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Abstract

This paper is concerned with existence of nonoscillation solution for a family of second-order
neutral differential equations with positive and negative coefficients. A sufficient conditions for
existence of nonoscillation solution is obtained by contraction fixed point theorem, special case
of the equation has also been studied.
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1 Introduction

In this paper, we consider existence of nonoscillation solution of second-order neutral differential
equations with positive and negative coefficients.
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`

rptq pxptq ` cxpt ´ τqq
1
˘1

` rP ptqxpt ´ σq ´ Qptqxpt ´ δqs “ 0, t ě t0 p1.1q

where τ, σ, δ P R`, c P R, c ‰ ˘1,and rptq, P ptq, Qptq P Cprt0,8q, R`), R` “ r0,`8q. Let µ “

tτ, σ, δu. By a solution of equation (1.1), we mean a continuously function xptq P Cprt0 ´ µ,8q, Rq

for some t1 ě t0, such that rptq pxptq ` cxpt ´ τqq
1 is continuously differentiable on rt1,8q and such

that equation (1.1) is satisfied for t ě t1.

Recently, More and more people are interested in nonoscillatory criteria of differential equations.
we refer the reader to r1 ´ 11s, the differetial equation in [1].

dn

dtn
rxptq ` cxpt ´ τqs ` p´1q

n`1
rP ptqxpt ´ σq ´ Qptqxpt ´ δqs “ 0, t ě t0

studied nonoscillation solution for a family of higher-order neutral differential equations with positive
and negative coefficients, Our principal goal in this paper is to derive existence of nonoscillation
solutions for equation (1.1).

2 Existence Theorems

Theorem 1. Assume that 0 ď c ă 1 and

ż 8

t0

1

rpuq

ż 8

u

P psqdsdu ă 8,

ż 8

t0

1

rpuq

ż 8

u

Qpsqdsdu ă 8. p2.1q

Further, assume that there exists a constant α ą 1
1´c

and a sufficiently large t1 ě t0 such that

Qptq ě αP ptq, for t ě t1 p2.2q

Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.2), there exists a t1 sufficiently large such that

c `

ż 8

t

1

rpuq

ż 8

u

pP psq ` Qpsqqdsdu ď θ1 ă 1, for t ě t1 p2.3q

where θ1 is a constant, and

0 ď

ż 8

t

1

rpuq

ż 8

u

pαMQpsq´MP psqqdsdu ď c´1`αM, for t ě t1 p2.4q

hold, where M is positive constant such that

1 ´ c

α
ă M ď

1 ´ c

1 ` cα
p2.5q

holds. Let X be the set of all continuous and bounded functions on rt0,8q with the norm ∥ x ∥“

suptět0 |xptq|, we define a closed bounded subset Ω of X as follows:

Ω “ tx P X : M ď xptq ď αM, t ě t0u

Define an operator S : Ω Ñ X as follows:

Sxptq “

#

1 ´ c ´ cxpt ´ τq `
ş8

t
1

rpuq

ş8

u
pQpsqxps ´ δq ´ P psqxps ´ σqqdsdu, t ě t1,

Sxpt1q, t0 ď t ď t1.
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We shall show that SΩ Ă Ω. In fact, for every x P Ω, and t ě t1, using (2.4) and (2.5) we get

Sxptq “1 ´ c ´ cxpt ´ τq `

ż 8

t

1

rpuq

ż 8

u

pQpsqxps ´ δq ´ P psqxps ´ σqqdsdu

ď1 ´ c `

ż 8

t

1

rpuq

ż 8

u

pαMQpsq ´ MP psqqdsdu

ďαM

Furthermore, in view of (2.2) and (2.5) we have

Sxptq “1 ´ c ´ cxpt ´ τq `

ż 8

t

1

rpuq

ż 8

u

pQpsqxps ´ δq ´ P psqxps ´ σqqdsdu

ě1 ´ c ´ cαM `

ż 8

t

1

rpuq

ż 8

u

pMQpsq ´ αMP psqqdsdu

ě1 ´ c ´ cαM

ěM

Thus, we proved that SΩ Ă Ω.

Now we shall show that operator S is a contraction operator on Ω.

In fact, for x, y P Ω and t ą t1, we have

|Sxptq ´ Syptq| ďc|xpt ´ τq ´ ypt ´ τq| `

ż 8

t

1

rpuq

ż 8

u

P psq|xps ´ σq ´ yps ´ σq|dsdu

`

ż 8

t

1

rpuq

ż 8

u

Qpsq|xps ´ δq ´ yps ´ δq|dsdu

ďrc `

ż 8

t

1

rpuq

ż 8

u

pP psq ` Qpsqsdsdus ∥ x ´ y ∥

ďθ1 ∥ x ´ y ∥

This implies that
∥ Sx ´ Sy ∥ď θ1 ∥ x ´ y ∥

where in view of (2.3), θ1 ă 1,which proves that S is a contraction operator on Ω . Therefore S has
a unique fixed point x in Ω, which is obviously a bounded positive solution of equation (1.1). This
copletes the proof of Theorem 1.

Theorem 2. Assume that 1 ă c ă `8 and that (2.1) holds. Further, assume that there exists a
constant γ ą c

c´1
and a sufficiently large t1 ě t0 such that

Qptq ě γP ptq, for t ě t1 p2.6q

Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.6), there exists a t1, sufficiently large such that

1

c
r1`

ż 8

t`τ

1

rpuq

ż 8

u

pppsq`Qpsqqdsdus ď θ2 ă 1, for t ě t1 p2.7q

where θ2 is a constant, and

0 ď
1

c

ż 8

t`τ

1

rpuq

ż 8

u

pγM1Qpsq ´ M1P psqqdsdu ď 1 ´ c ` cγM1, for t ě t1 p2.8q
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hold, where M1 is positive constant such that

c ´ 1

γc
ă M1 ă

c ´ 1

γ ` c
p2.9q

holds. Let X be the set of all continuous and bounded functions on rt0,8q with the norm ∥ x ∥“

suptět0 |xptq|, we define a closed bounded subset Ω of X as follows

Ω “ tx P X : M1 ď xptq ď γM1, t ě t0u

Define an operator S : Ω Ñ X as follows

Sxptq “

#

1 ´ 1
c

´ 1
c
xpt ` τq ` 1

c

ş8

t`τ
1

rpuq

ş8

u
pQpsqxps ´ δq ´ P psqxps ´ σqqdsdu, t ě t1,

Sxpt1q, t0 ď t ď t1.

We shall show that SΩ Ă Ω . In fact,for every x P Ω, and t ě t1, using (2.8) and (2.9) we get

Sxptq “1 ´
1

c
´

1

c
xpt ` τq `

1

c

ż 8

t`τ

1

rpuq

ż 8

u

pQpsqxps ´ δq ´ P psqxps ´ σqqdsdu

ď1 ´
1

c
`

1

c

ż 8

t`τ

1

rpuq

ż 8

u

pγM1Qpsq ´ M1P psqqdsdu

ďγM1

Furthermore, in view of (2.6) and (2.9) we have

Sxptq “1 ´
1

c
´

1

c
xpt ` τq `

1

c

ż 8

t`τ

1

rpuq

ż 8

u

pQpsqxps ´ δq ´ P psqxps ´ σqqdsdu

ě1 ´
1

c
´

γM1

c
`

1

c

ż 8

t`τ

1

rpuq

ż 8

u

pM1Qpsqq ´ γM1P psqqdsdu

ě1 ´
1

c
´

γM1

c

ěM1

Thus, we proved that SΩ Ă Ω. Now we shall show that operator S is a contraction operator on Ω.
In fact, for x, y P Ω and t ą t1, we have

|Sxptq ´ Syptq| ď
1

c
|xpt ` τq ´ ypt ` τq| `

1

c

ż 8

t`τ

1

rpuq

ż 8

u

ppsq|xps ´ σq ´ yps ´ σq|dsdu

`
1

c

ż 8

t`τ

1

rpuq

ż 8

u

Qpsq|xps ´ δq ´ yps ´ δq|dsdu

ď
1

c
r1 `

ż 8

t`τ

1

rpuq

ż 8

u

pppsq ` Qpsqqdsdus ∥ x ´ y ∥

ďθ2 ∥ x ´ y ∥

This implies that

∥ Sx ´ Sy ∥ď θ2 ∥ x ´ y ∥

where in view of (2.7), θ2 ă 1, which proves that S is a contraction operator on Ω. Therefore S has
a unique fixed point x in Ω, which is obviously a bounded positive solution of equation (1.1). This
copletes the proof of Theorem 2.
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Theorem 3. Assume that ´1 ă c ă 0 and that (2.1) holds. Further, assume that there exists a
constant β ą 1 and a sufficiently large t1 ě t0 such that

Qptq ě βP ptq, for t ě t1 p2.10q

Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.10), there exists a t1 sufficiently large such that

´c`

ż 8

t

1

rpuq

ż 8

u

pppsq`Qpsqqdsdu ď θ3 ă 1, for t ě t1 p2.11q

where θ3 is a constant, and

0 ď

ż 8

t

1

rpuq

ż 8

u

pβM2Qpsq´M2P psqqdsdu ď pc`1qpβM2 ´1q, for t ě t1 p2.12q

hold, where M2 is positive constant such that

1

β
ă M2 ď 1 p2.13q

holds. Let X be the set of all continuous and bounded functions on rt0,8q with the norm ∥ x ∥“

suptět0 |xptq|, we define a closed bounded subset Ω of X as follows

Ω “ tx P X : M2 ď xptq ď βM2, t ě t0u

Define an operator S : Ω Ñ X as follows

Sxptq “

#

1 ` c ´ cxpt ´ τq `
ş8

t
1

rpuq

ş8

u
pQpsqxps ´ δq ´ P psqxps ´ σqqdsdu, t ě t1,

Sxpt1q, t0 ď t ď t1.

We shall show that SΩ Ă Ω . In fact, for every x P Ω, and t ě t1, using (2.12) and (2.13) we get

Sxptq “1 ` c ´ cxpt ´ τq `

ż 8

t

1

rpuq

ż 8

u

pQpsqxps ´ δq ´ P psqxps ´ σqqdsdu

ď1 ` c ´ cβM2 `

ż 8

t

1

rpuq

ż 8

u

pβM2Qpsq ´ M2P psqqdsdu

ď1 ` c ´ cβM2 ` pc ` 1qpβM2 ´ 1q

“βM2

Furthermore, in view of (2.10) and (2.13) we have

Sxptq “1 ` c ´ cxpt ´ τq `

ż 8

t

1

rpuq

ż 8

u

pQpsqxps ´ δq ´ P psqxps ´ σqqdsdu

ě1 ` c ´ cM2 `

ż 8

t

1

rpuq

ż 8

u

pM2Qpsqq ´ βM2P psqqdsdu

ě1 ` c ´ cM2

ěM2

Thus, we proved that SΩ Ă Ω. Now we shall show that operator S is a contraction operator on Ω.
In fact, for x, y P Ω and t ą t1, we have
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|Sxptq ´ Syptq| ď ´ c|xpt ` τq ´ ypt ` τq| `

ż 8

t

1

rpuq

ż 8

u

ppsq|xps ´ σq ´ yps ´ σq|dsdu

`

ż 8

t

1

rpuq

ż 8

u

Qpsq|xps ´ δq ´ yps ´ δq|dsdu

ďr´c `

ż 8

t

1

rpuq

ż 8

u

pppsq ` Qpsqqdsdus ∥ x ´ y ∥

ďθ3 ∥ x ´ y ∥

This implies that

∥ Sx ´ Sy ∥ď θ3 ∥ x ´ y ∥

where in view of (2.11), θ3 ă 1, which proves that S is a contraction operator on Ω. Therefore S
has a unique fixed point x in Ω, which is obviously a bounded positive solution of equation (1.1).
This copletes the proof of Theorem 3.

Theorem 4. Assume that ´8 ă c ă ´1 and that (2.1) holds. Further, assume that there exists
a constant h ą 1 and a sufficiently large t1 ě t0 such that

Qptq ě hP ptq, for t ě t1 p2.14q

Then (1.1) has a bounded nonoscillatory solution.

Proof : The proof is similar to Theorem 2, we omitted.

By Theorems 1-4, we have the following result

Corollary 1. Assume that c P R, c ‰ ˘1 and

ż 8

t0

1

rpuq

ż 8

u

Qpsqdsdu ă 8.

then the neutral differential equation

`

rptq pxptq ` cxpt ´ τqq
1
˘1

´ Qptqxpt ´ δq “ 0, t ě t0

has a bounded nonoscillatory solution.

3 Conclusion

In this paper we have introuduced existence of nonoscillatory solutions of differential equations of
(1.1), the obtained results are easily applicable, we can find nonoscillatory solutions of higher-order
neutral differential equations by contraction fixed point theorem in the future work.
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