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Abstract 
 

In this work, we have studied a magnetohydrodynamic, Casson fluid flow with velocity slip over an 
inclined nonlinearly stretching surface in Non-Darcy porous medium, numerically. In the mathematical 
model, we have transformed the momentum equation, energy equation and mass concentration equations 
to non-dimensional ordinary differential equations using similarity variables. We have solved the 
equations numerically by bvp4c using MATLAB for the numerical computation, and took �� = 12 and 
axes so that figures are clearly visible. We have discussed and analysed the magnitude of the velocity, 
temperature, concentration, Local Skin friction, Local Nusselt number and Local Sherwood number using 
their representative parameters and the effects of these parameters on the respective boundary layer 
regions using graphs, figures and tables. 
 

 

Keywords: Magnetic; Darcy; velocity slip; inclination parameter; Casson fluid; Forchheimer parameter; 
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Nomenclatures 
 

 ,  Cartesian coordinates[m] 

  x-component of velocity [m/s] 

 y-component of velocity [m/s] 

magnetic field,  

 magnetic constant 

 permeability parameter[m2] 

 Forchheimer parameter, 

 fluid density [kg m-3]  

  fluid kinematic viscosity [m2 s-1] 

 fluid dynamic viscosity [kg m-1 s-1]‘ 

 plastic dynamic viscosity fluid 

 yield stress of fluid 

-th component of deformation rate 

 product of deformation rate  

  thermal expansion coefficient 

  mass expansion coefficient 

  solute’s chemical reaction rate  

  gravity- acceleration 

thermal diffusivity of the fluid  

specific heat at constant pressure 

 thermal conductivity of the fluid 

 mass diffusion coefficient 

 similarity variable, 

  stream function [m2 s-1]  

non- dimensional stream function 

 suction( blowing) parameter  

  Casson fluid parameter, 

stretching power index parameter. 

 inclination parameter 

  non- dimensional Magnetic parameter 

 non- dimensional Permeability parameter 

non- dimensional Forchheimer coefficient  

Grashof number,  

 solutal Grashof number,  

buoyancy parameter,  

 solutal buoyancy parameter, 

 chemical reaction parameter 

 surface stretching speed, 

  velocity slip 

.  wall mass transfer velocity 

 Velocity slip parameter 

stretching surface power index parameter.  

 temperature at the surface  

 initial temperature of the surface 

 proportionality constant 

  temperature gradient term 

 concentration at the surface 

 initial concentration of the surface 

  proportionality constant 

  concentration gradient term  

 ambient temperature 

  ambient concentration  

 local skin-friction 

 Reynold number. 

  Shearing stress 

 local Nusselt number 

 local Sherwood number 

 

1 Introduction 
 
From the twentieth century we study boundary layer region in the engineering applications in industries like 
in metallurgy, metal processing and in chemical engineering, drawing of polymer sheets. Fluid may be 
Newtonian or non-Newtonian. Water is the example of Newtonian fluid where viscous force (stress) at the 
boundary of the surface is linearly proportional to the velocity gradient of the fluid. Honey, milk, fruit juice, 
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shampoos, sanitizer, paint, mud, blood, and other body fluids glues vegetable oil are examples of non-
Newtonian fluid and their viscous force at the boundary surface are not linearly proportional to the velocity 
gradient. Casson fluid is one such example of non-Newtonian fluids. We consider fluid flow due to 
stretching of the surface.  
 
Crane [1] started the study of the boundary layer region of the Newtonian fluid which being viscous                     
and incompressible, flow over a linearly stretching surface. He considered the case of stretching                    
velocity proportional to distance from the slit; plastic film manufacturing is its one example. The researchers 
took interest to study its extension to non Newtonian fluid and nonlinear stretching surfaces. 
 
Rajagopal [2] analysed the viscous incompressible fluid flow in boundary layer region on moving 
(stretching) sheet. Ishak et al. [3] studied the boundary layer of laminar magneto-hydrodynamic viscous and 
incompressible fluid, with two dimentional flow over a moving wedge (FALKNER-SKAN boundary layer 
problem) with suction and injection. 
 
Siddappa, B. and Abel Subhas [4] analysed the flow of visco-elastic fluid over the boundary layer region 
past a stretching plate. Andersson [5] studied the boundary layer region of magneto hydrodynamic non-
newtonian fluid flow over a stretching surface. Dandapat et al. [6] studied the stable property of the 
viscoelastic fluid flow over a stretching sheet, in transverse magnetic field to the stretching surface. 
 
Fang [7] analysed the solution of the extension of original Blasius boundary layer problem by solving that by 
variable transformation method. Mamaloukas et al. [8] discussed the exact solution of flow of visco-elastic 
fluid of second grade over a stretching surface, in two dimension using free-parameter method and 
separation of variable method. 
 
Khidir Ahmed [9] applied iterative methods: Successive linearization method and spectral homotopy 
perturbation method, to solve the magnetohydrodynamic Falker-Skan nonlinear boundary layer problem. 
Bataller [10] analysed the boundary layer region of the electrically non conducting, viscous and 
incompressible fluid flow under two situations: over a moving plane in a fluid at rest (Sakiadis flow) and 
with uniform flow over a flat-plane at rest (Blasius flow).  
 
Motsa, et al. [11] studied the boundary layer of the magnetohydrodynamic (MHD) upper-convected 
Maxwell (UCM) fluid flow on a porous stretching sheet. Motsa et al. [12] analysed the boundary layer 
region of the magneto-hydrodynamic viscous incompressible fluid flow over a nonlinearly stretching surface 
in the presence of transverse magnetic field. Rosca [13] analysed the boundary layer region of the MHD, 
viscous, incompressible, electrically conducting fluid flow over a shrinking permeable sheet. Nadeem et al. 
[14] studied the magnetohydrodynamic (MHD) Williamson fluid flow in the boundary layer region over a 
stretching surface. 
 
Mukhopadhyay [15] analysed the MHD viscous incompressible fluid flow over a stretching cylinder in 
symmetric boundary layer about the axis of the cylinder under partial slip condition. Akbar et al. [16] 
investigated boundary layer of the MHD Carreau fluid flow over a permeable shrinking sheet. Nadeem S, et 
al. [17] investigated the MHD flow of a Casson fluid in the boundary layer region over an exponentially 
shrinking surface. Biswas et al. [18] analysed the unsteady magnetohydrodynamic Casson fluid flow along a 
vertical plate with chemical reaction and radiation effects. 
 
Ahmmed et al. [19] discussed the unsteady magnetohydrodynamic nanofluid flow over an exponentially 
accelerated and inclined plate, in a porous medium with variable thermal conductivity and free convection, 
and radiation. Biswas et al. [20] analysed the boundary layer region for the flow along vertical plate of 
unsteady magneto hydrodynamic casson nanofluid with the Hall current and chemical reaction effects. Noor 
et al. [21] studied the MHD visco-elastic fluid of second grade with mixed convection, hall-current and 
thermophoresis effects over a stretching surface. 
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Sharada et al. [22] studied the boundary layer of magnetohydrodynamic Casson fluid flow over an 
exponentially stretching sheet with mixed convection, thermal radiation, dufour, soret and chemical reaction 
effects on it. Mukhopadhyay et al. [23] analysed the effect of transpiration and heat transfer on the boundary 
layer region of the Casson fluid flow over a linearly stretching sheet. 
 
Jawad Raza, et al. [24] analysed boundary layer region for the nano Williamson fluid flow along a stretching 
surface having transverse magnetic field to the surface and with multiple slip. Jawad Raza, et al. [25] studied 
the boundary layer region for MHD non-Newtonian nanofluid flow along a nonlinear permeable stretching 
sheet with multiple slip effects. Mebarek Oudina [26] studied the Titania nanofluids (of different base fluids) 
flow in cylindrical annulus in the presence of heat source and heat convection. 
 
Mebarek Oudina et al. [27] studied to the boundary layers of the nanofluid flow due to radially stretching 
disk in the presence of transverse magnetic field to the surface of the disk, coriolis force, heat source. 
Marzougui, et al. [28] studied the magnetohydrodynamic copper–water nanofluid flow in a cavity                     
with chamfers for its entropy. J. Raza, et al. [29] investigated the boundary layer region for MHD non-
newtonian molybdenum disulfide nanofluid flow in a converging or diverging channel and in the presence of 
radiation.  
 
Kala [30-32] studied the boundary layer region of MHD flow of a Casson fluid over a non-linearly stretching 
sheet with partial slip in a non-Darcy porous medium and discussed the effects of Grashof number, modified 
Grashof number, chemical reaction, suction, slip and inclination parameters. 
 
In this work we will numerically analysis the flow of Casson fluid under the influence of magnetic field 
applied in the transverse direction to the flow of the fluid and fluid flows through the non-Darcy porous 
medium, with velocity slip, the surface over which fluid flows, is non linear and inclined at some angle to 
the vertical. And the flow of the fluid is due to the stretching of the surface. The analysis of the effects of the 
magnitude of the velocity, temperature, concentration, Local Skin friction, Local Nusselt number and Local 
Sherwood number using their representative parameters on the respective boundary layer regions is done. 
 

2 Mathematical Modelling 
 
We consider two-dimensional, steady, laminar flow in boundary layer region of viscous, incompressible, and 
electrically conducting Casson fluid, along a nonlinearly stretching surface, inclined at an acute angle (�) to 
the vertical, in a saturated homogeneous Forchheimer porous medium. 
 
In the study we consider cartesian coordinates: The stretching surface as x-axis and normal to it as the y-
axis. We assume that during stretching, position of the origin remains unchanged; and stretching velocity at 
a point of the surface is non-linearly proportional to its distance from the origin and magnetic field of 

uniform strength  is normal to stretching surface. 
 
Again we assume that fluid does not change its phase. In flow conditions we assumed that flow is in 
Forchheimer porous medium. It represents: the flow is with high velocity. And so the Forchheimer drag 
force is a resistance due to porous medium and is proportional to the square of fluid velocity. And we 
assume that it also includes resistance due to slow velocity of the fluid. Due to slow velocity there is a drag 
which is called Darcian drag force and it is linearly proportional to the velocity. Examples of high velocity 
occur in chemical engineering. In the model viscous drag, called Brinkman drag force, comes into existence 
at the surface of the sheet in the boundary layer region. 
 
Again we assume that induced magnetic field, electric field due to charge particles in the fluid, and external 
electric field are negligible. And so Hall Effect and joule heating effect are negligible. 
 
We assume that the thermal conductivity and viscosity of the fluid are constant. The temperature of the fluid 
and fluid mass concentration at the stretching surface are greater than their values in the free stream. 

B
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On considering theses assumptions, the rheological equation for the casson fluid are given as follows     
[22,23] 

 

 

 

Where   is the dynamic viscosity of the casson fluid,  the plastic dynamic viscosity of the casson 

fluid,  the yield stress, of the casson fluid.  is the product of the deformation rate of casson fluid 

element with itself:  and  is the  -th deformation rate.  is critical value of the 

product for the casson model. 
 
Fig. 1 represents the boundary layer flow presentation and the coordinate system. 
 

 
 

Fig. 1. The boundary layer flow presentation and the coordinate system for stretching surface 
 
Under the above assumptions, the equations for momentum, energy and mass concentration to represent 
their flow in their respective boundary layer regions are given as follows: 
 
The continuity equation  
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The Energy: Equation  

 

u
��

��
+ v

��

��
= α 

���

���
                                                                                                                            (3)

  
 
The Mass concentration Equation: 

 

u
��

��
+ v

��

��
= D 

���

���
− K� (C − C�)                                                                                                  (4) 

 
here, the  refers to assisting and opposing flow (assisting flow for positive sign and opposing flow for 
negative sign),  coordinate along the stretching sheet and  coordinate normal to the stretching sheet 

respectively,  is the - component of velocity and  is -component of velocity,  is the porous 

medium’s permeability,  the magnetic field,  the Forchheimer coefficient,  the angle of inclination 

ofthe surface with the vertical of the surface,  the parameter of Casson fluid, ,  and  are dynamic 

viscosity ,kinematic viscosity and density of the fluid respectively.  ,  and  are, the chemical 

reaction rate, the mass expansion coefficient and the thermal expansion coefficient of the solute, 
respectively.  is gravitational acceleration. �� = �/(���) is the thermal diffusion coefficient of the fluid ,

 the specific heat at constant pressure,  the thermal conductivity, and  mass diffusion coefficient of 

the fluid. 

 

The magnetic field strength is assumed to be  where  is constant.  

 
It is assumed that the sheet moves following velocity power law, and varying nonlinearly with respect to 
position coordinates with some power as index, in the boundary layer field, and follows following boundary 
conditions for equations (1) to (4): 
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where uw is the velocity of the sheet with ,  being a constant depending upon the velocity of 

the stretching surface,  is the slip velocity, proportional to the local shear stress given as follows: 

, N (m2 s kg -1) being the slip constant. 

 the dynamic viscosity,  the Casson fluid parameter.  the 

velocity of mass transfer at the surface with representing mass suction and  representing 

mass injection.  is the index parameter of the stretching surface,  representing accelerated sheet 
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 is temperature at a distance  along the surface from the origin,  initial temperature at the 

surface ,  is proportionality constant with  the temperature gradient.  is concentration at a 

distance  along the surface from the origin,  is initial concentration at the surface,  is 

proportionality constant with  the concentration gradient. T and  are temperature and 

concentration faraway from their respective boundary layers. 
 
Dimensional analysis: We define 
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where � is similarity variable, � stream function, f non-dimensional stream function, u , x -component of 
velocity, � , y- component of velocity. 
 
Using above equations (6), in equations (1) to (4) we get following forms of the equations. 
 

� 1 +
�

�
� � ′′′ + � �′ ′ +

��

(���)
  �′ � +

�

(���)
 ( �∗ � + � �)cos α −

�

(���)
 ��� +

�

��
� � ′ + �� (�′)�� = 0,       (7) 

 
�

��
 �′′ + � �′ = 0,                                                                                                                               (8) 

 
�

��
 �′′ + � �′ −

�

(���)
��� = 0,                                                                                                          (9) 

 
And corresponding boundary conditions (5) take the following forms: 
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Here differentiation with respect to  is represented by prime. 
 

In equations (7) to (10), we define parameters as follows: 
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number,  buoyancy parameter,  solutal buoyancy parameter,  Reynolds 

number,  fluid velocity along the the surface at distance � from the origin,  Schmidt 

number,  Prandtl number,  reaction rate parameter,  represents 

destructive chemical reaction,  represents no reaction and  , represents constructive 

chemical reaction.  suction/injection parameter,  represents suction 

and  represents injection or blowing ( represents mass suction and  represents mass 

injection).  parameter of slip velocity.  slip parameter for temperature 

 slip parameter for concentration. 
 

The local Skin-friction coefficient  the local Nusselt number , the local Sherwood number  

and Reynold number (Rex) , are important in engineering designs and are given as follows: 
 

The local Skin-friction coefficient is ��� =
��
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� . 
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3 Method of Numerical Solution  
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4 Results and Analysis 
 
We consider the results of Andersson [4], Mahdy [16] and Ahmed [17] for the skin friction coefficient 
� ′′(0) for comparison with our results. We use the parameter values: � =1; �� =1; �� =1; � =0.2; � 
=0.5; � =1; �� =0.2; �∗ =0.5; � = 0.5; �� =1; �� =1; �� =0.5; � =0.2; �� =1; �� =1; and skin friction 
f0(3)=0.2; nusselt value f0(5)=0.2; sherwood value f0(7)=0.2 in our our equations to get the work of these 
authors. The skin friction values � ′′(0) of our result and of results of the authors are tabulated in Table 1. 

 
Table 1. Table for the skin friction coefficient � ′′(�) calculated presently in this work and in the 

works of Andersson [4], Mahdy [16] and Ahmed[17] for the parameters Vs=[0.0;0.1;0.5;1.0], �  =inf, 
M=0, Kp=inf, Fs=0 , n=1, �∗ =0.0, � =0.0, � =0.0 , Pr=0, Sc=0, �� =0.0, S=0.0, �� =0, �� =0, f0(3)=0.0, 

f0(5)=0.0, f0(7)=0.0 with �∞ = �� 

 
Vs � ′′(�) Andersson [4] � ′′(�) Mahdy [16] � ′′(�) Ahmed [17] � ′′(�) Present study [P] 
0.0 -1.0000 [4] -1.000000 [16] -1.0000 [17] -1.000001136721379[P] 
0.1 -0.8721 [4] -0.8721091 [16] -0.87208 [17] -0.872083949541335[P] 
0.5 -0.5912 [4] -0.591199 [16] -0.591195 [17] -0.591197864801179[P] 
1.0 -0.4302 [4] -0.4302 001[16] -0.430160 [17] -0.430163666996962[P] 

 
Table 1 shows the skin friction coefficient � ′′(0) of this work match with works of Andersson [4], Mahdy 
[16] and Ahmed [17]. So our numerical method is justified. 
 
We consider the following parameter values for Figs. 2 - 40 and Tables 3 - 20: 
 

� =1; �� =1; �� =1; � =0.2; � =0.5; � =1; �� =0.2; �∗ =0.5; � = 0.5; �� =1; �� =1; �� =0.5;  
� =0.2; �� =1; �� =1; f0(3)=0.2; f0(5)=0.2; and f0(7)=0.2;  
 

Table 1. We consider following values of the parameters to draw the Figs. 2 to 40 
 

 Fjg. 2to7 Fjg. 8to13 Fjg. 14to19 Fjg. 20to25 Fjg. 26to28 Fjg. 29to34 Fjg. 35to40 
Vs 0.2 0.2 0.2 0.2 0.2 0.2 0.2, 1, 2.5, 3.5 
� 1 1 1 1 1 0.5,1,2,3 1 
� 0.5 0.5 0.5 0.5 0.5, 1.0, 2.5, 3.5 0.5 0.5 
� 0.2 0.2 0.2 0.2, 1.0, 2.5, 3.5 0.2 0.2 0.2 
Fs 1 1 0.2, 1.0, 2.5, 3.5 1 1 1 1 
Kp 1 0.2, 1.0, 2.5, 3.5 1 1 1 1 1 
M 0.2, 1.0, 2.5, 3.5 1 1 1 1 1 1 

 

  
 

Fig. 2. Graph between � ′ (�) and � for 
different values of M 

 
Fig. 3. Graph between � ′ (�) and � for 

different values of M 
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Fig. 4. Graph between �(�) and � for 
different values of M 

 
Fig. 5. Graph between �(�) and � for 

different values of M 
 

 

 

 
 

Fig. 6. Graph between �(�) and � for 
different values of M 

 
Fig. 7. Graph between �(�) and � for 

different values of M 
 

 

 

 
 

Fig. 8. Graph between � ′ (�) and � for 
different values of Kp 

 
Fig. 9. Graph between � ′ (�) and � for 

different values of Kp 
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Fig. 10. Graph between �(�) and � for 
different values of Kp 

 
Fig. 11. Graph between �(�) and � for 

different values of Kp 
 

 

 

 
 

Fig. 12. Graph between �(�) and � for 
different values of Kp 

 
Fig. 13. Graph between �(�) and � for 

different values of Kp 
 

 

 

 
 

Fig. 14. Graph between � ′ (�) and � for 
different values of Fs 

 
Fig. 15. Graph between � ′ (�) and � for 

different values of Fs 
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Fig. 16. Graph between �(�) and � for 
different values of Fs 

 
Fig. 17. Graph between �(�) and � for 

different values of Fs 
 

 

 

 
 

Fig. 18. Graph between �(�) and � for 
different values of Fs 

 
Fig. 19. Graph between �(�) and � for 

different values of Fs 
 

 

 

 
 

Fig. 20. Graph between � ′ (�) and � for 
different values of � 

 
Fig. 21. Graph between � ′ (�) and � for 

different values of � 
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Fig. 22. Graph between �(�) and � for 
different values of � 

 
Fig. 23. Graph between �(�) and � for 

different values of � 
 

 

 

 
 

Fig. 24. Graph between �(�) and � for 
different values of � 

 
Fig. 25. Graph between �(�) and � for 

different values of � 
 

 

 

 
 

Fig. 26. Graph between � ′ (�) and � for 
different values of �  

 

Fig. 27. Graph between �(�) and � for 
different values of �  
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Fig. 28. Graph between �(�) and � for 
different values of �  

 
Fig. 29. Graph between � ′ (�) and � for 

different values of � 
 

 

 

 
 

Fig. 30. Graph between � ′ (�) and � for 
different values of � 

 
Fig. 31. Graph between �(�) and � for 

different values of � 
 

 

 

 
 

Fig. 32. Graph between �(�) and � for 
different values of � 

 

Fig. 33. Graph between �(�) and � for 
different values of � 
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Fig. 34. Graph between �(�) and � for 
different values of � 

 
Fig. 35. Graph between � ′ (�) and � for 

different values of �� 
 

 

 

 
 

Fig. 36. Graph between � ′ (�) and � for 
different values of �� 

 
Fig. 37. Graph between �(�) and � for 

different values of �� 
 

 

 

 
 

Fig. 38. Graph between �(�) and � for 
different values of �� 

 

Fig. 39. Graph between �(�) and � for 
different values of �� 
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Fig. 40. Graph between �(�) and �
 
for different values of �� 

 

Fig. 2 is for � ≤ � ≤ ��. Fig. 3 is expansion of small part of Fig. 2 for � ≤ � ≤ �. Figs. 2 or 3 shows 
thickness of velocity boundary layer and the absolute value of the velocity decrease with the increase in the 
value of the magnetic parameter M. 
 

Fig. 4 is for � ≤ � ≤ ��. Fig. 5 is expansion of small part of Fig. 4 for � ≤ � ≤ �. Figs. 4 and 5 shows 
thickness of thermal boundary layer and the absolute of the temperature increase and this increase speeds up 
with the increase in the value of the magnetic parameter M. 
 

Fig. 6 is for � ≤ � ≤ ��. Fig. 6 is expansion of small part of Fig. 7 for �.� ≤ � ≤ �.�. Figs. 6 and 7 shows 
thickness of concentration l boundary layer and the absolute of the concentration increase and this increase 
speeds up with the increase in the value of the magnetic parameter M. 
 

Fig. 8 is for � ≤ � ≤ ��. Fig. 9 is expansion of small part of Fig. 8 for �.� ≤ � ≤ �. Figs. 8 and 9 shows 
thickness of velocity boundary layer and the absolute value of the velocity increase and this increase slows 
down with the increase in the value of the porosity parameter Kp. 
 

Fig. 10 is for � ≤ � ≤ ��. Fig. 11 is expansion of small part of Fig. 10 for � ≤ � ≤ �. Figs. 10 and 11 
shows thickness of thermal boundary layer and the absolute of the temperature decrease and also this 
decrease slows down with the increase in the value of the porosity parameter Kp. 
 

Fig. 12 is for � ≤ � ≤ ��. Fig. 13 is expansion of small part of Fig. 12 for �.� ≤ � ≤ �.�. Figs. 12 and 13 
shows thickness of concentration l boundary layer and the absolute of the concentration decrease and this 
decrease slows down as the porosity parameter Kp increases. 
 

Fig. 14 is for � ≤ � ≤ ��. Fig. 15 is expansion of small part of Fig. 14 for �.� ≤ � ≤ �.�. Figs. 14 and 15 
shows thickness of velocity boundary layer and the absolute value of the velocity decrease as the 
Forchheimer parameter Fs increases .and this decrease speeds up with the increase in the value of the 
Forchheimer parameter Fs. 
 

Fig. 16 is for � ≤ � ≤ ��. Fig. 17 is expansion of small part of Fig. 16 for � ≤ � ≤ �.�. Figs. 16 and 17 
shows thickness of thermal boundary layer and the absolute of the temperature increase and this increase 
speeds up with the increase in the value of the Forchheimer parameter Fs. 
 

Fig. 18 is for � ≤ � ≤ ��. Fig. 19 is part of Fig. 18 for 2 ≤ � ≤ �.�. Figs. 18 and 19 shows thickness of 
concentration l boundary layer and the absolute of the concentration increase and this increase speeds up 
with the increase in the value of the Forchheimer parameter Fs. 
 

Fig. 21 for �.� ≤ � ≤ �.� is expansion of small part of Fig. 20 for � ≤ � ≤ ��. Fig. 21 shows thickness of 
velocity boundary layer and the absolute value of the velocity decrease and this decrease speeds up with the 
increase in the value of the inclination parameter �. 
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Fig. 23 for �.� ≤ � ≤ �.� is expansion of small part of Fig. 22 for � ≤ � ≤ ��. Fig. 23 shows thickness of 
thermal boundary layer and the absolute of the temperature increase and this increase speeds up with the 
increase in the value of the inclination parameter �. 
 
Fig. 25 for �.� ≤ � ≤ �.� is expansion of small part of Fig. 24 for � ≤ � ≤ ��. Fig. 25 shows thickness of 
concentration l boundary layer and the absolute of the concentration increase and this increase speeds up 
with the increase in the value of the inclination parameter �. 
 
Fig. 26 for �.�� ≤ � ≤ �.�� is expansion of small part of Figure for � ≤ � ≤ ��. Fig. 26 shows thickness 
of velocity boundary layer and the absolute value of the velocity decrease and this decrease slows down with 
the increase in the value of the Casson parameter � . 
 
Fig. 27 for �.� ≤ � ≤ �.� is expansion of small part of Figure for � ≤ � ≤ ��. Figure shows thickness of 
thermal boundary layer and the absolute of the temperature increase and this increase slows down with the 
increase in the value of the Casson parameter � . 
 
Fig. 28 for �.�� ≤ � ≤ �.� is expansion of small part of Figure for � ≤ � ≤ ��. Fig. 28 shows thickness 
of concentration l boundary layer and the absolute of the concentration increase and this increase slows 
down with the increase in the value of the Casson parameter � . 
 
Fig. 30 for � ≤ � ≤ �.� is expansion of small part of Fig. 29 for � ≤ � ≤ ��. Fig. 30 shows thickness of 
velocity boundary layer and the absolute value of the velocity increase and this increase slows down with the 
increase in the value of the stretching index parameter �. 
 
Fig. 32 for �.� ≤ � ≤ �.�� is expansion of small part of Figure for � ≤ � ≤ ��. Fig. 32 (which is part of           
Fig. 31) shows thickness of thermal boundary layer and the absolute of the temperature decrease and this 
decrease slows down with the increase in the value of the stretching index parameter �. Transition from n=2 
to n=3 shows wavy nature of the temperature layer at or near the surface. 
 
Fig. 34 for � ≤ � ≤ �.� is expansion of small part of Fig. 33 for .� ≤ � ≤ �� . Fig. 34 shows thickness of 
concentration l boundary layer and the absolute of the concentration increase and this increase slows down 
with the increase in the value of the velocity slip parameter. 
 
Fig. 36 is expansion of small part of Fig. 35 for � ≤ � ≤ ��. Fig. 36 shows thickness of velocity boundary 
layer and the absolute value of the velocity decrease with the increase in the value of the velocity slip 
parameter. 
 
Fig. 38 for �.� ≤ � ≤ � is expansion of small part of Fig. 37 for .� ≤ � ≤ �� . Fig. 38 shows thickness of 
thermal boundary layer and the absolute of the temperature increase with the increase in the value of the 
velocity slip parameter. 
 
Fig. 40 for �.� ≤ � ≤ �.� is expansion of small part of Fig. 39 for .� ≤ � ≤ ��. Fig. 40 shows thickness 
of concentration l boundary layer and the absolute of the concentration increase and this increase slows 
down with the increase in the value of the velocity slip parameter. 
 

Table 2. The local Skin friction � ′′(�) for different values of β and � 
 

� ↓\ � →  � = �.�� local Skin 
friction ,  

� = �.� local Skin 
friction ,  

� = �.� local Skin 
friction ,  

� = �.� local Skin 
friction ,  

0.2  -0.7335   -0.8516  -0.9654  -0.9939  

1.0 -0.8252   -0.9579  -1.0859  -1.1180  

2.5  -0.9658  -1.1195  -1.2673  -1.3043  

3.5  -1.0443  -1.2087  -1.3664  -1.4057  
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Table 3 The local Nusselt Number − �′(�) for different values of β and � 
 
� ↓\ � → -�′(�) , � = �.� -�′(�), � = �.� -�′(�), � = �.� -�′(�), � = �.� 

0.2 0.4133  0.4007  0.3891  0.3863  

1.0 0.4028  0.3885  0.3754  0.3723  

2.5 0.3863  0.3696  0.3547  0.3512  

3.5 0.3770  0.3591  0.3435  0.3398  

 
Table 4 The local Sherwood Number −�′(�) for different values of β and � 

 
� ↓\ � → -�′(�), � = �.� -�′(�),� = �.� -�′(�),� = �.� -�′(�), � = �.� 

0.2 0.5085 0.5042 0.5003 0.4994 

1.0 0.5049 0.5002 0.4961 0.4952 

2.5 0.4997 0.4946 0.4902 0.4892 

3.5 0.4969 0.4917 0.4872 0.4862 

 
Table 5. The local Skin friction � ′′(�) for different values of β and �� 

 
�� ↓\ � → � = �.�� local Skin 

friction ,  
� = �.� local Skin 
friction ,  

� = �.� local Skin 
friction ,  

� = �.� local Skin 
friction ,  

0.2 -1.1462  -1.3236  -1.4929  -1.5350  

1.0 -0.8252  -0.9579  -1.0859  -1.1180  

2.5 -0.7578  -0.8799  -0.9976  -1.0271  

3.5 -0.7440   -0.8639  -0.9794  -1.0083  

 
Table 6. The local Nusselt Number −�′(�) for different values of β and �� 

 
�� ↓\ � → -�′(�) , � = �.� -�′(�),� = �.� -�′(�), � = �.� -�′(�), � = �.� 

0.2 0.3647   0.3457  0.3294  0.3256  

1.0 0.4028  0.3885  0.3754  0.3723  

2.5 0.4105  0.3975  0.3855  0.3826  

3.5 0.4121  0.3993  0.3875  0.3847  

 
Table 7. The local Sherwood Number −�′(�) for different values of β and �� 

 
�� ↓\ � → -�′(�), � = �.� -�′(�), � = �.� -�′(�),� = �.� -�′(�),� = �.� 

0.2 0.4934 0.4881 0.4836 0.4826 

1.0 0.5049 0.5002 0.4961 0.4952 

2.5 0.5075 0.5031 0.4992 0.4982 

3.5 0.5081 0.5037 0.4998 0.4989 

 
Table 8. The local Skin friction � ′′(�) for different values of β and �� 

 
�� ↓\ � → � = �.�� local Skin 

friction ,  
� = �.� local Skin 
friction ,  

� = �.� local Skin 
friction ,  

� = �.� local Skin 
friction ,  

0.2 -0.7752  -0.9016  -1.0240   -1.0548  

1.0 -0.8252  -0.9579  -1.0859   -1.1180  

2.5 -0.9064  -1.0486  -1.1849  -1.2190  

3.5 -0.9537  -1.1010  -1.2417   -1.2767  

 
Table 9. The local Nusselt Number − �′(�) for different values of β and �� 

 
�� ↓\ � → -�′(�) , � = �.� -�′(�),� = �.� -�′(�), � = �.� -�′(�), � = �.� 

0.2 0.4069  0.3929  0.3800  0.3769  

1.0 0.4028  0.3885  0.3754  0.3723  

2.5 0.3961  0.3813  0.3680  0.3649  

3.5 0.3922   0.3772  0.3638  0.3607  



 
 
 

Kala et al.; ARJOM, 16(7): 34-58, 2020; Article no.ARJOM.56956 
 
 
 

52 
 
 

Table 10. The local Sherwood Number −�′(�) for different values of β and �� 
 
�� ↓\ � → -�′(�),� = �.� -�′(�), � = �.� -�′(�), � = �.� -�′(�),� = �.� 

0.2 0.5065 0.5018 0.4977 0.4967 

1.0 0.5049 0.5002 0.4961 0.4952 

2.5 0.5025 0.4978 0.4937 0.4927 

3.5 0.5011 0.4964 0.4923 0.4913 

 
Table 11. The local Skin friction � ′′(�) for different values of β and � 

 
� ↓\ � → � = �.�� local Skin 

friction ,  
� = �.� local Skin 
friction ,  

� = �.� local Skin 
friction ,  

� = �.� local Skin 
friction ,  

0.2 -0.8252  -0.9579  -1.0859  -1.1180  

1.0 -0.8564  -1.0001  -1.1398  -1.1751  

2.5 -0.9580  -1.1419  -1.3291  -1.3779  

3.5 -0.9689  -1.1580  -1.3528  -1.4047  

 
Table 12. The local Nusselt Number −�′(�) for different values of β and � 

 
� ↓\ � → -�′(�) ,� = �.� -�′(�),� = �.� -�′(�), � = �.� -�′(�), � = �.� 

0.2 0.4028  0.3885  0.3754   0.3723  

1.0 0.3993  0.3830  0.3677   0.3640  

2.5 0.3856  0.3590  0.3262  0.3159  

3.5 0.3839  0.3554  0.3169  0.3029  

 
Table 13. The local Sherwood Number −�′(�) for different values of β and � 

 
� ↓\ � → -�′(�),� = �.� -�′(�),� = �.� -�′(�),� = �.� -�′(�), � = �.� 

0.2 0.5049 0.5002 0.4961 0.4952 

1.0 0.5037 0.4986 0.4940 0.4930 

2.5 0.4996 0.4926 0.4857 0.4840 

3.5 0.4992 0.4919 0.4845 0.4825 

 
Table 14. The local Skin friction � ′′(�) for different values of β and � 

 
� ↓\ � → � = �.�� local Skin 

friction ,  
� = �.� local Skin 
friction ,  

� = �.� local Skin 
friction ,  

� = �.� local Skin 
friction ,  

0.5 -0.8673  -1.0079   -1.1437  -1.1778  

1.0 -0.8252  -0.9579  -1.0859  -1.1180  

2.0 -0.8111  -0.9393  -1.0622  -1.0930  

3.0  -0.8331  -0.9625  -1.0863  -1.1172  

 
Table 15. The local Nusselt Number −�′(�) for different values of β and � 

 
� ↓\ � → -�′(�) , � = �.� -�′(�),� = �.� -�′(�), � = �.� -�′(�), � = �.� 

0.5 0.3970  0.3814  0.3672  0.3638  

1.0 0.4028  0.3885   0.3754  0.3723  

2.0 0.4066   0.3934  0.3815  0.3787  

3.0 0.4061  0.3934  0.3821  0.3794  

 
Table 16. The local Sherwood Number −�′(�) for different values of β and � 

 
� ↓\ � → -�′(�), � = �.� -�′(�), � = �.� -�′(�), � = �.� -�′(�), � = �.� 

0.5 0.5242 0.5202 0.5168 0.5160 

1.0 0.5049 0.5002 0.4961 0.4952 

2.0 0.4811 0.4753 0.4703 0.4691 

3.0 0.4660 0.4594 0.4536 0.4523 
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Table 17. The local Skin friction � ′′(�) for different values of β and �� 
 
�� ↓\ � → � = �.�� local Skin 

friction ,  
� = �.� local Skin 
friction ,  

� = �.� local Skin 
friction ,  

� = �.� local Skin 
friction ,  

0.2  -0.8252   -0.9579  -1.0859  -1.1180  
1.0  -0.4525   -0.4884  -0.5184  -0.5254  
2.5  -0.2490   -0.2584  -0.2656  -0.2672  
3.5  -0.1920  -0.1971  -0.2008  -0.2016  

 
Table 18. The local Nusselt Number −�′(�) for different values of β and �� 

 
�� ↓\ � → -�′(�) , � = �.� -�′(�),� = �.� -�′(�), � = �.� -�′(�), � = �.� 
0.2 0.4028  0.3885  0.3754  0.3723  
1.0 0.3633  0.3494  0.3383  0.3358  
2.5 0.3343  0.3245  0.3173  0.3158  
3.5 0.3249  0.3170  0.3114  0.3103  

 
Table 19. The local Sherwood Number −�′(�) for different values of β and �� 

 
�� ↓\ � → -�′(�),� = �.� -�′(�), � = �.� -�′(�),� = �.� -�′(�), � = �.� 
0.2 0.5049 0.5002 0.4961 0.4952 
1.0 0.4891 0.4851 0.4820 0.4813 
2.5 0.4790 0.4765 0.4747 0.4744 
3.5 0.4759 0.4741 0.4728 0.4725 

 
From Table 3 we observe that considering the value of the magnetic parameter � as fix, we observe that, 
with the increase in the value of Casson parameter β, local skin friction � ′′(�) decreases and considering the 
value of Casson parameter β as fix we observe that with the increase in the value of the magnetic 
parameter, �, local skin friction f ''(0) decreases. 
 
From Table 4 we observe that considering the value of the magnetic parameter �, as fix ,we observe that, 
with the increase in the value of the Casson parameter β , Local Nusselt Number −�′(�) decreases and 
considering the value of Casson parameter β as fix we observe that with the increase in the value of the 
magnetic parameter, �, Local Nusselt Number −�′(�) decreases. 
 
From Table 5 we observe that considering the value of the magnetic parameter �, as fix ,we observe that, 
with the increase in the value of the Casson parameter β , Local Sherwood Number −�′(�) decreases and 
considering the value of Casson parameter β as fix we observe that with the increase in the value of the 
magnetic parameter, �, Local Sherwood Number −�′(�) decreases. 
 
From Table 6 we observe that considering the value of the porosity parameter �� as fix, we observe that, 
with the increase in the value of Casson parameter β, local skin friction � ′′(�) decreases and considering the 
value of Casson parameter β as fix we observe that with the increase in the value of the porosity parameter 
��, local skin friction f ''(0) increases. 
 
From Table 7 we observe that considering the value of the porosity parameter ��, as fix ,we observe that, 
with the increase in the value of the Casson parameter β, Local Nusselt Number −�′(�) decreases and 
considering the value of Casson parameter β as fix we observe that with the increase in the value of the 
porosity parameter ��, Local Nusselt Number − �′(�) increases. 
 
From Table 8 we observe that considering the value of the porosity parameter ��, as fix ,we observe that, 
with the increase in the value of the Casson parameter β, Local Sherwood Number −�′(�) decreases and 
considering the value of Casson parameter β as fix we observe that with the increase in the value of the 
porosity parameter ��, Local Sherwood Number −�′(�) increases. 
 

From Table 9 we observe that considering the value of the Forchheimer parameter �� as fix, we observe 
that, with the increase in the value of Casson parameter β, local skin friction � ′′(�) decreases and 
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considering the value of Casson parameter β as fix we observe that with the increase in the value of the 
Forchheimer parameter ��, local skin friction f ''(0) decreases. 
 
From Table 10 we observe that considering the value of the Forchheimer parameter ��, as fix ,we observe 
that, with the increase in the value of the Casson parameter β , Local Nusselt Number −�′(�) decreases and 
considering the value of Casson parameter β as fix we observe that with the increase in the value of the 
Forchheimer parameter ��, Local Nusselt Number −�′(�) decreases. 
 
From Table 11 we observe that considering the value of the Forchheimer parameter ��, as fix ,we observe 
that, with the increase in the value of the Casson parameter β , Local Sherwood Number −�′(�) decreases 
and considering the value of Casson parameter β as fix we observe that with the increase in the value of the 
Forchheimer parameter ��, Local Sherwood Number −�′(�) decreases. 
 
From Table 12 we observe that considering the value of the inclination parameter �, as fix ,we observe that, 
with the increase in the value of Casson parameter β , local skin friction � ′′(�) decreases and considering 
the value of Casson parameter β as fix we observe that with the increase in the value of the inclination 
parameter �, local skin friction f ''(0) decreases. 
 
From Table 13 we observe that considering the value of the inclination parameter �, as fix ,we observe that, 
with the increase in the value of the Casson parameter β, Local Nusselt Number −�′(�) decreases and 
considering the value of Casson parameter β as fix we observe that with the increase in the value of the 
inclination parameter �, Local Nusselt Number −�′(�) decreases. 
 
From Table 14 we observe that considering the value of the inclination parameter �, as fix ,we observe that, 
with the increase in the value of the Casson parameter β, Local Sherwood Number −�′(�) decreases and 
considering the value of Casson parameter β as fix we observe that with the increase in the value of the 
inclination parameter �, Local Sherwood Number −�′(�) decreases. 
 
From Table 15 we observe that considering the value of the stretching index parameter �, as fix ,we observe 
that, with the increase in the value of Casson parameter β, local skin friction � ′′(�) decreases and 
considering the value of Casson parameter β as fix we observe that with the increase in the value of the 
stretching index parameter �, local skin friction f ''(0) increases. 
 

From Table 16 we observe that considering the value of the stretching index parameter �, as fix ,we observe 
that, with the increase in the value of the Casson parameter β , Local Nusselt Number −�′(�) decreases and 
considering the value of Casson parameter β as fix we observe that with the increase in the value of the 
stretching index parameter �, Local Nusselt Number −�′(�) increases. 
 

From Table 17 we observe that considering the value of the stretching index parameter �, as fix, we observe 
that, with the increase in the value of the Casson parameter β, Local Sherwood Number −�′(�) decreases 
and considering the value of Casson parameter β as fix we observe that with the increase in the value of the 
stretching index parameter �, Local Sherwood Number −�′(�) decreases. 
 

From Table 18 we observe that considering the value of the velocity slip parameter ��, as fix ,we observe 
that, with the increase in the value of Casson parameter β, local skin friction � ′′(�) decreases and 
considering the value of Casson parameter β as fix we observe that with the increase in the value of the 
velocity slip parameter ��, local skin friction f ''(0) increases. 
 

From Table 19 we observe that considering the value of the velocity slip parameter ��, as fix ,we observe 
that, with the increase in the value of the Casson parameter β , Local Nusselt Number −�′(�) decreases and 
considering the value of Casson parameter β as fix we observe that with the increase in the value of the 
velocity slip parameter ��, Local Nusselt Number −�′(�) decreases. 
 

From Table 20 we observe that considering the value of the velocity slip parameter ��, as fix ,we observe 
that, with the increase in the value of the Casson parameter β , Local Sherwood Number −�′(�) decreases 
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and considering the value of Casson parameter β as fix we observe that with the increase in the value of the 
velocity slip parameter ��, Local Sherwood Number −�′(�) decreases. 
 

5 Conclusion 
 
In this paper we have studied numerical analysis of the flow of Casson fluid under the influence of magnetic 
field applied in the transverse direction to the flow of the fluid and fluid flows through the non-Darcy porous 
medium, with velocity slip, the surface over which fluid flows, is non linear and inclined at some angle to 
the vertical. And the flow of the fluid is due to the stretching of the surface. In the mathematical model, we 
have transformed the momentum equation, energy equation and mass concentration equations to non-
dimensional ordinary differential equations using similarity variables. We have solved the equations 
numerically by bvp4c using MATLAB for the numerical computation, and took �� = 12, and axes so that 
figures are clearly visible. We have discussed and analysed the magnitude of the velocity, temperature, 
concentration, Local Skin friction, Local Nusselt number and Local Sherwood number using their 
representative parameters and the effects of these parameters on the respective boundary layer regions using 
graphs, figures and tables. 
 
Above results and discussion give us the following conclusions: 
 
Figures show following conclusions: 
 

(i) With the increase in the value of magnetic, Forchheimer, inclination parameter, or Casson, the 
velocity boundary layer thickness and the absolute value of velocity decrease.  

(ii) With the increase in the value of magnetic, Forchheimer, inclination parameter, Casson , or velocity 
slip parameter the thermal boundary layer thickness and the absolute value of temperature increase. 

(iii) With the increase in the value of magnetic, Forchheimer, inclination, Casson , stretching index or 
velocity slip parameter, the concentration boundary layer thickness and the absolute value of 
concentration increase. 

(iv) With the increase in the value of porosity, or stretching index parameter, the velocity boundary 
layer thickness and the absolute value of velocity increase. 

(v) With the increase in the value of porosity, or stretching index parameter, thermal boundary layer 
thickness and the absolute value of temperature decrease. 

(vi) With the increase in the value of porosity parameter, the concentration boundary layer thickness 
and the absolute value of concentration decrease.  

(vii) With the increase in the value of velocity slip parameter near the left of similarity variable having 
value 3, the velocity boundary layer thickness and the absolute value of velocity decrease and this 
variation slows down with the increase in the value of velocity slip parameter, while near to the 
right of similarity variable having value 3, the velocity boundary layer thickness and the absolute 
value of velocity begins to increase and this variation speeds up with the increase in the value of 
velocity slip parameter. 

 
Tables show following conclusion: 
 

(viii) With the increase in the value of Casson parameter considering magnetic, porosity, Forchheimer, 
inclination, stretching index or velocity slip parameter fix, we observe that the local skin friction, 
local Nusselt number or local Sherwood number decreases. 

(ix) With the increase in the value of porosity parameter considering Casson parameter fix we observe 
that local skin friction local Nusselt Number or local Sherwood Number increases. 

(x) With the increase in the value of stretching index parameter considering Casson parameter fix we 
observe that local skin friction or local Nusselt Number increases but local Sherwood number 
decreases. 

(xi) With the increase in the value of velocity slip parameter considering Casson parameter fix we 
observe that local skin friction increases but local Nusselt Number or local Sherwood Number 
decreases. 
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