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Abstract 
 

In this work, we consider a nonlinear epidemic model with temporary immunity and saturated incidence 
rate. Size N(t) at time t, is divided into three sub classes, with N(t)=S(t)+I(t)+Q(t); where S(t), I(t) and 
Q(t) denote the sizes of the population susceptible to disease, infectious and quarantine members with the 
possibility of infection through temporary immunity, respectively. 
We have made the following contributions: 

1. The local stabilities of the infection-free equilibrium and endemic equilibrium are; analyzed, 
respectively. The stability of a disease-free equilibrium and the existence of other nontrivial 
equilibria can be determine by the ratio called the basic reproductive number, 

2. This paper study the reduce model with replace S with N, which does not have non-trivial periodic 
orbits with conditions. 

3. The endemic -disease point is globally asymptotically stable if R0  ˃1; and study some proprieties of 
equilibrium with theorems under some conditions. 

4. Finally the stochastic stabilities with the proof of some theorems. 
In this work, we have used the different references cited in different studies and especially the writing of 
the non-linear epidemic mathematical model with [1-7]. We have used the other references for the study 
the different stability and other sections with [8-26]; and sometimes the previous references. 
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1 Introduction 
 
This paper considers the following epidemic model with temporary immunity and saturated incidence rate. 
 

 

          
 
 

 (1) 

     
Consider a population of size N (t) at time t, this population is divide into three subclasses.  
 
With N (t) = S (t) + I(t)+Q(t). Where S (t), I (t), and Q (t) denote the sizes of the population susceptible to 
disease, and infectious members, quarantine members with the possibility of infection through temporary 
immunity, respectively. The positive constants μ, μ₁, and μ₂ represent the death rates of susceptible, 
infectious and quarantine. Biologically, it is natural to assume that μ≤ min {μ₁, μ₂}. The positive constant d 
is natural mortality rate.  

 
The positive constants ρ represent rate of incidence. The positive constant k is the rate of unknown members 
infected, which is detect by the system. 

 
The positive constant γ represent the recovery rate of infection. The positive constant β is the average 
numbers of contacts infective for S and I. The positive constant ν is the parameter of emigration. The 

positive constant  is the parameter of immigration. 

 

The term 2-µe Q(t )   reflects the fact that an individual has recovered from infection and still are alive 

after infectious period τ, where τ is the length of immunity period and, b is saturation constant. 

 
The initial condition of (1) is givens as: 
 

                                                          (2) 

 

Where such that: 

 
  

 
Let   denote the Banach space   ([-τ, 0], ℝ3) of continuous functions mapping the interval 

 
 [-τ, 0] into ℝ3. With a biological meaning, we further assume that  

 

( ) (0) 0i i    , for i = 1, 2, 3.  

 
Hence, system (1) rewritten as: 

2

2

.
-µ

.

1

.
-µ

2

( )S (t)I(t)
( ) (µ )S(t) + e Q (t ),

1 (t)

( )S (t)I(t)
( ) ( ) (t) (t),

1 (t)

( ) (t) e Q (t ) ( ) (t).

k
S t d

bI

k
I t d I I

bI

Q t I d Q






    


 

   

              
      

1 2 3( ) ( ), ( ) ( ), ( ) ( ), 0.S I Q            

1 2 3( , , )T      

1 1 2 2 3 3( ) ( ) (0) 0, ( ) ( ) (0) 0, ( ) ( ) (0) 0 .S I Q                   
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(3) 

 
With the initial conditions (2) where,  
 

, for i =1, 2, 3.           (4) 
 

  

The region is positively invariant set of (1). 
 

2 Mathematical Model 
 
We have, N = S +I + Q, then,  
 

 

 
We replace S withS N I Q   ; we obtain: 
 

           (5) 

 
Then the system (3) can be write as: 
 

 

          
 

(6) 

 

We calculate the points of equilibrium in the absence and presence of infection. 
 

In the absence of infection I=0, the system (6) has a disease-free equilibrium E₀. 
 

 
           

(7) 

 

Theorem 1 
 

The disease-free equilibrium E₀ of the system (6) is locally asymptotically stable if R₀< 1 and *E is the 

unique positive endemic equilibrium point which exists if R₀> 1. 
 

Proof 
 

The eigenvalues can be determined by solving the characteristic equation of the linearization of (6) near E₀. 
Therefore, the eigenvalues are: 

2

2

.
-µ

.

1

.
-µ

2

( )SI
( ) (µ )S + e Q(t ),

1

( )SI
( ) ( ) ,

1

( ) e Q(t ) ( ) .

k
S t d

bI

k
I t d I

bI

Q t I d Q






    


 

   

              
      

(0) 0, 0i      

  3, , , <S I Q S I Q N
d

  



          
   



2

.

1S I Q dNN            

1

.

2( ) ( ) ( )IN d N Q               

 

2

.

1

.
- µ

2

2

.

1

( ) I
( ) ,

1

e Q ( t ) ( ) ,

( ) ( ) ( ) .

k
I d I

b I

Q I d Q

d N I Q

N I Q

N




 

   

       

           
       

 

 

0E =(N, , ) =( , 0, 0) .T TI Q
d

  



  
 


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(8) 
 

  
In order to A₂ will be negative, and then we define the basic reproduction number of the infection R₀ as 
follows: 
 

 
          

 (9) 

   
If R₀<1, A₂<0. 
 
We have A₁<0, A₂<0, and A₃<0, if R₀<1. 
 
Then E₀ of the system (6) is locally asymptotically stable. 
 
In the presence of infection I≠0, substituting in the system, Ω also contains a unique positive, endemic 
equilibrium  
 

 * * * *, , , i 1,2, 3.
T

E S I Q     
 
Where 

 

 

         
 
 
 

(10) 

 

So *E is the unique positive endemic equilibrium point which exists if R₀>1.□  

 

3 Mathematical Analysis 
 
Lemma 1 
 

The plane
N

d

  



 


 , is an invariant manifold of (6), which is attracting in the first octant. 

 
Proof 
 

We have,  
, 

which is the solution of (6), then 

 

           
(11) 

 
 

We reduce system (6), and then we have:  

2-µ
1 2 1 3 2

( )( )
= (µ+d), = ( ), = (µ e ).

k
A A d A d

d

   
  



  
      



0
1

.
k

R
d d

   

  

  
 

  

2

2

* *
2

* 0 1

1 3
* *

1

1 - µ
2

2
2 1 - µ

2

2
3 1

1
( ) a ,

( 1 ) ( )
,

( ) ( )

,

,
µ e

( )
a ,

µ e

1 .

N I
d

R d
I

d b k a

Q a I

a
d

d

a
a a

d

 



 





  


 

  





  
 





                                

( t )N
d

  



 




l im ( t ) .
t

N
d

  

 

 






 
 
 

Chahrazed; ARJOM, 16(7): 8-19, 2020; Article no.ARJOM.53645 
 
 
 

12 
 
 

.□ 

         
(12) 

   

Theorem 2 

System (12) does not have nontrivial periodic orbits if 1( )
1

b d

k

 



 



. 

Proof  
 

We have, system (12), for I>0 and Q >0. The dulac function [20], is the following, 
 

           
(13) 

   

Using (13) into the system (12) we obtain, 

 

 

 

 

        (14) 
 
 
        (15) 
 
 

In addition, (13) and (14) we obtain, 
 

         (16) 
 
 

 
        (17) 

  

If ..□ 

 

Theorem 3.  
 

If 0 1,R then the endemic -disease point *E  is globally asymptotically stable.  

 

Proof 
 

With the dulac function, in (13), and with the same proof into Theorem 2, we obtain (16). 
 
Hence, according to (17), the system (12) has not periodic orbits. Since (12) admit only two equilibriums E₀ 

and
*E . When R₀> 1 and E₀ is unstable, hence by Poincare- Binedixon theorem [20], 

*E is globally 

asymptotically stable. .□
 

3.1 Properties of Equilibriums 
 

In order to study the properties of the disease-free equilibrium and the endemic equilibrium, we rescale (12), 

as following: 

2

.

1 1

.
-µ

2 2

( )( )I
( ) ( , ),

1

e Q(t ) ( ) ( , ),

k
I d I L I Q

bI

Q I d Q

N I

L I Q

Q




 

   

      
   



 







1
( , )

( ) I

b I
D I Q

k






1 1( ) ( )
1

D L b d

I k

 



   
   
   

2-µ
2 2( ) (1 ) ( e )

( ) I

D L b I d

Q k

 



          

2- µ
1 2 1 2( ) ( ) ( ) (1 ) ( e )

1
( ) I

D L D L b d b I d

I Q k k

   

 

                       

1 2( ) ( )
0.

DL DL

I Q

 







 
1 1

b d

k

 



 



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(18) 
 

 

Using (18) into system (12), we get a new system, which is define as follows: 

 

 

   
 

(19) 

   
The system (19) has a disease-free equilibrium E₀, which is the same point of system (6). 
 

The unique positive equilibrium (x∗, y∗) of system (19) is the endemic equilibrium 
*E  of model (6) if and 

only if:

  

 

 
         

(20) 

 

Where,  

 

 

         
 

(21) 
 
 

  

We first determine the stability and topological type of (0, 0). The Jacobian matrix of system (19) at (0, 0) is 

 

 

 

If
2 2

1

-µ -µ
2 2

( ) ( )
( ) 0

e e

dk

d d 

    

   

   
 

   

, then there exists a small neighborhood N0 of (0, 0) 

such that the dynamics of system (19) are equivalent to that  
 

 

          
 

(22) 

  
By [20], we have (0, 0) is a saddle-node. 
 
Theorem 4 
 
The disease-free equilibrium (0, 0) of (19) is 

2

2 2

-µ
2-µ -µ

2 2

( )I ( )
, , ( e ) .

e e

k k Q
x y d t

d d



 

 
  

   

 
    

   

2 2 2

2

1

-µ -µ -µ
2 2 2

-µ
2

( )( )
( ) ,

e e e
1 ( )

( ) .
e

dkd x x
x y x

d d d d
x

k
d y

x y
d d

  



    

      




  

                             


2 2

1

-µ -µ
2 2

( )( )
( )

e e
0dk

d d 

    

   

   


   

2

2

* 1

-µ 1
2

* *

-µ
2

( )( ) ( )
,

( e )( 1)

.
e

k d
x

d
d

k

y x
d





     

 
  




 

                 

2 2

2

1

-µ - µ
2 2

0

- µ
2

( ) ( )
( ) 0

e e
.

1
e

dk

d d
M

d

 



    

   



 

     
       
  

   

2

2 2

-µ
2

(( , ) ),

( ) .
e

dx
x o x y

d
dy

x y
d d 




  

   
    
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1. a stable hyperbolic node if; 

 

2. a saddle-node if;  

 

3. a hyperbolic saddle if; 

 

 
Theorem 5 
 

Let R0 be defined by (9) 

1. If R0 < 1, then system (6) has a unique disease-free equilibrium defined by (7), which is a global 

attractor in the first octant. 

2. If R0 = 1, system (6) has a unique disease-free equilibrium defined by (7), which attracts all orbits in 

the interior of the first octant. 

3. If R0 > 1, then model (6) has two equilibria, a disease-free equilibrium defined by (7) and an endemic 

equilibrium defined by (10), the latter who is a global attractor in the interior the first octant. 

 

4 Stochastic Stabilities 
 
The system (3) transformed to the Itô Stochastic differential equations. We replace (β+k) by (β+k) +ac (t) 
where c (t) is white noise. 
 

 
        

(23) 

 
Theorem 6 
 
The set Ω is almost surely invariant by the stochastic system (23). Thus if (S₀, I₀, Q₀) ∈ Ω,  
 
then P [(S, I, Q) ∈ Ω] =1. 
 
Proof 
 

The system (23) implies that (µ )dN d N dt         , and then we have for all t ≥0;  

 

 

 
Since (S₀, I₀, Q₀) ∈ Ω, and then we have for all t ≥0;  
 


2 2

1

-µ -µ
2 2

( ) ( )
( ) 0,

e e

d k

d d 

     

   

    


   


2 2

1

-µ -µ
2 2

( ) ( )
( ) 0,

e e

d k

d d 

     

   

    


   


2 2

1

-µ -µ
2 2

( )( )
( ) 0 .

e e

d k

d d 

     

   

    


   

2

2

- µ

1

- µ
2

( ) S I I
d S ( µ )S + e Q ( t ) d t ,

1 1
( )S I I

d I ( ) d t ,
1 1

d Q e Q ( t ) ( ) d t .

k
d a d c

b I b I
k

d I a d c
b

S

I b I

I d

S

Q






    


 

   

                                         

( )
0(t ) d tN N e

d d
     
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For all t ≥ 0 andU t T    ,  
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Then 
 

 

 
We suppose that 
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system (6) which have a disease free equilibrium 0E  defined in (7) and the endemic equilibrium *E defined 

in (10). It founded that the disease free equilibrium to system (6) is locally asymptotically stable if, 0 1R , 

and the existence of endemic equilibrium if 0 1R , with the basic reproduction number of the infection R₀ 

is defined in (9). The analysis mathematical study the reduce model in (12), which does not have non trivial 

periodic orbits in theorem 2, under condition, and theorem 3 who says that the endemic -disease point *E  is 

globally asymptotically stable, if 0 1,R  and study the properties of equilibriums to the model (19) with 

theorems under some conditions. Finally stochastic stability of system (23), which study theorem 6 who says 
that Ω is almost surely invariant thus if (S₀, I₀, Q₀) ∈ Ω, then P [(S, I, Q) ∈Ω] = 1, and theorem 7 which 

proof that , S (t) converge exponentially almost surely to 
µ d

   


under condition. 
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