Records dournal of Mathematics

Asian Research Journal of Mathematics

16(7): 1-7, 2020; Article no.ARJOM.57020

ISSN: 2456-477X

Existence of Nonoscillation Solutions of Second-order Neutral Differential Equations

Zhao Yu-Ping^{1*} and Fu Hua²

¹ College of Mathematics and Statistics, Qinghai Nationalities University, Xining, Qinghai 810007, People's Republic of China.

² Fujian Police College, Fuzhou Fujian, 350007, People's Republic of China.

Authors' contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

 $DOI:\,10.9734/ARJOM/2020/v16i730198$

Editor(s):

(1) Dr. Sheng Zhang, Bohai University, China.

Reviewers:

(1) Jackson Akpojaro, University of Africa, Toru-Orua, Nigeria.

(2) Francisco Bulnes, Tecnológico de Estudios Superiores de Chalco, Mexico. Complete Peer review History: http://www.sdiarticle4.com/review-history/57020

Received: 10 March 2020

Accepted: 13 May 2020

Published: 27 May 2020

Short Research Article

Abstract

This paper is concerned with existence of nonoscillation solution for a family of second-order neutral differential equations with positive and negative coefficients. A sufficient conditions for existence of nonoscillation solution is obtained by contraction fixed point theorem, special case of the equation has also been studied.

Keywords: Differential equation; nonoscillation solutions; existence.

2010 Mathematics Subject Classification: 34K10, 34K11.

1 Introduction

In this paper, we consider existence of nonoscillation solution of second-order neutral differential equations with positive and negative coefficients.

^{*}Corresponding author: E-mail: 234880202@qq.com;

$$(r(t)(x(t) + cx(t - \tau))')' + [P(t)x(t - \sigma) - Q(t)x(t - \delta)] = 0, \quad t \ge t_0$$
(1.1)

where $\tau, \sigma, \delta \in \mathbb{R}^+$, $c \in \mathbb{R}$, $c \neq \pm 1$, and $r(t), P(t), Q(t) \in C([t_0, \infty), \mathbb{R}^+)$, $\mathbb{R}^+ = [0, +\infty)$. Let $\mu = \{\tau, \sigma, \delta\}$. By a solution of equation (1.1), we mean a continuously function $x(t) \in C([t_0 - \mu, \infty), \mathbb{R})$ for some $t_1 \geq t_0$, such that $r(t)(x(t) + cx(t - \tau))'$ is continuously differentiable on $[t_1, \infty)$ and such that equation (1.1) is satisfied for $t \geq t_1$.

Recently, More and more people are interested in nonoscillatory criteria of differential equations, we refer the reader to [1-11], the differential equation in [1].

$$\frac{d^n}{dt^n} [x(t) + cx(t-\tau)] + (-1)^{n+1} [P(t)x(t-\sigma) - Q(t)x(t-\delta)] = 0, \quad t \ge t_0$$

studied nonoscillation solution for a family of higher-order neutral differential equations with positive and negative coefficients, Our principal goal in this paper is to derive existence of nonoscillation solutions for equation (1.1).

2 Existence Theorems

Theorem 1. Assume that $0 \le c < 1$ and

$$\int_{t_0}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} P(s) ds du < \infty, \quad \int_{t_0}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} Q(s) ds du < \infty. \tag{2.1}$$

Further, assume that there exists a constant $\alpha > \frac{1}{1-c}$ and a sufficiently large $t_1 \geqslant t_0$ such that

$$Q(t) \geqslant \alpha P(t), \quad for \quad t \geqslant t_1$$
 (2.2)

Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.2), there exists a t_1 sufficiently large such that

$$c + \int_{t}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} (P(s) + Q(s)) ds du \leqslant \theta_{1} < 1, \quad for \quad t \geqslant t_{1}$$

$$(2.3)$$

where θ_1 is a constant, and

$$0 \leqslant \int_{t}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} (\alpha M Q(s) - M P(s)) ds du \leqslant c - 1 + \alpha M, \text{ for } t \geqslant t_{1}$$

$$\tag{2.4}$$

hold, where M is positive constant such that

$$\frac{1-c}{\alpha} < M \leqslant \frac{1-c}{1+c\alpha} \tag{2.5}$$

holds. Let X be the set of all continuous and bounded functions on $[t_0, \infty)$ with the norm $||x|| = \sup_{t \ge t_0} |x(t)|$, we define a closed bounded subset Ω of X as follows:

$$\Omega = \{ x \in X : M \leqslant x(t) \leqslant \alpha M, t \geqslant t_0 \}$$

Define an operator $S:\Omega\to X$ as follows:

$$Sx(t) = \begin{cases} 1 - c - cx(t - \tau) + \int_t^{\infty} \frac{1}{r(u)} \int_u^{\infty} (Q(s)x(s - \delta) - P(s)x(s - \sigma)) ds du, & t \geqslant t_1, \\ Sx(t_1), & t_0 \leqslant t \leqslant t_1. \end{cases}$$

We shall show that $S\Omega \subset \Omega$. In fact, for every $x \in \Omega$, and $t \ge t_1$, using (2.4) and (2.5) we get

$$\begin{split} Sx(t) = &1 - c - cx(t - \tau) + \int_{t}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} (Q(s)x(s - \delta) - P(s)x(s - \sigma)) ds du \\ \leqslant &1 - c + \int_{t}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} (\alpha MQ(s) - MP(s)) ds du \\ \leqslant &\alpha M \end{split}$$

Furthermore, in view of (2.2) and (2.5) we have

$$\begin{split} Sx(t) = &1 - c - cx(t - \tau) + \int_{t}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} (Q(s)x(s - \delta) - P(s)x(s - \sigma)) ds du \\ \geqslant &1 - c - c\alpha M + \int_{t}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} (MQ(s) - \alpha MP(s)) ds du \\ \geqslant &1 - c - c\alpha M \\ \geqslant &M \end{split}$$

Thus, we proved that $S\Omega \subset \Omega$.

Now we shall show that operator S is a contraction operator on Ω .

In fact, for $x, y \in \Omega$ and $t > t_1$, we have

$$\begin{split} |Sx(t)-Sy(t)| \leqslant &c|x(t-\tau)-y(t-\tau)| + \int_t^\infty \frac{1}{r(u)} \int_u^\infty P(s)|x(s-\sigma)-y(s-\sigma)| ds du \\ &+ \int_t^\infty \frac{1}{r(u)} \int_u^\infty Q(s)|x(s-\delta)-y(s-\delta)| ds du \\ \leqslant &[c+\int_t^\infty \frac{1}{r(u)} \int_u^\infty (P(s)+Q(s)] ds du] \parallel x-y \parallel \\ \leqslant &\theta_1 \parallel x-y \parallel \end{split}$$

This implies that

$$\parallel Sx - Sy \parallel \leq \theta_1 \parallel x - y \parallel$$

where in view of (2.3), $\theta_1 < 1$, which proves that S is a contraction operator on Ω . Therefore S has a unique fixed point x in Ω , which is obviously a bounded positive solution of equation (1.1). This copletes the proof of Theorem 1.

Theorem 2. Assume that $1 < c < +\infty$ and that (2.1) holds. Further, assume that there exists a constant $\gamma > \frac{c}{c-1}$ and a sufficiently large $t_1 \ge t_0$ such that

$$Q(t) \geqslant \gamma P(t), \quad for \ t \geqslant t_1$$
 (2.6)

Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.6), there exists a t_1 , sufficiently large such that

$$\frac{1}{c} \left[1 + \int_{t+\tau}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} (p(s) + Q(s)) ds du \right] \le \theta_2 < 1, \text{ for } t \ge t_1$$
 (2.7)

where θ_2 is a constant, and

$$0 \leqslant \frac{1}{c} \int_{t+\tau}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} (\gamma M_1 Q(s) - M_1 P(s)) ds du \leqslant 1 - c + c\gamma M_1, \quad for \quad t \geqslant t_1$$

$$(2.8)$$

hold, where M_1 is positive constant such that

$$\frac{c-1}{\gamma c} < M_1 < \frac{c-1}{\gamma + c} \tag{2.9}$$

holds. Let X be the set of all continuous and bounded functions on $[t_0, \infty)$ with the norm $||x|| = \sup_{t \ge t_0} |x(t)|$, we define a closed bounded subset Ω of X as follows

$$\Omega = \{ x \in X : M_1 \leqslant x(t) \leqslant \gamma M_1, t \geqslant t_0 \}$$

Define an operator $S:\Omega \to X$ as follows

$$Sx(t) = \begin{cases} 1 - \frac{1}{c} - \frac{1}{c}x(t+\tau) + \frac{1}{c} \int_{t+\tau}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} (Q(s)x(s-\delta) - P(s)x(s-\sigma)) ds du, & t \geqslant t_{1}, \\ Sx(t_{1}), & t_{0} \leqslant t \leqslant t_{1}. \end{cases}$$

We shall show that $S\Omega \subset \Omega$. In fact, for every $x \in \Omega$, and $t \ge t_1$, using (2.8) and (2.9) we get

$$Sx(t) = 1 - \frac{1}{c} - \frac{1}{c}x(t+\tau) + \frac{1}{c} \int_{t+\tau}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} (Q(s)x(s-\delta) - P(s)x(s-\sigma)) ds du$$

$$\leq 1 - \frac{1}{c} + \frac{1}{c} \int_{t+\tau}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} (\gamma M_1 Q(s) - M_1 P(s)) ds du$$

$$\leq \gamma M_1$$

Furthermore, in view of (2.6) and (2.9) we have

$$\begin{split} Sx(t) = &1 - \frac{1}{c} - \frac{1}{c}x(t+\tau) + \frac{1}{c}\int_{t+\tau}^{\infty}\frac{1}{r(u)}\int_{u}^{\infty}(Q(s)x(s-\delta) - P(s)x(s-\sigma))dsdu \\ \geqslant &1 - \frac{1}{c} - \frac{\gamma M_1}{c} + \frac{1}{c}\int_{t+\tau}^{\infty}\frac{1}{r(u)}\int_{u}^{\infty}(M_1Q(s)) - \gamma M_1P(s))dsdu \\ \geqslant &1 - \frac{1}{c} - \frac{\gamma M_1}{c} \\ \geqslant &M_1 \end{split}$$

Thus, we proved that $S\Omega \subset \Omega$. Now we shall show that operator S is a contraction operator on Ω . In fact, for $x, y \in \Omega$ and $t > t_1$, we have

$$|Sx(t) - Sy(t)| \leq \frac{1}{c} |x(t+\tau) - y(t+\tau)| + \frac{1}{c} \int_{t+\tau}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} p(s) |x(s-\sigma) - y(s-\sigma)| ds du$$

$$+ \frac{1}{c} \int_{t+\tau}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} Q(s) |x(s-\delta) - y(s-\delta)| ds du$$

$$\leq \frac{1}{c} [1 + \int_{t+\tau}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} (p(s) + Q(s)) ds du] \parallel x - y \parallel$$

$$\leq \theta_{2} \parallel x - y \parallel$$

This implies that

$$\parallel Sx - Sy \parallel \leq \theta_2 \parallel x - y \parallel$$

where in view of (2.7), $\theta_2 < 1$, which proves that S is a contraction operator on Ω . Therefore S has a unique fixed point x in Ω , which is obviously a bounded positive solution of equation (1.1). This copletes the proof of Theorem 2.

Theorem 3. Assume that -1 < c < 0 and that (2.1) holds. Further, assume that there exists a constant $\beta > 1$ and a sufficiently large $t_1 \ge t_0$ such that

$$Q(t) \geqslant \beta P(t), \quad for \quad t \geqslant t_1$$
 (2.10)

Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.10), there exists a t_1 sufficiently large such that

$$-c + \int_{t}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} (p(s) + Q(s)) ds du \leqslant \theta_{3} < 1, \text{ for } t \geqslant t_{1}$$

$$(2.11)$$

where θ_3 is a constant, and

$$0 \le \int_{t}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} (\beta M_{2}Q(s) - M_{2}P(s)) ds du \le (c+1)(\beta M_{2} - 1), \quad for \quad t \ge t_{1}$$
(2.12)

hold, where M_2 is positive constant such that

$$\frac{1}{\beta} < M_2 \leqslant 1 \tag{2.13}$$

holds. Let X be the set of all continuous and bounded functions on $[t_0, \infty)$ with the norm $||x|| = \sup_{t \ge t_0} |x(t)|$, we define a closed bounded subset Ω of X as follows

$$\Omega = \{ x \in X : M_2 \leqslant x(t) \leqslant \beta M_2, t \geqslant t_0 \}$$

Define an operator $S:\Omega \to X$ as follows

$$Sx(t) = \begin{cases} 1 + c - cx(t - \tau) + \int_t^\infty \frac{1}{r(u)} \int_u^\infty (Q(s)x(s - \delta) - P(s)x(s - \sigma)) ds du, & t \geqslant t_1, \\ Sx(t_1), & t_0 \leqslant t \leqslant t_1. \end{cases}$$

We shall show that $S\Omega \subset \Omega$. In fact, for every $x \in \Omega$, and $t \ge t_1$, using (2.12) and (2.13) we get

$$\begin{split} Sx(t) = & 1 + c - cx(t - \tau) + \int_{t}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} (Q(s)x(s - \delta) - P(s)x(s - \sigma)) ds du \\ \leqslant & 1 + c - c\beta M_{2} + \int_{t}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} (\beta M_{2}Q(s) - M_{2}P(s)) ds du \\ \leqslant & 1 + c - c\beta M_{2} + (c + 1)(\beta M_{2} - 1) \\ = & \beta M_{2} \end{split}$$

Furthermore, in view of (2.10) and (2.13) we have

$$\begin{split} Sx(t) = &1 + c - cx(t - \tau) + \int_t^\infty \frac{1}{r(u)} \int_u^\infty (Q(s)x(s - \delta) - P(s)x(s - \sigma)) ds du \\ \geqslant &1 + c - cM_2 + \int_t^\infty \frac{1}{r(u)} \int_u^\infty (M_2Q(s)) - \beta M_2P(s)) ds du \\ \geqslant &1 + c - cM_2 \\ \geqslant &M_2 \end{split}$$

Thus, we proved that $S\Omega \subset \Omega$. Now we shall show that operator S is a contraction operator on Ω . In fact, for $x, y \in \Omega$ and $t > t_1$, we have

$$\begin{split} |Sx(t)-Sy(t)| &\leqslant -c|x(t+\tau)-y(t+\tau)| + \int_t^\infty \frac{1}{r(u)} \int_u^\infty p(s)|x(s-\sigma)-y(s-\sigma)| ds du \\ &+ \int_t^\infty \frac{1}{r(u)} \int_u^\infty Q(s)|x(s-\delta)-y(s-\delta)| ds du \\ &\leqslant [-c+\int_t^\infty \frac{1}{r(u)} \int_u^\infty (p(s)+Q(s)) ds du] \parallel x-y \parallel \\ &\leqslant \theta_3 \parallel x-y \parallel \end{split}$$

This implies that

$$\parallel Sx - Sy \parallel \leq \theta_3 \parallel x - y \parallel$$

where in view of (2.11), $\theta_3 < 1$, which proves that S is a contraction operator on Ω . Therefore S has a unique fixed point x in Ω , which is obviously a bounded positive solution of equation (1.1). This copletes the proof of Theorem 3.

Theorem 4. Assume that $-\infty < c < -1$ and that (2.1) holds. Further, assume that there exists a constant h > 1 and a sufficiently large $t_1 \ge t_0$ such that

$$Q(t) \geqslant hP(t), \quad for \ t \geqslant t_1$$
 (2.14)

Then (1.1) has a bounded nonoscillatory solution.

Proof: The proof is similar to Theorem 2, we omitted.

By Theorems 1-4, we have the following result

Corollary 1. Assume that $c \in R, c \neq \pm 1$ and

$$\int_{t_0}^{\infty} \frac{1}{r(u)} \int_{u}^{\infty} Q(s) ds du < \infty.$$

then the neutral differential equation

$$(r(t)(x(t) + cx(t-\tau))')' - Q(t)x(t-\delta) = 0, \quad t \ge t_0$$

has a bounded nonoscillatory solution.

3 Conclusion

In this paper we have introuduced existence of nonoscillatory solutions of differential equations of (1.1), the obtained results are easily applicable, we can find nonoscillatory solutions of higher-order neutral differential equations by contraction fixed point theorem in the future work.

Acknowledgements

This work was supported social science planning support project of Qinghai Province (Nos. 16021).

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Yong Zhou. Existence of nonoscillatory solutions of higher-order neutral differential equations with positive and negative coefficients. Appl. Math. Lett. 2002;15:867-874.
- [2] Candan T. Existence of nonoscillatory solutions of higher order, neutral differential equations [J]. Mathematica Slovaca. 2013;63(1):183-190.
- [3] Tian Y, Meng F. Existence for nonoscillatory solutions of higher-order nonlinear differential equations [J]. ISRN Mathematical Analysis 2014;2011(3):63-76.
- [4] Tian Y, Cai Y, Li T. Existence of nonoscillatory solutions to higher-order nonlinear neutral difference equations [J]. Journal of Nonlinear Science and Applications. 2015;8(5).
- [5] Ye H, Yin J, Jin C. Non-oscillatory solutions for a nonlinear neutral delay differential equation [J]. Applied Mathematics Computation. 2014;235:283-291.
- [6] Guo Z, Zhao X, Liu M. Nonoscillatory solutions of a higher-order nonlinear neutral delay differential equation [J]. Electronic Journal of Differential Equations. 2011;2010(94-178):2011-2024.
- [7] Zhou Y. Nonoscillatory solutions of higher order nonlinear neutral functional differential equations [J]. Rocky Mountain Journal of Mathematics. 2007;37(3):1059-1083.
- [8] Youjun Liu, Huanhuan Zhao, Jurang Yan. Existence of nonoscillatory solutions for system of higher-order neutral differential equations with distributed delays [J]. Applied Mathematics Letters. 2017;67(5):67-74.
- [9] Omar Bazighifan, Higinio Ramos. On the asymptotic and oscillatory behavior of the solutions of a class of higher-order differential equations with middle term [J]. Applied Mathematics Letters. 2020;34(56):56-61.
- [10] Fei Xu, Xue Yang. Affine-periodic solutions for higher order differential equations [J]. Applied Mathematics Letters. 2020;105(6):106-112.
- [11] Zeyad Al-Zhour, Nouf Al-Mutairi, Fatimah Alrawajeh, Raed Alkhasawneh. Series solutions for the Laguerre and Lane-Emden fractional differential equations in the sense of conformable fractional derivative [J]. Alexandria Engineering Journal. 2019;58(4):1413-1420.

© 2020 Yu-Ping and Hua; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

http://www.sdiarticle 4.com/review-history/57020