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Abstract

The inverse problem for determination of parameters related to the support and/or functions
describing the intensity of coefficient and sources in models based strongly elliptic second order
systems is posed with Cauchy data over specification at boundary. This stablish a set of various
boundary value problems associated with the same group of unknown parameters. A Lipschitz
boundary dissection is used for decomposing each Cauchy data into pairs of complementary
mixed boundary values problems. The concept of Calderon projector is introduced as a tool
to check the consistency of the Cauchy data and to demonstrate the equivalence of these two
problems. This lets you define a discrepancy function to measure the distance between the
solutions of problems obtained by dissecting Lipschitz Cauchy data. This discrepancy appears
as a consequence of inadequate parameters values in the constitutive relations. For Cauchy
noisy data, the difference between these solutions would be small if the parameters used in the
solution are correct. The methodology we propose explores concepts as Lipschitz Boundary
Dissection, Complementary Mixed Problems with trial parameters and Internal Discrepancy
fields. Differentiable and non-differentiable optimizations algorithms can then be used in the
reconstruction of these parameters simultaneously. Numerical experiments are presented.

*Corresponding author: E-mail: nilson@con.ufrj.br;

http://www.sdiarticle4.com/review-history/64666


Roberty; JAMCS, 35(9): 73-89, 2020; Article no.JAMCS.64666

Keywords: Inverse problems; coefficients and source reconstruction; elliptic systems; Lipschitz
Dissection; Calderon projector; internal discrepancy.

1 Introduction

It is possible to find systems of linear elliptic partial differential equations in most of the engineering
applications. Stationary multiphysics models related with applications in structural mechanics,
heat transfer, convection and diffusion, electromagnetic, fluid dynamics and acoustic are the main
examples of represented by the following system, in which the unknown fields may be a vector To
find solution u(x) and the multiplier λ(x) such that

∇.(−c∇u− αu+ γ) + β.∇u+ au = f if x ∈ Ω;
hu = g if x ∈ ∂ΩD ∪ ∂ΩN ;
ν.(c∇u+ αu− γ) + qu = gν − h∗λ if x ∈ ∂ΩN ∪ ∂ΩD;

(1.1)

where ν is the outward unit normal vector on ∂Ω := ∂ΩD ∪ Π ∪ ∂ΩN . The presence of multiplier
generalizes boundaries conditions and adjust the solution for the case of overprescripion of boundary
data. The coefficients (c, α, γ, β, a, h) can be represented by matrices and vectors accordingly, and
are modelled as given information about the physics of the model. In the context of the continuous
thermodynamics field theory, these functions are associated with the constitutive relations that
resolves material ambiguity of balance equations. If parameters in these functions are correct, then
experientially measured values of field u and extensive or intensives quantities related with it will
be correctly determinate by solving, analytically or numerically, the system (1.1) and posprocessing
the solution. Meanwhile, if these constitutive parameters are incorrect, we can expect a discrepancy
between the experimentally measured data and the theoretically calculated one. When there exist
overprescripition of Cauchy data to compensate the parameter indetermination, complementary
problems with trial parameters also will present an internal discrepancy in the fields values. Before
we start the formulation of the inverse parameter problem studied here, let us review some basic
concepts.

1.1 Operators representation for the system of equations (1.1)

In order to give a more concise notation to problem (1.1), let us group its coefficients in a set of
matrix functions (Ajk, Aj , A) : Ω → Rm×m and rewrite the system operator as

Lu = −
d∑

j=1

(

d∑
k=1

∂j(Ajk∂k)u+Aj∂ju) +Au . (1.2)

Then u is a column vector with m scalar fields and Lu : Ω → Rm. The main part of the operator
will be

L0u = −
d∑

j=1

∂jBju where Bj =

d∑
k=1

Ajk∂k (1.3)

most of the constitutive theory prepare the system to be strongly ellptic For engineers this this
means a good system producing a well posed direct problems. We say that a differential operator
L is strongly elliptic on Ω if

Re

d∑
j=1

d∑
k=1

(Ajk(x)ξkη)
∗ξjη ≥ c|ξ|2|η|2 for all x ∈ Ω , ξ ∈ Rd and η ∈ Cm . (1.4)
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We complete the problem characterization by supposing that Ω is a Lipschitz domain, which means
in R2 that it is polygonal C0,1. By saying that γ is the trace operator and that the trace conormal
derivative is

Bνu =

d∑
j=1

νjγ[Bju] (1.5)

More information about the elliptic system can be found in [1].

1.2 Direct problem with strongly elliptic operators

Let Ω a domain with Lipschitz dissection boundary ∂Ω = ∂ΩN ∪ Π ∪ ∂ΩN . The mixed boundary
value problem for the physical model given by (1.1) is given by the well posed problem Pα

fα,gD,gN
:

To find u ∈ H1(Ω)m such that

Pα
fα,gD,gN


Lαu = fα if x ∈ Ω;
γ[u] = gD if x ∈ ∂ΩD;
Bα

ν u = gN if x ∈ ∂ΩN ;
(1.6)

Note that we make the set of parameters α associated with sources and constitutive equations
explicit to reinforce the fact that we are interested the parameter determination problem. It is also
possible to show that (1.6) has the following weak formulation Wα

fα,gD,gN
(Lαu, v)Ω + (Bα

ν u, γ[v])∂Ω = Φα(u, v) =
= (fα, v)Ω + (gN , γ[v])∂ΩN if v ∈ H1

D(Ω)m;
γ[u] = gD if x ∈ ∂ΩD.

(1.7)

This weak formulation is used for computational implementation of the Galerkin finite elements
method [2] for mixed problems. Sobolev space definition for spaces H1(Ω) , H1

D(Ω) ant its trace
operators are conventional and can be found in [1], [2], [3].

2 Boundary Integral Equation Methodology in Inverse
Problems

A second set equations associated with problem (1.1) uses the second Green’s identity to introduce
the volume, single and double layer potentials [4], [5], [3] and the Boundary integral formulation.
It depends on the possibility of determination of the fundamental solution, whose existence is
well established when coefficients are smooth or even Lipschitz. But in such a way that even in
situations where no explicit functional expression for it can be obtained it can be used for analysis
of the inverse problem. In this case methods for solution of the direct problem such as finite
elements combined with the optimization procedure proposed here will be appropriated for the
solution of the inverse parameter problem. One second important scenario occurs when we know
the fundamental solution of the elliptic systems explicitly, and consequentially, we also know the
fundamental solutions dependence on parameters. In this case the method of fundamental solutions
can be used to numerically determine the Green’s functions and construct solutions of associated
mixed problems with Dirichlet and Neumann data prescribed on the complementary parts of the
boundary and to give explicit numerical solutions for the involved complementary problems. The
construction of explicit schemes for the parameters determination is then also possible. In this work
we will only presents results for the case in which we don’t now explicitly the fundamental solution.
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2.1 Fundamental solution

Definition 1. A Fundamental solution to the operator L∗
α is a distributional solution, [1] [6], of

the equation:
L∗

αu
α
ξ = δξ ∈ E∗(Rd)m := ((C∞(Ω))∗)m (2.1)

where δξ is the delta Dirac operator defined as δξ[ϕ] = ϕ(ξ), for ξ ∈ Ω and ϕ ∈ (D(Ω))m and L∗
α is

the adjoint operator.

The fundamental solution is the singular distribution with pole at ξ ∈ Rd, uα
ξ = Gα

ξ (x), satisfying
the fundamental equation (2.1). Its depends on constitutive functions parameters but not on the
sources parameters. A general solution of this equation is the sum of a regular solution and the
fundamental solution

uα
ξ (x) = vα(x) +Gα

ξ (x) , x ∈ Ω . (2.2)

The regular solution vα is in the space, HL∗(Ω) = {v ∈ L2(Ω) such that L∗v = 0}. It is an L∗
α-

harmonic function which is an homogeneous solution of the L∗
α-operator equation. The following

Lemma is important in the formulation of the boundary integral equation for the model based on
operator (1.2)

Lemma 1. Let Ω a Lipschitz domain, u and v ∈ H1(Ω)m, let the coefficients Aα
jk, A

α
j and Aα be

L∞(Ω)m×m functions, (., .)Ω and (., .)∂Ω, be respectively the duality pairs in Ω and in its ∂Ω and
Lαu = fα, if additionally:

(i) Aα
jk are Lipschitz and u ∈ H2(Ω)m, then

Φα(u, v) = (Lαu, v)Ω + (Bα
ν u, γ[v])∂Ω; (2.3)

(ii) Aα
jk and Aα

j are Lipschitz and v ∈ H2(Ω)m, then

Φα(u, v) = (u,L∗
αv)Ω + (γ[u], B̃α

ν v)∂Ω; (2.4)

(iii) Lαu ∈ L2(Ω)
m, then the first Green identity (2.3) is verified for u and v ∈ H1(Ω)m;

(iv) L∗
αu ∈ L2(Ω)

m, then the first adjoint Green identity (2.4) is verified for u and v ∈ H1(Ω)m;

(v) both Lαu and L∗
αu ∈ L2(Ω)

m, then the second Green identity

(Lαu, v)Ω − (u,L∗
αv)Ω = (γ[u], B̃α

ν v)∂Ω − (Bα
ν u, γ[v])∂Ω (2.5)

is verified for u and v ∈ H1(Ω)m;

(vi) Lαu = fαinΩ and fα ∈ H̃−1(Ω)m, then there exist g ∈ H− 1
2 (Ω)m such that

Φα(u, v) = (fα, v)Ω + (g, v)∂Ω for v ∈ H1(Ω)m. (2.6)

(vii) Furthermore, g is uniquely determined by both u and f , and note by u alone, and we have
the estimate

∥g∥
H

− 1
2 (∂Ω)

≤ C∥u∥H1(Ω)m + C∥f∥H̃−1(∂Ω)m (2.7)

Proof : See Lemmas (4.1), (4.2), (4.3)and (4.4) in [1].

2.2 Boundary integral equation, reciprocity gap equation and green’s
function equation

If we adapt result (2.5) to use the field v(x) = Gα
ξ (x) it will result the following boundary integral

equation
u(ξ) = (fα(.), G

α
ξ (.))Ω − (γ[u](.), B̃α

ν [G
α
ξ (.)])∂Ω + (Bα

ν u, γ[G
α
ξ (.)])∂Ω (2.8)
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ξ ∈ Ω. If alternatively the regular vα(x) ∈ L∗
α-harmonic is introduced, we obtain the reciprocity

gap equation
0 = (fα(.), vα(.))Ω − (γ[u](.), B̃α

ν [vα(.)])∂Ω + (Bα
ν u, γ[vα(.)])∂Ω (2.9)

Note that Gα
ξ (x) ∈ Ω only is singular if ξ ∈ Ω. If not, it becomes regular and so, it is also a

L∗
α-harmonic. Fields vα and Gα

ξ can be have the traces at the boundary ∂Ω adjust to give Green’s
functions for the mixed strongly elliptic problem (1.6).

Pα
δξ,gD,gN


L∗

α[v
ξ
α +Gα

ξ ] = δξ if x, ξ ∈ Ω;

γ[vξα +Gα
ξ ] = 0 if x ∈ ∂ΩD;

B̃α
ν [v

ξ
α +Gα

ξ ] = 0 if x ∈ ∂ΩN ;

(2.10)

u(ξ) = (fα(.), vα(.) +Gα
ξ (.))Ω − (γ[u](.), B̃α

ν [vα(.) +Gα
ξ (.)])∂Ω + (Bα

ν u, γ[vα(.) +Gα
ξ (.)])∂Ω (2.11)

is the Green’s boundary integral equation for the mixed problem.

The Boundary Integral Equation is composed of three potentials. The volumetric or Newtonian

Nα[fα](ξ) := (fα(.), G
α
ξ (.))Ω =

∫
Ω

Gα
ξ (x)fα(x)dx for ξ ∈ Ω , (2.12)

the single layer potential

SL[Bν [u]](ξ) := (Bα
ν [u], γ[G

α
ξ (.)])∂Ω =

∫
∂Ω

γxG
α
ξ (x)Bα

ν [u]dsx for ξ ∈ Ω (2.13)

and the double layer potential

DL[u](ξ) := ([γu](.), B̃α
ν [G

α
ξ (.)])∂Ω =

∫
∂Ω

B̃α
νG

α
ξ (x)γx[u]dsx for ξ ∈ Ω . (2.14)

They are extensions integral operators to the interior of Ω. The first propagates the influence of
sources at a given point x into another point ξ, both in Ω, and the second and the third propagates
the Dirichlet and in the Neumann parts Cauchy data at the interface boundary ∂Ω to the interior
of Ω.

The Newtonian potential satisfies the inhomogeneous equation and so, it is in the manifold

Nα[fα]) ∈ H1
L∗

α,fα := {v ∈ H1(Ω)|L∗
αv = fα} (2.15)

The double and the single layer potentials satisfies the homogeneous when ξ is not in ∂Ω, and so,
they are L∗

α-harmonic functions, and so

SL[gν ], DL[g] ∈ H1
L∗

α,0 := {v ∈ H1(Ω)|L∗
αv = 0}. (2.16)

Since they all are dependent on the parameters on α, for different trial parameters they will do
different extensions of Cauchy data.

Remark 1. In the distributional framework, [6], the system solutions fields, constitutive coefficients
fields and sources fields can be extended for the whole space Rd ([7],[8]).

If we denote Rd = Ω− ∪ ∂Ω∪Ω+, where Ω− := Ω and Ω+ the exterior of Ω∪ ∂Ω, the derivation of
the third Green’s identity is straightforward When uα = u+

α + u−
α ∈ L2(Rd)m, with u±

α ∈ H1(Ω±)m

and u has appropriated asymptomatic behaviour, and fα = f+
α + f−

α ∈ H−1(Rd)m, has compact
support, we can enunciate the Third Green Identity [1]

u(ξ) = (fα(.), G
α
ξ (.))Ω − ([γu](.), B̃α

ν [G
α
ξ (.)])∂Ω + ([Bα

ν u], γ[G
α
ξ (.)])∂Ω (2.17)

for ξ ∈ Ω and where [u] and [Bα
ν u] are the jump observed in the second order equation Cauchy data

at the boundary ∂Ω. Since our main interest is in the interior problem, we will not explore those
possibilities.
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2.3 Green’s function Methodology for extension with mixed data

Let us consider a well posed mixed boundary value problem (2.10) for which we consider that we
already have determined the fundamental solution Gα

x (x) and the we solve the homogeneous source
mixed problem problem ,

Pα
0,−Gα

ξ
(x)|ΓD

,−B̃ν [Gα
ξ
](x)|ΓN

and obtain a solution vα.ΓD,ΓN (x), which exist and is unique since the operator is strongly elliptic.

By perturbing the fundamental solution, Gα
ξ with this vα.ΓD,ΓN (x) solution of the auxiliary problem

we have formally the extension operators for the mixed problem based on the new Green’s fundamental
solution for the mixed problem.

Gα,ΓD,ΓN
ξ (x) = Gα

ξ (x) + vα,ΓD,ΓN (x)

The Green’s inverse for the mixed problem will be

u(ξ) =

∫
Ω

Gα,ΓD,ΓN
ξ (x)f(x)dx−DLα,ΓD,ΓN [gD](ξ) + SLα,ΓD,ΓN [gNν ](ξ) , ξ ∈ Ω. (2.18)

It is not difficult to see that those three integral operators propagates only part of the Cauchy data.
Dirichlet data in ΓD and Neumann data in ΓN , and consequentely, it can be viewed as a formal
Green’s inverse for the mixed problem.

2.4 The Calderon projector and the integral Equations based Metho-
dologies for mixed data problem solution

The Boundary integral equation (2.8) are compatible with the applications of the traces operators
at the boundary.

γξ[u](ξ) = γξ

∫
Ω

Gα
ξ (x)fα(x)dx+ γξSL

α[Bα
ν [u]](ξ)− γξDLα[u](ξ)

Bα
ξ [u](ξ) = Bα

ξ

∫
Ω

Gα
ξ (x)fα(x)dx+ Bα

ξ SL
α[Bα

ν [u]](ξ)− Bα
ξ DLα[u](ξ)

For zero source this system of integral equations can be arranged as a linear operator, that can be
proved to be a projector. It is the Calderon’s operator:

Definition 2. The Calderón operator is the 2× 2 linear operator Cα : (H
1
2 (Ω))m × (H− 1

2 (Ω))m →
(H

1
2 (Ω))m × (H− 1

2 (Ω))m defined by

Cα[γu,Bα
ν ]

T =

[
−γDLα[γu] γSLα[Bνu]
−Bα

νDLα[γu] Bα
ν SL

α[Bα
ν u]

]
The integral operators in this system that are singular can have it singular part explicitly separated
in order to rewrite the system in terms of index zero Fredholm Boundary Operators, that is

(i) Sα
x→ξ = γξSL

α
x→ξ : H− 1

2 (Γ) → H
1
2 (Γ) ;

(ii) T̃α∗
x→ξ = −Ix→ξ + 2Bα

νξSL
α
x→ξ : H

1
2 (Γ) → H− 1

2 (Γ) ;

(iii) Tα
x→ξ = Ix→ξ + 2γξDLα

x→ξ : H
1
2 (Γ) → H

1
2 (Γ) ;

(iv) −Rα
x→ξ = Bα

νξDLx→ξ : H
1
2 (Γ) → H− 1

2 (Γ) .

The index zero Fredholm representation of Calderon operator is

Cα =

[
1
2
(I − Tα) Sα

Rα 1
2
(I + T̃α∗)

]
.
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It’s not dificult to shown that Calderon’s operator is a projector, that is: Cα[g, gν ] = [g, gν ]
T =

(Cα)2[g, gν ]
T . As a projector, the Calderon’s operator imposes restriction on the Cauchy data.

The Dirichlet part may be used to determines de Neumamm part and vice-versa. Also Lipschitz
dissections of the boundary may be used for Cauchy data partition with the formulation of comple-
mentary mixed problems. Since it depends on the constitutive parameters, the Cauchy data must be
consistent with the constitutive parameters that generates it. For the case of wrong trial parameters,
inconsistency in complementary mixed problems shroud be expected.

When the mixed boundary value problem is posed with a non null source, Pfα,gD,gNν
, we have an

additional term due to the volumetric potential to be added to the Calderón operator and the
consequent inclusion of sources parameters[

γu(ξ)
Bα

ν u(ξ)

]
=

[ ∫
Ω
γξ[G

α
ξ ](y)f(y)dy∫

Ω
Bα

νξ [G
α
ξ ](y)f(y)dy

]
+

[
1
2
(Ix→ξ − Tα

x→ξ) Sα
x→ξ

Rα
x→ξ

1
2
(Ix→ξ + Tα

x→ξ)

] [
γu(ξ)
Bα

ν u(ξ)

]
, (x, ξ) ∈ Γ× Γ.

The Boundary integral equation methodology for the mixed boundary value problem , Pf,gD,gNν
,

explores this consistence dependence of Cauchy data on constitutives and source parameters.

The method is stated by using the knowledge part of Cauchy data γu|ΓD = gD and Bνu|ΓN = gNν
to determine the part of Cauchy data that we don’t know γu|ΓN = gN and Bνu|ΓD = gDν .

We have to solve an system like this:[
SαDD
ξ→x − 1

2
TND
ξ→x

1
2
T̃α∗DN
ξ→x RNN

ξ→x

] [
gDν
gN

]
= −

[ ∫
Ω
γξG

α
ξ |ΓD (x)f(x)dx∫

Ω
Bα

νξG
α
ξ |ΓD (x)f(x)dx

]

+

[
−SαND

ξ→x
1
2
(IDD

ξ→x + TαDD
ξ→x )

1
2
(INN

ξ→x + T̃α∗NN
ξ→x ) −RαNN

ξ→x

] [
gD

gNν

]
.

Lemma 2. For a given association of a Lipschitz domain and constitutive functions parameters
with a given source distribution, the Calderón operator with non null source is as a restriction which
the Cauchy data must satisfy in order to be a consistent data with boundary value problems.

The boundary integral equation methodology usually uses this Calderon’s operator property to
complete Cauchy data at the boundary but don’t explores the consistence relation between Cauchy
data and the model parameters, as we are done in this work.

2.5 The inverse problem

The appropriated formulation to the inverse parameter problem utilizes an domain Ω which is
Lipschitz, that is, a domain with a boundary that can be locally modelled as the graph of a Lipschitz
function, that is, a Holder continuous C0,1 function. This is important since direct problems are
frequently solved with numerical methods such as finite elements method or collocations methods,
and engineering domains can be polygonal. In order to introduce a compact notation for the

inverse problem, let Fα = [fα, ..., fα] ∈ (L2(Ω))m×Np be the source and (H,Hν) ∈ (H
1
2 (∂Ω) ×

(H− 1
2 (∂Ω)))m×Np the Cauchy data for Np problems based on the m−fields model. Note that

problems with different Cauchy data share the same source.

The inverse boundary value problem for parameter determination investigated here is: To find
(U,α) ∈ H1(Ω)m×Np ×RNa such that

Pα
Fα,H,Hν


LαU = Fα if x ∈ Ω;
γ[U ] = H if x ∈ ∂Ω;
Bν [U ] = Hν if x ∈ ∂Ω;

(2.19)
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Here γ and Bν are the already defined traces for the second order elliptic problem. The coefficients
of the strongly elliptic operator Lα and the source depend on the parameters α.

2.6 The Parameters to Cauchy Data Implicit Function

There are some question in the parameter determination problem about how Cauchy data (H,Hν)
are related with the constitutive parameters α that are undetermined in the constitutive functions
of the operator Lα and the source fα.

The first one is if there exist a general functional equation

Cα(H,Hν) = 0

which could solve our problem with in some operational set of numerical schemes, or, at least,
that conduct us to a good framework to analysis? If this functional equation exist, what are its
properties? What are the consequences of incorrect values on the parameters in it? Note that in an
algorithm for parameter determination, we will necessarily need to trial parameters values different
from the the appropriated ones. What are the consequence of incorrect values of the Cauchy Data?
Cauchy data are supposed here to be overprescrited in order to compensate missing information on
the parameters. So, the best functional will be the Calderon’s operator.

By using the same properties the Calderon’s operator that structures the Boundary integral formulation
of elliptic systems, we will develop a methodology for the parameters determination problem by
solving only direct problems such as (1.6) and the respective variational formulation (1.7) in an
optimization context.

3 Complementary Problems

3.1 Complementary problems with normal boundary conditions

The Linear Boundary Value Problem in Ω can be a uniformly strongly elliptic system of partial
differentials equations together with a system of tangential differentials operators, R. In order
to have normal boundary conditions, it is fundamental that there exists complementary
tangential boundary operators, S, such that the square matrix of tangential differentials
operators, M := (R,S)T , admits an inverse, N := M−1, which is a matrix of tangential differential
operators.

Definition 3. The boundary value problem is called a regular elliptic boundary value problem is
elliptic and the boundary conditions are normal and satisfy the Lopatinski-Shapiro condition.

To the Lopatinski-Shapiro condition condition be satisfied, at each boundary point a special initial
value problem in coordinate normal to the surface boundary at that point must be satisfied with
trivial solution. For more information consult [9] Regular elliptic problems are the main class of
problems used in the mathematical modelling of engineering problems. Complementary problems
are defined in the sense that they satisfies the Lopatinski Shapiro condition and for a given set of
Cauchy data they are expected to generates solutions fields equals in their respective associated
complementary problems.

3.2 Complementary Cauchy data associated with Lipschitz boundary
dissection

Let’s consider the splitting of the Cauchy boundary data following some Lipschitz boundary dissection
Γ = Γ(1) ∪Π ∪ Γ(2)

H(1) = γ[U ]|Γ(1) ; H(2) = γ[U ]|Γ(2) ,
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H(1)
ν = Bα

ν [U ]|Γ(1) and H(2)
ν I = Bα

ν [U ]|Γ(2)

and solve with some guess of parameters values α = α(0) the 2 × NP mixed boundary values
problems

Pα(0)

F
α(0) ,H

(1),H
(2)
ν

and Pα(0)

F
α(0) ,H

(2),H
(1)
ν

.

Let U
(1)

α(0) and U
(2)

α(0) be the its respective solutions. We immediately see that if the guess parameters
induces a constitutive field different of the correct field near the boundary, some difference in the
co-normal traces will be expected and consequent discrepancy in values of the fields of solution of
the complementary problems associated. Meanwhile, what will be the situation if the constitutive
fields coincides near the boundary, but are unequal in the interior of Ω. We will shown that even
in this situation, a difference in the fields of solutions of complementary problems propagates to
the interior and induces an internal discrepancy field. For the given Cauchy data and Lipschitz
boundary dissection, this discrepancy only will disappears when the parameters in constitutive
equations and sources are the correct ones. Of course it is induced by the different continuation to
the interior of Ω due to incorrect parameters value.

3.3 Complementary problems on Lipschitz domains

Let us define the Complementary problems associated with regular normal elliptic problems.

Definition 4. Let us consider two mixed boundary value problems Pα

f(1),g(1),g
(1)
ν

and Pα

f(1),g(2),g
(2)
ν

defined on the same Lipschitz domain Ω with boundary dissection ∂Ω = Γ
(1)
D ∪ Π ∪ Γ

(1)
N indexed

as Ld.

We say that these problems are complementary if the share the same source, f
(1)
α = f

(2)
α , they

interchange Dirichlet and Neumann boundaries, Γ
(2)
D = Γ

(1)
N , Γ

(2)
N = Γ

(1)
D and there exist a Cauchy

data (gα, gαν ) compatible with the respective non null source Calderon’s operator such that

g(1) = gαχ
Γ
(1)
D

and g(2) = gχ
Γ
(2)
D

. (3.1)

g(1)ν = gαν χΓ
(1)
N

and g(2)ν = gαν χΓ
(2)
N

.

where χΓ is the characteristic function for set Γ.

Theorem 1. Suppose that two mixed boundary value problems P
f
(1)
α ,g(1),g

(1)
ν

and P
f
(2)
α ,g(2),g

(2)
ν

has

respectively solutions u(1) and u(2). If they are complementary, then

u(1) = u(2).

Proof: Note that Γ is compact and

Γ = Γ
(1)
D ∪Π ∪ Γ

(1)
N = Γ

(2)
D ∪Π ∪ Γ

(2)
N .

With the characteristic function for Γ
(1)
D , χ

Γ
(1)
D

in Γ, we can introduce the extended Dirichlet data

function g ∈ H
1
2 (Γ) which is the extension of g(1) ∈ H

1
2 (Γ

(!)
D ) to H

1
2 (Γ), with g(1) = gχ

Γ
(1)
D

, and

consequently, g(2) = gχ
Γ
(2)
N

. Similar definitions can be done to treat the Neumann part of Cauchy

data gν ∈ H− 1
2 (Γ), g

(1)
ν = gνχΓ

(1)
D

. So,

g(x) = g(1)(x)χ
Γ
(1)
D

(x) + g(2)(x)χ
Γ
(1)
N

(x) = g(1)(x)χ
Γ
(1)
N

(x) + g(2)(x)χ
Γ
(2)
D

(x)

and
gν(x) = g(1)ν (x)χ

Γ
(1)
D

(x) + g(2)ν (x)χ
Γ
(1)
N

(x) = g(1)ν (x)χ
Γ
(2)
N

(x) + g(2)ν (x)χ
Γ
(2)
D

(x).
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Denoting fα = f (1) = f (2), the solution will be, via boundary integral equation method,

u(ξ) =

∫
Ω

Gα
ξ (x)fα(x)dx−DLα

ξ [g](x) + SLα
ξ [gν ](x),ξ ∈ Ω (3.2)

By taking the trace and the conormal trace of (3.2), we see that it satisfies the Calderón’s operators
dissection equation(3.3). So, Cauchy data obtained by the extension formulates a unique problem
with integral representation (3.2),which is the matrix equation for Calderon’s operator with non
null source in the context of Lipschitz boundary dissection:

g(ξ)|ΓD

g(ξ)|ΓN

gν(ξ)|ΓD

gν(ξ)|ΓN

 =


γu(ξ)|ΓD

γu(ξ)|ΓN

Bα
ν u(ξ)|ΓD

Bα
ν u(ξ)|ΓN

 =


∫
Ω
γξG

α
ξ |ΓD (y)fα(y)dy∫

Ω
γξG

α
ξ |ΓN (y)fα(y)dy∫

Ω
Bα

νξG
α
ξ |ΓD (y)fα(y)dy∫

Ω
Bα

νξG
α
ξ |ΓD (y)fα(y)dy

+ (3.3)


1
2
(IDD

x→ξ − TαDD
x→ξ ) −TαND

x→ξ SαDD
x→ξ SαND

x→ξ

−TαDN
x→ξ

1
2
(INN

x→ξ − TαNxN
ξ ) SαDN

x→ξ SαNN
x→ξ

RαDD
x→ξ RαND

x→ξ
1
2
(IDD

x→ξ + T̃α∗DD
x→ξ ) T̃α∗ND

x→ξ

RαDN
x→ξ RαNN

x→ξ T̃α∗DN
x→ξ

1
2
(INN

x→ξ + T̃α∗NN
x→ξ )




γu(x)|ΓD

γu(x)|ΓN

Bα
ν u(x)|ΓD

Bα
ν u(x)|ΓN


Remark 2. If Cauchy data are compatible with a Calderon’s operator involving a different set
of constitutive and source parameters, then Cauchy data, consistent with a set, α, of parameters,
will not be consistent with this new set, say, α(0) and also the calculated complementary data will
extended different fields associated with the volumetric potential, with the single layer and double
layer potential fields inside Ω. As consequence of this, a discrepancy between the two fields of
solutions of complementary problems

D
(1,2)

α(0),Ld,Cauchyα := u
(1)

α(0),Ld,Cauchyα − u
(2)

α(0),Ld,Cauchyα

will take place to indicate that we have introduced a wrong parameters values. Note that we subscript
with the symbols α(0) to indicate a trial with a wrong parameters value, Ld to indicate an specific
Lipschitz dissection of Cauchy data and Cauchyα to indicate that Cauchy data are consistent we
the exact parameters value α.

4 Discrepancy Field in the Diffusion-Absorption Elliptic
Model

One of the simplest model with non uniform materials properties in which discrepancy fields can
be investigated is the diffusion (cα(x)) and absorption (aα(x) model problem:

Lαu(x) = −∇ · cα(x)∇u(x) + aα(x)u(x) if x ∈ Ω;
γ[u](x) = u(x) if x ∈ ∂ΩD;
Bα

ν [u](x) = cα(x)∇u(x) if x ∈ ∂ΩN ;
(4.1)

4.1 Dirichlet functional

The main properties of the system are given by the functional

Φα(u, v) :=

∫
Ω

[cα(x)∇u(x)∇v(x) + aα(x)u(x)v(x)]dx (4.2)

with has remarcable properties such as, if u = v are functions in a normed space, then Φα(u, u) is
the energy norm. If u = ϕi and v = ϕj , i, j = 1, 2, 3, ... are finite elements basis in a Galerkin
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approximation, then Φα(u, u) is the sum of stiffness and absorption matrix. If u = v = ϕi,
i = 1, 2, 3, ... are orthonormal eigenfunctions in the spectral problem for this model, then λi :=
Φα(ϕi, ϕi) are the respective eigenvalue. The rate of decay of the sequence {µi := 1/Φα(ϕi, ϕi), i =
1, 2, ...} gives information about the ill-conditioning of this system of the inverse coefficients problems
associated with this model. Moderately ill-posed for polynomial decay and severely ill posed for
exponential decay.

4.2 Weak mixed problem

The weak solution for mixed problems with this model is implemented with the First Green Identity:

Φα(u, v) =

∫
Ω

Lαu(x)v(x)dx+

∫
∂Ω

Bα
ν [u](x)γ[v](x) for all v ∈ H1(Ω) (4.3)

The variational interpretation of the First Green Identity gives a weak formulation, problemWα
fα,gD,gNν

,

for the mixed problem (1.2): Find (u, λ) ∈ H1(Ω) × H− 1
2 (∂ΩN ) where λ is a conormal trace of

H1(Ω). 
Φα(u, v)− ⟨γ[v], λ⟩∂ΩD = ⟨fα, v⟩Ω + ⟨gN , γ[v]⟩∂ΩN

⟨γ[u], µ⟩ = ⟨gD, µ⟩∂ΩD

∀(v, µ) ∈ H1(Ω)×H− 1
2 (∂ΩN ).

(4.4)

Note that ⟨γ[v], λ⟩∂Ω =
∫
∂Ω

γ[v]λdsx =
∫
Ω
γ∗[λ]vdx = ⟨γ∗[λ], v⟩Ω defines the an extension operator

γ∗[.] : H− 1
2 (∂Ω) → H1(Ω). The Lagrangian functional is for this mixed problem is

Aα(v, λ) :=
1

2
Φα(v, v)− ⟨γ[v], λ⟩∂ΩD − ⟨f, v⟩Ω + ⟨gD, λ⟩∂ΩD − ⟨γ[v], gN ⟩∂ΩN

and the critical point variational formulation is stated by

Theorem 2 (Lagrangian Functional Critical Point). The pair of fields (u, λ) ∈ H1(Ω)×H− 1
2 (Ω)

is solution of the mixed problem Wα
fα,gD,gNν

⇔ Aα(u, µ) ≤ Aα(u, λ) ≤ Aα(v, λ) for all (v, µ) ∈
H1(Ω)×H− 1

2 (Ω).

The unique solvability of the saddle point problem (4.4) is assured by the Lemma

Lemma 3 (Stability condition). The stability condition

cS∥|λ∥|
H

− 1
2 (∂ΩD)

≤ sup
0 ̸=v∈H1(Ω)

(γ0v, λ)∂ΩD

∥|v∥|H1(Ω)

is satisfied for all λ ∈ H− 1
2 (∂ΩD).

Demostration of the theorem (2) and lemma (3) can be found in [8].

5 Finite Elements Formulation

The weak formulation for mixed problems can be computationally implemented with linear Lagrangian
finite elements. The linear system to be solved is given by the following problem: To find (Uα,Λdir) ∈
RNv×Np ×RNdir×Np such that{

(Kα +Aα)Uα − TrTdirΛdir = Fα + TrTneuGneu

TrdirUα = Gdir

where size(Kα) = size(Aα) = [Nv, Nv], size(Fα) = [Nv, Np], size(Gdir) = [Ndir, Np], size(Gneu) =
[Nneu, Np], size(Trdir) = [Ndir, Nv] and size(Trneu) = [Nneu, Nv].
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Here Nv , Ndir , Nneu and Np are respectively the number of vertices on Ω ∪ ∂Ω , ∂ΩN , and the
number of problems with the same parameters α values and same Lipschitz boundary dissection. We
also note that in order of facilitates the iterative calculations with guess parameters, the assemble of
matrices must minimizes the computational cost of recalculations with trial values of the parameters.

Fig. 1. Typical finite elements mesh used in the model

Fig. 2. Typical synthetic Cauchy data calculated with Lagrange multiplier
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Table 1. Lagrange multipliers L2(Ω) errors and order of convergence estimation with
mesh refinement

L NΩ NΓ ∥|c ∂um
∂ν

− λh∥|1L2(Γ) coc1 ∥|c ∂um
∂ν

− λh∥|2L2(Γ) coc2

2 29 16 6.5485 −−− 2.0245 −−−
3 92 32 1.4720 2.1534 0.4083 2.3099
4 322 64 0.3547 2.0531 0.0765 2.4116
1 1232 128 0.0872 2.0235 0.0139 2.4625
6 4833 256 0.0217 2.0100 0.0025 2.4897
7 19090 512 0.0054 2.0041 0.0004 2.4998
8 74562 1024 0.0013 2.0016 0.0001 2.5018

We have implement the finite elements method with Lagrange multiplier to facilitate calculations
involving the solution of the mixed boundary problems of kind (4.4) in a more straightforward way.
Of course, the use of pde solvers such as the Matlab pde tool box or others similar solvers can also
be adopted. Typical finite elements mesh used for produces synthetic Cauchy data calculated with
Lagrange multiplier are shown in Figs. 1-2, respectively. The Lagrange element shape adopted is
linear. We have check with computer experiment the possibility of violate the sufficient condition
of adoption of a Lagrange multiplier mesh with at least double size of the solution field mesh and
obtain a positive result for adoption of the same mesh for the two calculations.

We made L2(Ω) estimate by supposing that the Matlab PDE toolbox calculations of the conormal
trace, c ∂um

∂ν
, are appropriated reference. In check of order the convergence, denoted by coc, we use

[8] the Aubin-Nitche trick

coc :=
log(∥|c ∂um

∂ν
− λhl∥|L2(Ω))− log(∥|c ∂um

∂ν
− λhl+1∥|L2(Ω))

log(hl)− log(hl+1)
. (5.1)

The typical coefficients parameters values adopted in the model are the following. The conductivity
is calculated with the function c = 1 + exp(−C ∗ ((x − xc)

2 + (y − yc)
2))), where C, xc, yc are

the conductivity parameters. The absorption coefficients is constant a = 1. The source is also
constant f = 10. The Dirichlet boundary data can be zero or calculated by a function like u =
umax ∗ (1 − s) ∗ (1 + s), where s is the variable on the edge and its maximum value is umax = 10.
In Table 1 we shown a check of L2(Ω) error and order of convergence for those typical values.
The superscript 1 and 2, respectively, indicates the case of non null Dirichlet data given by given
function in one of the edges and zero in all others edges, and the case of null Dirichlet data in all
edges.

5.1 Existence of discrepancy fields between complementary solutions

The numerical determination of the internal discrepancy field for diffusion absorption model can
be stated in the following way: since for a given association of a Lipschitz domain with a source
distribution, the Calderon’s operator with non homogeneous source is a restriction which the Cauchy
data must satisfy in order to be a consistent data with boundary value problems. If the inverse
problem Pα

Fα,H,Hν
is solved with trial parameters values α(0) ̸= α, which is the exact value, the

associated Calderon’s operator will present a gap. Then the Complementary solutions associated
with Cauchy data will misfit the calculated values, that is presents a internal discrepancy between
calculated solutions.

In the next Fig. 3 we shown an example of the Discrepancy Field that will depend on Lipschitz
boundary Dissection. The supposed exact parameters are [C, xc, yc, a, f ] = [6, .1, .2, 1, 1] and the
trial values are [3, .5,−.5, 3, 2].
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Fig. 3. Numerical discrepancy field calculation with parameters values different from
exact ones

5.2 The variational method for the discrepancy field

The discrepancy field is a difference between two solution of the operator equation Lα with the
same source fα. An immediate consequence of this is that it is an Lα-harmonic function. That is:

D
(1,2)

α(0),Ld,Cauchyα ∈ H1
Lα

(Ω) := {v ∈ H1(Ω)|Lαv = 0}

Also, the First Green’s Identity states

Φα(D
(1,2)

α(0),Ld,Cauchyα , v) =

∫
∂Ω

Bα
ν [D

(1,2)

α(0),Ld,Cauchyα ](x)γ[v](x) for all v ∈ H1(Ω) (5.2)

Proposition 1 (Null Set). For a Lipschitz Boundary Dissection on ∂Ω indexed as Ldand the
Cauchy Data consistent with a set of parameters α and discrepancy D12

α0
for complementary problems

calculated with trial parameters α0 , the Dirichlet Functional

Φα(u
(1)
α0,Ld,Cauchyα − u

(2)
α0,Ld,Cauchyα , v) = 0

for all test function v ∈ H1
0 (Ω). The numerical evidence of this proposition can be seen in the next

Fig. 4. In these calculation, until index 80 we have boundary points and non null values of Dirichlet
functional. For the other interior points the functional is null.

This results evidence the interior character of the discrepancy fields.
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Fig. 4. Dirichelet Functional at boundary and interior test functions

5.3 Optimization problem based on the discrepancy fields

The inverse parameters Problem (2.19) can now be posed with the following optimization problem:

Problem 1. In the guess set of parameters α(0) in the interval{[α1, α2] ⊂ RNα}, to find the set of
parameters α that minimizes some distance between complementary solutions

u
(1)
α,Ld,Cauchyα and u

(2)
α,Ld,Cauchyα

for all parameters consistent Cauchy data and all respective Lipschitz dissected solutions.

5.4 Distance based on the discrepancy

Based on Theorem of Complementary Solutions we create some discrepancy function that measures
observed differences for guess value of the parameters. Norms in the solution space for the direct
problems can be adopted, that is,

dα(0),Ld,Cauchy = ||u(1)

α(0),Ld,Cauchy
− u

(2)

α(0),Ld,Cauchy
||V , (5.3)

where V can be some norm or any other measure such as Kullback Leibler divergence or Bregmann
distance. The simplest will be to choose the Chebyshev distance in the context of Least Squares
method. So

d∞α(0),Ld,Cauchy = max
Ld,Nv

{u(1)

α(0),Ld,Cauchyα − u
(2)

α(0),Ld,Cauchyα}, x ∈ Ω)

is appropriated since finite elements solutions are usually continuous. Numerical experiment related
with the distance based discrepancy and Nelder-Mead optimization can be found in [10].
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5.5 The least squares model

Let α be the correct unknown parameter vector. Let α(0) some parameter guess. The first order
expansion in α of the exact discrepancy field

u
(1)
j,α,Ld

− u
(2)
j,α,Ld

= 0 (5.4)

suggest the following approximation system to be solved in the least squares sense

u
(1)

j,α(0),Ld
− u

(2)

j,α(0),Ld
+

Nα∑
k=1

∂

αk
(u

(1)
j,α,Ld

− u
(2)
j,α,Ld

)|α(0)∆αk = 0 (5.5)

for all nodal values at vertices j = 1, ..., Nv, all Lipschitz dissections Ld = 1, ..., NLd and all Cauchy
data compatible with the exact parameters value. The linear system inversion obviously must, if
necessary, be stabilized with an appropriated choose of a regularization methodology. The model
based on diffusion-absorption problem in the bi-dimensional square geometry shown in Fig. 1 can
be programmed to solve the system (5.5).

The exact conductivity parameters used to generates the synthetic Cauchy data are [C, xc, yc, a, f ] =
[6, 0.1, 0.2, 1, 1]. Least squares errors on the vector of parameters with the conductivity, absorption
and source parameters starting with the following set of parameters trial [C0, x0, y0, a0, f0] =
[3, .5,−.5, 3, 2] They are reconstructed with minimizing of least squares error. Fig. 5 shown the
errors evolution with iteration. Finally, the least-squares reconstruction is shown in Fig. 6. The
influence of the Lipschitz dissection investigation will not be presented in this work.

Fig. 5. Convergence of parameters to exact values under the least squares method

Fig. 6. Least squares reconstruction of conductivity
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6 Conclusions

In this work we present a methodology based on over prescription of Cauchy data with Lipschitz
Boundary Dissection for elliptic systems parameters determination. A finite elements formulation
for solution of Multiple Complementary Direct Mixed Problems with wrong values of trials parameters
is presented. We explore the concept of Complementary Solutions and the existence of Discrepancy
Fields for trials with wrong parameters values on coefficients and sources functions. Based on Least
Squares and L∞ norm of Discrepancy Fields, we presents numericals experiments of parameters
determination. Based on the results the existence of discrepancy fields for complementary mixed
problems is put in evidence and so its dependence on wrong values of constitutives parameters can
be use for correct parameters values consistents with given Cauchy data.

Acknowledgements

This work is supported by Brazilian Agencies CNPq and CAPES.

Competing Interests

Author has declared that no competing interests exist.

References

[1] Mclean W. Strongly elliptic systems and boundary integral equations. Cambridge University
Press; 2000.

[2] Ern A, Guermond JL. Theory and practice of finite elements. Applied Mathematical Sciences,
Springer. 2004;159.

[3] Sauter SA, Schwab C. Boundary element method. Springer series in Computational
Mathematics. 2011;39.

[4] Kress R. Linear integral equations. Applied Mathematical Sciences, Springer. 1982;82.

[5] Hsiao G, Wendland W. Boundary integral equation. Applied Mathematical Sciences, Springer.
2008;164.

[6] Hormander L. The analysis of linear partial differential operators I, II, III. Grundlehren Math
Wiss, Springer-Verlag, Berlin. 1985;274.

[7] Calderón A. Lebesgue spaces od differentiables functions and distributions. Partial differentials
Equations, Proc. Symp. Pure Math. 1961;4:33-49.

[8] Steinbach O. Numerical approximation methods for elliptic boundary value problems. Springer;
2008.

[9] Wloca J. Partial differential equations. Cambridge University Press; 1987.

[10] Roberty NC. Simultaneous reconstruction of coefficients and sources parameters in elliptic
system modelled with many boundary values problems. Mathematical Problems in Engineering;
2013.
Available:https://doi.org/10.1155/2013/631950

——————————————————————————————————————————————–
c⃝ 2020 Roberty; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser
address bar)
http://www.sdiarticle4.com/review-history/64666

89

http://creativecommons.org/licenses/by/4.0

	Introduction
	Operators representation for the system of equations (1.1)
	Direct problem with strongly elliptic operators

	Boundary Integral Equation Methodology in Inverse Problems
	Fundamental solution
	Boundary integral equation, reciprocity gap equation and green's function equation
	Green's function Methodology for extension with mixed data
	The Calderon projector and the integral Equations based Metho-dologies for mixed data problem solution
	The inverse problem
	The Parameters to Cauchy Data Implicit Function

	 Complementary Problems
	 Complementary problems with normal boundary conditions
	Complementary Cauchy data associated with Lipschitz boundary dissection
	Complementary problems on Lipschitz domains

	Discrepancy Field in the Diffusion-Absorption Elliptic Model
	Dirichlet functional
	Weak mixed problem

	Finite Elements Formulation
	Existence of discrepancy fields between complementary solutions
	The variational method for the discrepancy field
	Optimization problem based on the discrepancy fields
	Distance based on the discrepancy
	The least squares model

	Conclusions

