety of languages
and the variety of fuzzy languages. It is proved by Tatjana Petkovic [3] that every monoid is the
syntactic monoid of some fuzzy language while this is not true in the case of crisp languages.

[4] discussed Fuzzy language recognizability via finite monoids (called m-recognizability). Fuzzy
languages computed by (max, min)-automata, (max,∆L)-automata and (max,∆D)-automata are
m-recognizable (∆L,∆D) are the Lucasiewicz intersection and the drastic intersection, respectively).
The syntactic monoid associated to each m-recognizable language can be effectively constructed.

Mordeson J. N, Malik D. S independently and together with Nair P. S, Sen M. K proved many
results on algebraic fuzzy automata theory and languages. These and many other references are
available in [5].

[6], [7], they defined inverse fuzzy automata, inverse fuzzy languages and a characterization of inverse
fuzzy languages. [7] defined regular and inverse fuzzy automata, its construction, and prove that
the corresponding transition monoids are regular and inverse monoids respectively. The languages
accepted by an inverse fuzzy automata is an inverse fuzzy language and gave a characterization of
an inverse fuzzy language. As an application, converted a finite state automaton to a finite fuzzy
state automaton. A classical automata determine whether a word is accepted by the automaton
where as a finite fuzzy state automaton determine the degree of acceptance of the word by the
automaton.

[8] studied l-fuzzy languages recognized by finite monoids and show that the class of monoid
recognizable l-fuzzy languages is closed under scalar products, quotients, inverse homomorphic
images and c-cuts. The notion of variety of monoid recognizable l-fuzzy languages were introduced
and obtained an Eilenberg type variety theorem for l-fuzzy languages. [9] discussed l-fuzzy languages
recognized by finite idempotent semirings. They proved that the class of semiring recognizable l-
fuzzy languages is closed under quotients and inverse homomorphic images. They introduced the
concept of conjunctive variety of l-fuzzy languages.

In this paper, we prove some results on inverse fuzzy languages depending on the fact that the
syntactic monoid of an inverse fuzzy language is an inverse monoid.

2 Preliminaries

A fuzzy subset on a set X is a function µ : X → [0, 1], [10]. A fuzzy language over an alphabet
X is a fuzzy subset of X∗, free monoid generated by X. To each fuzzy language λ over X we
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associate a congruence Pλ called syntactic congruence as follows. For u, v ∈ X∗, uPλv if and only
if λ(xuy) = λ(xvy) for all x, y ∈ X∗. The quotient monoid Syn(λ) = X∗/Pλ is called the syntactic
monoid of λ [5].

Theorem 2.1. A fuzzy language λ is regular if and only if Im(λ) is finite and λc is regular for
every c ∈ [0, 1].

Theorem 2.2. (Myhill Nerode theorem) A fuzzy language λ is regular if and only if Pλ has finite
index.

Definition 2.1. A fuzzy automaton on an alphabet X is a five tuple M = (Q,X, µ, i, τ) where Q
is a finite set of states, X is a finite set of input symbols and µ is a fuzzy subset of Q × X × Q
representing the transition mapping, i is a fuzzy subset of Q called initial state, τ is a fuzzy subset
of Q called final state.

A fuzzy automaton can also be represented as a five tuple (Q,X, {Tu|u ∈ X}, i, τ) where {Tu|u ∈ X}
is the set of fuzzy transition matrices, i = {i1, . . . , in}, ik ∈ [0, 1]; τ = {j1, . . . , jn}T , jk ∈ [0, 1] for
k = 1, . . . , n.
µ can be extended to the set Q×X∗ ×Q by

µ(q,Λ, p)=

{
1 q = p
0 q ̸= p

µ(q, u, p) =
∨

qi∈Q

{µ(q, x1, q1) ∧ µ(q1, x2, q2) ∧ . . . ∧ µ(qk−1, xk, p)|x1x2 . . . xk = u}

The fuzzy language recognized by this fuzzy automaton is fM (u) =
∨

q∈Q

∨
p∈Q i(q)∧µ(q, u, p)∧τ(p)

which can also written as fM (u) = i ◦Tu ◦ τ , where the composition is the max-min composition of
fuzzy matrices [11].

Definition 2.2. A deterministic fuzzy automaton is a fuzzy automaton M = (Q,X, µ, i, τ) such
that there exist a unique s ∈ Q with i(s) > 0 and there exist a unique q ∈ Q such that µ(s, x, q) > 0
for every x ∈ X∗.

For each fuzzy automaton we can construct a deterministic fuzzy automaton such that the language
recognized by them are the same.

Definition 2.3. IfM = (Q,X, µ) be a fuzzy automaton, thenM = (Q,X, µ) is said to be an inverse
fuzzy automaton if for all x ∈ X∗, there exist a unique y ∈ X∗ such that and µ(q, xyx, p) = µ(q, x, p);
µ(q, yxy, p) = µ(q, y, p) for all p, q ∈ Q [6].

To assure the existence of such y, we take the free monoid X̃∗ on X ∪ X−1 so that for every
x ∈ X̃∗, µ(q, xx−1x, p) = µ(q, x, p) and µ(q, x−1xx−1, p) = µ(q, x−1, p) for every p, q ∈ Q. In
the case of a deterministic inverse fuzzy automaton this can be redefined as, for every x ∈ X̃∗,
µ(q, x, p) = µ(p, x−1, q) and µ(p, x, q) = µ(r, x, q) which implies p = r for all p, q, r ∈ Q. A
deterministic inverse fuzzy automaton can be represented by transition matrices with each row and
column contains atmost one non-zero entry.

Definition 2.4. A fuzzy language λ on an alphabet X̃ is said to be an inverse fuzzy language (IFL)
if the minimal fuzzy automaton recognizing that fuzzy language is an inverse fuzzy automaton.

Theorem 2.3. (Characterization of an inverse fuzzy language) A fuzzy language λ on X̃ is inverse
if and only if for every x ∈ X̃∗, λ(uxx−1xv) = λ(uxv) and λ(ux−1xx−1v) = λ(ux−1v) for all
u, v ∈ X̃∗ [6].
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3 Properties of Inverse Fuzzy Languages

In [6], it is proved that IFL is closed under finite Boolean operations, homomorphic images.

Theorem 3.1. IFL is closed under quotients.

Proof. If λ1, λ2 ∈ IFL and x, u, v ∈ X̃∗.
Then λ1(uxx

−1xv) = λ1(uxv) and λ1(ux
−1xx−1v) = λ1(ux

−1v). Now,

(λ−1
2 λ1)(uxx

−1xv) =
∨

v1∈X̃∗

{λ1(v1uxx
−1xv) ∧ λ2(v1)}

=
∨

v1∈X̃∗

{λ1(v1u)xx
−1xv ∧ λ2(v1)}

=
∨

v1∈X̃∗

{λ1(v1uxv) ∧ λ2(v1)}

= λ−1
2 λ1(uxv)

and

(λ−1
2 λ1)(ux

−1xx−1v) =
∨

v1∈X̃∗

{λ1(v1ux
−1xx−1v) ∧ λ2(v1)}

=
∨

v1∈X̃∗

{λ1(v1u)x
−1xx−1v ∧ λ2(v1)}

=
∨

v1∈X̃∗

{λ1(v1ux
−1v) ∧ λ2(v1)}

= λ−1
2 λ1(ux

−1v)

In a similar way, we can prove that
λ1λ

−1
2 (uxx−1xv) = λ1λ

−1
2 (uxv) and λ1λ

−1
2 (ux−1xx−1v) = λ1λ

−1
2 (ux−1v).

Thus λ−1
1 λ2 and λ2λ

−1
1 ∈ IFL

Theorem 3.2. IFL is closed under multiplication by constants.

Proof. If λ be an inverse fuzzy language on X̃ and x ∈ X̃∗. Then there exist a unique inverse
x−1 ∈ X̃∗ such that λ(uxx−1xv) = λ(uxv) and λ(ux−1xx−1v) = λ(ux−1v) for every u, v ∈ X̃∗. If
c ∈ [0, 1], then (cλ)(uxx−1xv) = c.λ(uxx−1xv) = c.λ(uxv) = (cλ)(uxv) and (cλ)(ux−1xx−1v) =
c.λ(ux−1xx−1v) = c.λ(ux−1v) = (cλ)(ux−1v).
So cλ ∈ IFL.

Theorem 3.3. If λ is an inverse fuzzy language on X̃, then for each c ∈ [0, 1], λc is an inverse
language on X̃.

Proof. If M = (Q, X̃, µ, i, τ) is an inverse fuzzy automaton recognizing λ. Then for every x ∈ X̃∗

there exist a unique y ∈ X̃∗ such that µ(p, x, q) = µ(p, xyx, q) for all p, q ∈ Q.
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If c ∈ λc and uxv ∈ λc, then λ(uxv) ≥ c.

λ(uxyxv) =
∨

p,q∈Q

i(p) ∧ µ(p, uxyxv, q) ∧ τ(q)

=
∨

p,q∈Q

i(p) ∧ (
∨

r,r′∈Q

µ(p, u, r) ∧ µ(r, xyx, r′) ∧ µ(r′, v, q)) ∧ τ(q)

=
∨

p,q∈Q

i(p) ∧ (
∨

r,r′∈Q

µ(p, u, r) ∧ µ(r, x, r′) ∧ µ(r′, v, q)) ∧ τ(q)

=
∨

p,q∈Q

i(p) ∧ µ(p, uxv, q) ∧ τ(q)

= λ(uxv)

Thus, λ(uxv) ≥ c if and only if λ(uxyxv) ≥ c.
That is, uxv ∈ λc if and only if uxyxv ∈ λc.
In a similar way, we can prove that uyv ∈ λc if and only if uyxyv ∈ λc.

Theorem 3.4. IFL is not closed under inverse homomorphic images.

Proof. Take X̃1 = {a, a−1}, X̃2 = {b, b−1}. Now define β : X̃1 −→ X̃2 as β(a) = β(a−1) = b. Then
β can be extended to a homomorphism β∗ : X̃1

∗ −→ X̃2
∗
. If λ be an inverse fuzzy language on

X̃1. Then λ(u′bv′) = λ(u′bb−1bv′) for all u′, v′ ∈ X̃2
∗
. If β∗−1

λ is an inverse fuzzy language. Then

β∗−1

λ(uav) = β∗−1λ(uaa−1av); for all u, v ∈ X̃1
∗
. That is, λ(β∗(uav)) = λ(β∗(uaa−1av)). Thus,

λ(β∗(u)bβ∗(v)) = λ(β∗(u)bbbβ∗(v)) and this says the inverse is not unique which is a contradiction.
So β∗−1λ is not an inverse fuzzy language.

Theorem 3.5. IFL is not a variety of fuzzy languages.

Proof. A collection of fuzzy languages is a variety if it is closed under finite Boolean operations,
homomorphic and inverse homomorphic images, quotients, multiplication by constants and c-cuts.

Thus an inverse fuzzy language can be considered as a regular fuzzy language with its syntactic
monoid is an inverse monoid. A characterization for an inverse monoid by Wagner in (1952) is that
a monoid is an inverse monoid if and only if it is regular and any two idempotents commute each
other [12]. It is also proved that a monoid is regular if and only if every L − class (R − class)
contains an idempotent. Thus a fuzzy language is an inverse fuzzy language then idempotents in
the syntactic monoid commute each other and every L −class (R−class) contains an idempotent.

Proposition 3.1. If λ be an inverse fuzzy language on X̃ and [e] be an idempotent in M(λ), then
µ(p, xe, q) ≤ µ(p, x, q) and µ(p, ex, q) ≤ µ(p, x, q) for all p, q ∈ Q; x ∈ X̃∗.

Proof. Since λ is an inverse fuzzy language every element of M(λ) acts as one-one partial fuzzy
transformations on Q and idempotents in M(λ) can be considered as fuzzy matrices with non-zero
entries only in the diagonal and so Te acts as a sub-identity on Q.
Thus, µ(p, e, q) ̸= 0 if p = q and µ(p, e, q) = 0 if p ̸= q.

µ(p, xe, q) =
∨

q′∈Q

µ(p, x, q′) ∧ µ(q′, e, q)

= µ(p, x, q) ∧ µ(q, e, q)

≤ µ(p, x, q)

Similarly, µ(p, ex, q) ≤ µ(p, x, q)
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Theorem 3.6. If a regular fuzzy language λ, is an inverse fuzzy language, then (1) Idempotents of
M(λ) commute (2) there exist n ∈ N such that λ(xuny) ≤ λ(xy) for all x, u, y ∈ X̃∗.

Proof. If λ is an inverse fuzzy language, then (1) follows, since M(λ) is an inverse monoid and
idempotents in an inverse monoid commute.

To prove (2), if x, u, y ∈ X̃∗. Then [x], [u], [y] ∈ M(λ). Since M(λ) is a finite inverse monoid, there
exist n > 0 such that [u]n is an idempotent in M(λ) .

λ(xuny) =
∨

p,q∈Q

i(p) ∧ µ(p, xuny, q) ∧ τ(q)

=
∨

p,q∈Q

i(p) ∧ (
∨

q′∈Q

µ(p, xun, q′) ∧ µ(q′, y, q)) ∧ τ(q)

≤
∨

p,q∈Q

i(p) ∧ (
∨

q′∈Q

µ(p, x, q′) ∧ µ(q′, y, q)) ∧ τ(q)

=
∨

p,q∈Q

i(p) ∧ µ(p, xy, q) ∧ τ(q)

= λ(xy)

Take λ, is a regular fuzzy language of X̃∗; π : X̃∗ −→ M(λ), the syntactic morphism; λ+ = {x ∈
X̃∗ : λ(x) > 0}, the support of λ and π(λ+), the syntactic image of λ.

Theorem 3.7. For every regular fuzzy language the following conditions are equivalent: (1) for
every x, u, y ∈ X̃∗, there exist n ∈ N such that λ(xy) ≥ λ(xuny) (2) for every [x], [y] ∈ M(λ) and
for every idempotent [e] ∈ M(λ), [xey] ∈ π(λ+) implies [xy] ∈ π(λ+).

Proof. Suppose condition(1) holds. If [x], [e], [y] ∈ M(λ) such that [xey] ∈ π(λ+). Since π is onto,
there exist x, u, y ∈ X̃∗ such that π(x) = [x], π(y) = [y], π(u) = [e]. Also, there exist n ∈ N such
that λ(xy) ≥ λ(xuny). π(xuny) = π(x)π(un)π(y) = [x][e]n[y] = [x][e][y] ∈ π(λ+) by assumption.
It follows that xuny ∈ λ+ and xy ∈ λ+. Hence [x][y] = [xy] ∈ π(λ+) Thus condition (1) implies
condition (2).

Conversely, suppose that for every [x], [y] ∈ M(λ) and for every idempotent [e] ∈ M(λ),[xey] ∈
π(λ+) implies [xy] ∈ π(λ+) Then condition (1) holds when λ(xuny) = 0 for every n. Suppose
x, u, y ∈ X̃∗ such that λ(xuny) > 0 for all n ∈ N . That is, xuny ∈ λ+ for all n ∈ N . Then
[x], [y], [u] ∈ M(λ) and since M(λ) is finite there exist some k ∈ N such that [u]k is an idempotent
say [e]. Now, [xey] = [x][e][y] = π(x)π(uk)π(y) = π(xuky) ∈ π(λ+). So [xy] ∈ π(λ+) by the
assumption. That is, π(xy) ∈ π(λ+) and this implies xy ∈ λ+. Thus λ(xy) > 0 which says that
there exist some k ∈ N such that λ(xy) ≥ λ(xuky).

Theorem 3.8. If λ is an inverse fuzzy language. Then (1) idempotents of M(λ) commute. (2)
For every x, y ∈ X̃∗, there exist an idempotent [e] ∈ M(λ) such that [xey] ∈ π(λ+) if and only if
[xy] ∈ π(λ+).

Proof. Since the syntactic monoid of an inverse fuzzy language is an inverse monoid, condition (1)
follows. T prove condition (2), take x ∈ X̃∗. Since M(λ) is an inverse monoid, L[x] contains a
unique idempotent say [e] which is a right identity for elements of L[x]. Then Tx ◦Te = Tx. Suppose

(Q, X̃, µ, i, τ) be the minimal fuzzy automata recognizing λ and y ∈ X̃∗ such that [xey] ∈ π(λ+).

λ(xey) = i ◦ Tx ◦ Te ◦ Ty ◦ τ
= i ◦ Tx ◦ Ty ◦ τ
= λ(xy)
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So λ(xey) > 0 if and only if λ(xy) > 0. That is, [xey] ∈ π(λ+) if and only if [xy] ∈ π(λ+).

Theorem 3.9. If M = (Q, X̃, µ) is a fuzzy automaton. Then for every x, y ∈ X̃∗ and m,n ∈ N
with [x]m, [y]n are idempotents in X̃∗/θM , µ(p, xmyn, q) = µ(p, ynxm, q) for every p, q ∈ Q if and
only X̃∗/θM has commuting idempotents.

Proof. Since X̃∗/θM is a finite semigroup, for every [x] in X̃∗/θM , there exists n ∈ N such that
[x]n is an idempotent. Suppose [x]m, [y]n are two idempotents in X̃∗/θM . Now for every p, q ∈ Q,
µ(p, xmyn, q) = µ(p, ynxm, q) if and only if [xmyn] = [ynxm]

That is, µ(p, xmyn, q) = µ(p, ynxm, q) if and only if X̃∗/θM has commuting idempotents using the
fact that [xm][yn] = [x]m[y]n.

Theorem 3.10. If λ is a fuzzy language. Then for every x, y ∈ X̃∗ and m,n ∈ N ; [x]m, [y]n are
idempotents, λ(uxmynv) = λ(uynxmv) for all u, v ∈ X̃∗ if and only if the syntactic monoid of λ
has commuting idempotents.

Proof. Since for every x, y ∈ X̃∗ and m,n ∈ N such that [x]m, [y]n are idempotents, λ(uxmynv) =
λ(uynxmv), it follows that xmynPλy

nxm if and only if [x]mPλ
[y]npλ = [y]npλ [x]

m
Pλ

That is, if and only
if syntactic monoid of λ has commuting idempotents.

Thus we have proved the following theorem.

Theorem 3.11. If λ is an inverse fuzzy language, then (1) for every x, y ∈ X̃∗ there exist m,n ∈ N
such that λ(uxmynv) = λ(uynxmv) for all u, v ∈ X̃∗. (2) for all x, u, y ∈ X̃∗, there exist n ∈ N
such that λ(xuny) ≤ λ(xy).

By Eilegnberg-type variety theorem, the collection of all fuzzy languages such that for every x, y ∈
X̃∗ and m,n ∈ N such that [x]m, [y]n are idempotents, λ(uxmynv) = λ(uynxmv) for all u, v ∈ X̃∗,
form a variety of fuzzy languages and the associated psuedo variety is the variety generated by
inverse semi groups.

4 Conclusion

We analysed some of the algebraic properties of inverse fuzzy languages. We proved that inverse
fuzzy languages is not closed under inverse homomorphic images. We proved that a fuzzy automaton
is inverse if and only if the transition monoid is an inverse monoid. A fuzzy language is an inverse
fuzzy language if the minimal fuzzy automaton recognizing that fuzzy language is an inverse fuzzy
automaton. We derived an equivalent condition for a regular fuzzy language. We also discussed
some more properties of an inverse fuzzy language based on the fact that an inverse monoid is one
which is regular and idempotents commute.
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