
 

Journal of Advances in Mathematics and Computer Science 
  
35(9): 34-56, 2020; Article no.JAMCS.64455 
 

ISSN: 2456-9968 
(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851) 

 

 

_____________________________________ 

*Corresponding author: E-mail: lattanzio.lattanzi@alice.it; 
  
 

An Innovative Approach to the Finite Sequences of Prime 
Numbers 

 
Daniele Lattanzi1* 

 
1Former ENEA, Nuclear Fusion Department, Frascati Research Centre, Frascati, Roma, Italy. 

 
Author’s contribution 

 
The sole author designed, analysed, interpreted and prepared the manuscript. 

 
Article Information 

 
DOI: 10.9734/JAMCS/2020/v35i930321 

Editor(s): 
(1) Dr. Leo Willyanto Santoso, Petra Christian University, Indonesia. 

Reviewers: 
(1) Antonio Aparecido de Andrade, São Paulo State University, Brazil. 
(2) Samuel Damilare John, Federal University of Agriculture, Nigeria. 

(3) Elizabeth Alejandrina Guzman Hernandez, Universidad Nacional Autonoma de Mexico, Mexico City. 
Complete Peer review History: http://www.sdiarticle4.com/review-history/64455 

 
 
 

Received: 25 October 2020 
Accepted: 29 December 2020 

Published: 30 December 2020 

_______________________________________________________________________________ 
 

Abstract 
 

An innovative approach that treats prime numbers as raw experimental data making use of 
experimental/computational mathematics and the approximation methods is presented in order to get 
advanced and more exact formulations of the canonical form �� = �(�) ≈ � ln � being �� the prime value 
and � its counter. The use of many different functions - such as the inverse of the modified chi-square 
function 1 ��

� (�,� ��⁄ )⁄  with its three parameters �, � and �� = ��(�), the function ����  with the ad-
hoc � values being � = 2 − 2� , the function �� ln �, the function ∑ ��� ��� �, the harmonic series �� 
and its approximation by Euler and so on - as fit functions of finite sets i.e. sequences of prime numbers 
leads to induction algorithms and to new relationships of the kind �� ≈ �(�)  though within the 
approximations of the calculations with all the estimations better than that of the standard formulation 
�� ≈ � ln �. In such a manner, refined formulations with higher precisions are got showing that there are 
many ways to treat the finite sequences of prime numbers. Comparisons among the various methods are 
made in order to find the best formulation of a new and more refined relationship in a closed form that 
can be valid to find the most approximate value of a prime starting from its counter in the finite case. 
 

 
Keywords:  Prime number sequences; data fits; modified chi-square function; experimental mathematics; 

computational mathematics. 
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1 Introduction  
 
The issue of prime numbers in number theory has always been a challenge to face and still nowadays it 
remains one of the major open problems notwithstanding the many theoretical successes achieved both 
historically and recently [1-15] owing also to the great importance of the issue and its strict relations to 
physics [16-26]. There are many physical and even biological phenomena [17] which imitate the behaviour 
of prime numbers so that prime numbers display a paramount importance both in physics and in 
mathematics.  
 
However the main concern is the fact that, unlike all the usual numerical progressions, neither an exact 
relationship in a closed form that links the value of a prime �� ∈ N to its counter � ∈ N i.e. �� = �(�)  has 
yet been found at present nor there is an analytical law that links any prime number �� to its preceding ����. 
More probably, simply none of these relations exists so that it is not possible at present to state that the 
induction principle holds for prime numbers. 
 
Likewise, there are strong doubts about the nature itself of prime numbers, whether deterministic or 
stochastic or even showing both aspects and this dichotomy, if any, must be still investigated and explained. 
 
Thus the prime number problem seems to be one of the so-called intractable problems [27,28]. An 
intractable problem is one which is very difficult to solve where, because of the great number of rules and/or 
ways and/or (more or less hidden) variables to be taken into account, one cannot quickly reach the goal so 
that there would be just a method to treat intractable problems i.e. approximations [29,30]. Many real-world 
problems are of this kind as for instance theories explaining the economic or the climate change are 
necessarily approximate due to the high number of parameters and variables involved, many of which 
hidden.  
 
In mathematical domains, where a set of exact rules is available, we encounter intractability, though seldom, 
due to the great number of possible applications of the rules so that approximation is an attractive technique 
for use in problem solving because it allows to treat and solve some intractable problems and at the same 
time it can frequently lead to more efficient solutions to tractable problems which do not need a precise 
answer. As a matter of fact in many cases the exact solution is no more desirable than an approximate one.  
 
This paper investigates how approximations can be used to produce explanations in the mathematical field of 
prime numbers which show a sort of hidden intractability and from this viewpoint, as for the nomenclature 
i.e. terminology, the term fit is used all along the article as a synonym of approximation together with the 
two terms data interpolation and extrapolation. 
 
Starting from the classical Prime Number Theorem, PNT, (�) ≈ � ln �⁄  , it is well known that an equivalent 
formulation is  �� ≈ � ln �. [5] and that’s why in the present context the author shall refer to the standard 
PNT as to the approximate and asymptotic law �� ≈ � ln �. Nonetheless, despite its brilliance, it is well 
known that this canonical representation does not work at best to get the finite value of a prime number 
��  ∈  P ⊂  N starting from its counter � ∈ N and the same happens for many other approximations such as, 
for instance, Pn ≈ � ∙ {��(�) + ��[��(�)]} and so on. 
 
In addition another question arises. If this standard limit holds asymptotically how does the prime sequence 
reach this behaviour in the infinite limit? Is there any pattern on its trend towards this limit? The aim of the 
present work is to answer these questions too and to do so an innovative approach to the prime number 
problem is shown in the present report starting from some notable results got in previous studies by the same 
author [31-33] where the finite sequences of prime numbers have been examined from both the statistical 
and the analytical viewpoint fitting their differential distribution functions and the finite sequences of their 
frequencies {fn }≡ {�/��} as well as of {ρn }≡ {��( Pn )/��(�)} by the modified chi-square function 
Xk

2(�,�/��) with its three parameters � , �  and �� = ��(�)  thus finding remarkable unexpected results 
among which the scale non-invariance [34,35] of the finite sequences of primes, their scaling laws and their 
correspondence with the finite progressions {Cα ∙nα } Cα, α ∈ R and � = 2 + 2� . In addition, the 
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implementation of the function ��
�(�,�/��) to the finite progressions {��} has led to an elementary (in that 

not needing the use of complex functions) and general (i.e. valid for all the zeroes from –∞ up to + ∞) 
experimental evidence of the Riemann hypothesis [36]. 
 
In the present article the same innovative approach is suggested again for the values ��/� starting from the 
computational viewpoint [37-48] and making use, among all the other functions, of the inverse of the 
modified chi-square function with k degrees of freedom 
 

1 / ��
�(�,�/��)  =  1 / [�/(2 ∙��/�) ∙(�/2��)(�/���) ∙���/��]                                                                 (1) 

 

with � ∈ (1.5,2–) ⊂ (1.00,2.00) ⊂ R+  � = 2–2�   �� = ��(�) =  decay parameter, �  an ad-hoc free 
coefficient and the values of ��/� = �(�/2)  easily found in the net [49, 50]. This function has been 

identified, together with all the other functions discussed later on, as one of the best fit functions along the 
whole study to match the finite sequences of {fn

–1 }≡ {Pn /� } from the analytical viewpoint, namely 
fitting/interpolating-extrapolating/approximating the actual data points ��/� themselves. The aim is not only 
to construct a computational model of the finite sequences {��/�} but even to build a new version (or new 
versions) of the classical formulation �� ≈ � �� (�) in a closed form more reliable and precise than the old 
one though approximate to find the value of a prime starting from its counter �� = �(�)  in the finite case. 
 
The features of the ��

�[�,�/��(�)] function have been described before [31-33,36], as already told, together 
with all the characteristics of the fits.  
 
The basic methodology has been to assess the best fit for a few (some hundreds or even less) actual prime 
numbers got from the many websites of the net [51-54] and randomly chosen belonging to a finite 
set/sequence, hence achieving the equation of the fitting curve, repeating the calculations for many further 
sets/sequences and then getting a general formula that could fit all the primes, with the due approximations, 
from  � = 1  i.e. �� = 2  up to the maximum value of ���� = 2 ∙10�� = 2� that is ��� = ����� =
75,674,484,987,354,031~  ~ 75.6745�15 = 75.6745 ∙10��  and 
 ��(2�) = 35.2319235754706305696871... In such a manner prime numbers have been treated merely 
just as raw experimental data, with the advantage of having neither random nor systematic errors thus 
simplifying the calculations a lot. However the final results have errors, though small, owing to the 
inaccuracies i.e. imprecisions of the fits performed and, of course, the maximum attention has been paid to 
reduce all these errors as much as possible that is to the least attainable values. The well-known principle of 
ALARA (in this case applied to errors which must be maintained As Low As Reasonably Achievable) has 
been kept in mind in all the calculations and fits.  
 
In other words, starting from the actual values of � and �� got by the net and considered for a few cases (i.e. 
a few data-points that is prime numbers ��) and using the method of data interpolation and extrapolation that 
is fitting i.e. approximating the data by ad hoc functions, it has been possible to assess a general formula 
holding for all prime numbers, though with approximations that is errors or uncertainties.  
 
In other cases, the differences or the percent differences between the actual prime values �������� = �� and 
the standard values � ∙��(�) have been fitted by ad hoc functions f(n) thus getting  �� ≈ � ∙��(�) + �(�). 
 
The accuracy and precision, random and systematic errors, error sources, error propagations and reliability 
of the results have been investigated, being these issues crucial to the whole algorithm, as explained in detail 
in the already cited works by the same author and as usually done in physics in treating experimental data 
[55-59].  
 
The function (1) has been used as one of the best fit functions to match the finite sequences {����}≡ {��/�} 
and the truncated progressions {�� ∙��} having domain N and co-domain R+ with � ∈ (0,+ 1) ⊂  R+. In 
other words any single value ��/� can be approximated by the corresponding value of 1/��

�[�,�/��(�)] 

and of �� ∙��  with � = 2–2�  thus leading to a general formula, however valid within the due 
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approximations. The rationale underlying the entire matter has been to use this function taking advantage of 
the adjustment of its three parameters �, � and ��(�)  which allow to optimize the fits as much as possible 
up to 99.99%  and even more whenever possible. The same has been done also by the other fitting functions 
used in the study as shown later on. In other words a plot & fit algorithm has been set up. Of course all the 
canonical statistical markers have been calculated, examined and optimized in all the fits and in the same 
manner the fit parameters of any fitting process have been kept under strict control in order to assure the 
maximum reliability and consistency of the results. 
 

2 New Forms of the Prime Number Theorem 
 
Starting from the canonical form �� ≈ � ∙��(�) [5] it is easy to check that it lacks from precision for the 
finite value of any prime number �� as already shown in Fig. 1a where the comparison between the actual 
values ��/� and the values of the canonical PNT i.e. ��/� ≈ ��(�) is reported. The large difference between 
the two data sets is remarkable also in Fig. 1b looking at the percentage difference �%  between the actual 

values �����/�  and the values of the canonical PNT i.e. �% = {[(actualPn/�)–��(�)]/(actualPn/�)}∙100  

(top) as well as at the difference �� = (��������/�)–��(�)  (bottom). The different trends of the two 
variables �%  and �� are interesting too in that completely different one each other.  
 
As a matter of fact, while the percentage difference �%  approaches zero in increasing n so that the 

asymptotic result limn→∞�% = 0+ is correct, yet the difference  �� = �����/� – ��(�)  increases more and 

more vs. ��(�) being limn→∞dn= limn→∞[actualPn/�–��(�)]= + ∞  
 

 
 

Fig. 1.a. comparison  ����� /� and ��(�)      b. differences between  ����� /� and ��(�) 
 
In addition, another property can be easily verified. Just like tossing a coin [60], the initial behaviour of 
prime numbers ��  (or ��/�) vs. � , as well as of the differences, shows fluctuations which seem to be 
random, afterwards smoothing to a well-defined curve, what suggests that, after a first transient phase, prime 
numbers might have a deterministic aspect which can be described analytically though approximately by 
means of analytical functions.  
 
Thus, in the present report, many methods are presented which have been implemented in order to assess a 
relationship �� ≈ �(�) more precise than the classical form  �� ≈ � ∙��(�) making use of computational 
mathematics and starting from the examination of a limited number of actual prime numbers ��   and 
afterwards extending the results to the whole set of prime numbers P. 
 
The methodology used, that is that of experimental mathematics or computational mathematics with all the 
necessary approximations, is very simple in principle and it takes advantage of the recent advent of 



simulation based inference. In addition it needs not so many data at least in the present framework. Just for 
example, the famous historic formula
 

∑k=0→nk =  1 +  2 +  3 +  …  +  (�–
 
got by Gauss considering all the (�/2
 
1 +  (�)  =  2 +  (�–1)  =  3 +  (�
 
for ∀ � ∈ N  
 
can be found also using computational mathematics starting from few data, just the initial ones, and applying 
the induction principle considering that:
 
∑k=0→1� =   1  =  1 ∙ 1.0  =   1 ∙ 2
∑k=0→2� =   3  =  2 ∙ 1.5  =   2 ∙ 3
∑k=0→3� =   6  =  3 ∙ 2.0  =   3 ∙ 4
∑k=0→4� =  10 =  4 ∙ 2.5  =   4 ∙ 5
∑k=0→5� =  15 =  5 ∙ 3.0  =   5 ∙ 6

                                      
∑k=0→n� =  … … .… … ..=  � ∙ (� +
 
Of course both methods lead to the same result with the difference that the latter makes use of computational 
mathematics, of the interpolation and the extrapolation principles, as called in physics for the treatment of 
experimental data points, equivalent to the induction principle in mathematics. 
 
As another example, it has to be considered that the well
original form was conjectured by Gauss (again) just on the basis of the 

primes and confirmed theoretically only later on also with corrections
 
These examples are reported just to show the power of experimental mathematics and its methodology. In 
addition, in the present case, the technique of treatin
implemented with all its basic concepts of probability, statistics, distribution of errors with their 
propagations, correlations and so on as alread
 

2.1 The canonical PNT corrected by the 
 
It has been already told that two main features are evident in the previous Fig. 1a and b: the first is the high 
fluctuations of the data points at low values of 
��(1,000) ÷  ��(10,000) ~  6.90775527898
second is the regular behaviour of the values starting from approximately these values. 
 
Therefore, ignoring the initial terms, the exploitation of these two circumstances leads to fit the 
thus the corresponding data points, after dropping the first ones by an ad
hoc curve in the plane, in this case chosen as an exponential decay of  
 

�% ≈ (4.184 ± 0.012) + (11.6907 ±

with the values of the two fit markers 
on the coefficients (they too very low ranging from 
Hence, neglecting the uncertainties in order to simplify the calculations, one gets  
 
Pn/n ≈  ��(�)  +  �%  ≈  ��(�) ∙{1 +

Lattanzi; JAMCS, 35(9): 34-56, 2020; Article no.JAMCS.64455

simulation based inference. In addition it needs not so many data at least in the present framework. Just for 
example, the famous historic formula 

–2)  +  (�–1)  +  � =  � ∙(� + 1)/2   

2) identical and symmetrical sums 

�–2)  =    …     =  (�–2)  +  3 =   (�–1)  +  2 =  (�) +

be found also using computational mathematics starting from few data, just the initial ones, and applying 
on principle considering that: 

2/2 =  1 ∙ (1/2 +  1/2)  
3/2 =  2 ∙ (2/2 +  1/2)    
4/2 =  3 ∙ (3/2 +  1/2)    
5/2 =  4 ∙ (4/2 +  1/2)    
6/2 =  5 ∙ (5/2 +  1/2)    

                               
1)/2 =  � ∙(�/2 + 1/2)       

Of course both methods lead to the same result with the difference that the latter makes use of computational 
mathematics, of the interpolation and the extrapolation principles, as called in physics for the treatment of 

to the induction principle in mathematics.  

As another example, it has to be considered that the well-known standard prime number theorem in its 
original form was conjectured by Gauss (again) just on the basis of the behaviour of the first thousand 

s and confirmed theoretically only later on also with corrections � (√�), � (√� ∙��(�)), etc. 

These examples are reported just to show the power of experimental mathematics and its methodology. In 
addition, in the present case, the technique of treating experimental data (that is prime numbers) has been 
implemented with all its basic concepts of probability, statistics, distribution of errors with their 
propagations, correlations and so on as already pointed out. 

corrected by the exponential decay or growth 

It has been already told that two main features are evident in the previous Fig. 1a and b: the first is the high 
fluctuations of the data points at low values of � , basically up to 

90775527898÷ 9.2103403719 which seem to be randomly spread; the 
of the values starting from approximately these values.  

Therefore, ignoring the initial terms, the exploitation of these two circumstances leads to fit the 
he corresponding data points, after dropping the first ones by an ad-hoc  function, described by an ad

hoc curve in the plane, in this case chosen as an exponential decay of  �%   vs. ��(�) as in Fig. 2a leading to 

± 0.0055) ∙n–1/(24.0337±0.06184)  R2= 0.99995   X2
t-v= 9.825

 
with the values of the two fit markers �� (very close to 1.) and ���

� = �����������
�  (very low) and the errors 

on the coefficients (they too very low ranging from 0.5‰ to 3‰) assuring the goodness of the fit itself. 
Hence, neglecting the uncertainties in order to simplify the calculations, one gets   

+  [4.184 +  11.6907 ∙n–1/24.0337]/100} 
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simulation based inference. In addition it needs not so many data at least in the present framework. Just for 

+  1   

be found also using computational mathematics starting from few data, just the initial ones, and applying 

Of course both methods lead to the same result with the difference that the latter makes use of computational 
mathematics, of the interpolation and the extrapolation principles, as called in physics for the treatment of 

known standard prime number theorem in its 
of the first thousand 

, etc.  

These examples are reported just to show the power of experimental mathematics and its methodology. In 
g experimental data (that is prime numbers) has been 

implemented with all its basic concepts of probability, statistics, distribution of errors with their 

It has been already told that two main features are evident in the previous Fig. 1a and b: the first is the high 
, basically up to 

which seem to be randomly spread; the 

Therefore, ignoring the initial terms, the exploitation of these two circumstances leads to fit the �%  values, 
hoc  function, described by an ad-

as in Fig. 2a leading to  

825�–5 

(very low) and the errors 
ness of the fit itself. 
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the value �� = 24.0337 being the decay constant of the exponential function. The further percentage 
difference ��%  between the actual ��/�  values and the values got by this latter best fit formula are 
calculated and shown in the next Fig. 2b for about 1,000 values of  
 
��(�)  =  ��(2) → ��(2�15)  =  0.69314718055994530… → 35.231923575470630569  
 
Again, after some initial fluctuations inessential for the calculations and the viewpoint here adopted, one can 
do a further fit, again by an exponential decay curve, for about 800 values of ��%  showing (Fig. 2b) a 
regular trend from ��(�)~ 12. up to ��(�)~ 35.231923 i.e. �~ 162,755 → 2�15 that is �� =  2,201,281 →
75,674,484,987,354,031  leading to the formula  
 
��%  ≈  (0.2283 ± 0.0014) + (2.346 ± 0.004) ∙n–1/(14.22232±0.04028)      R2= 0.99976     
 

 tvX
2= 1.29259�–5  
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Fig. 2. a. Values of �%  and their exponential decay fit     b. The related ��%  difference 
 
that is again an exponential decay with decay constant  �� = 14.22232.  
 
Again neglecting the uncertainties just to simplify the calculations, the final result is 
 
Pn /� ≈  ��(�)  +  �%  +  ��%   ≈  ��(�)  +  ��(�) ∙{[4.184 +  11.6907 ∙n–1/24.0337 ]/100 +  [0.2283 +
  + 2.346 ∙n–1/14.22232]}/100 

 
Once again the newly found difference �3% = ���%  with the classic formula �� = � ∙��(�) is calculated 
vs. ln(n) (though not shown) displaying a curve looking like the superposition of a decay curve of 
exponential type (thus a recurrence effect) and maybe damped oscillations. 
 
At this point the fitting procedure stops in that it is not easy to find the fit function. One of the interesting 
effects is that the initial random fluctuations appear later and later as the ���  order of ��%   increases and that 
the values of  ��%   diminish more and more vs. the order � (see the scale in the Figs. 2a and b so that the 
method appears to be promising. 
 
Plain to say of course that the procedure might go on thus showing that the best final formulation would 
seem to be the summation  
 
Pn/� ≈  ��(�) ∙[1 +  (αo ±  δαo)  +  ∑k=1→N(αk ±  δαk) ∙n – 1/(τk ± δτk)]   

 



 
 
 

Lattanzi; JAMCS, 35(9): 34-56, 2020; Article no.JAMCS.64455 
 
 
 

40 
 
 

with the many coefficients (��  ± ���) and the many decay constants (�� ± ���) to be assessed up to the 
maximum attainable precision so that at least a mainframe, instead of the simple PC used by the author, 
would be necessary for a thorough and deep investigation of the problem. However the procedure could stop 
already with Fig. 2b as it clearly shows that lim�→ ∞ ��% ~ 0+ and no further approximation should be 
necessary.  
 
Nonetheless what is important, in the present context, is to set down a process useful to help in solving, or at 
least showing the way to solve, the problem of prime numbers and of their apparent unpredictability and 
volatility.  
 

Turning back to the simple difference �� = �����/�–��(�) (the bottom curve in Fig. 1b) it can be fitted as 
in the next Fig. 3a by a double exponential growth dropping the initial data i.e.  
 

dn  =  actualPn /� – ��(�) ≈–(0.23989± 0.0145)  +  (1.54092± 0.0504) ∙[1 –  n–1/(7.81528±0.26674) ] +

 + (2.61733 ± 0.0507) ∙[1 – n–1/(50.12546±4.69417)]        R2 =  0.999968       test-valueX
2 =  4.6�–6 

 
and again plotting the further differences with the canonical PNT vs. ��(�) one gets the Fig. 3b thus 
obtaining a very good approximation not only for the values themselves (≈ 10�� ÷ 10��) but also for the 
trend probably that of damped fluctuations around zero.  
 
Plain to say that the values of the different statistical markers used for the different fits, i.e. the Bravais-
Pearson correlation coefficient ��, the non-linear index of correlation �, the least square sum LSS, the chi-

square test value ����, the standard deviation �� = ��  (the variance � = √�� is used too) etc. are typical of 
the fit and are a measurement of the goodness of the fit itself. 
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Fig. 3. a. Fit of  ��  by a double exponential growth.    B. The second difference �� �  =  ��
�  

 
The same consideration can be applied to the fitting function that not only can be of many kinds but it can be 

even expressed in many ways as for instance by the difference �� = = �����/�–��(�) in terms of ��[��(�)] 
leading to a linear fit vs. ��[��(�)]. The use of this correlation function leads to a PNT of the form (with 
negligible errors i.e. inaccuracies) 
 

Pn/� ≈  ��(�)  +  dn ≈   ��(�) – 0.95925 +  1.00147 ∙��[��(�)]  
a more accurate formulation of the canonical form, already known theoretically. 
 
Going on with this procedure the second difference ���  = ��

� with the actual values of ��/� can be got 
though the comparison between the related plot shows that the result is worse than in the previous case.  
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2.2 The refinement of the canonical PNT by a polynomial 
 
Starting again from the canonical form ��/� ≈ ��(�) an obvious thing to do is to fit the actual values of 
��/� by a polynomial in ln(n) of the first, second, third and so on degree i.e.  
 
��

�
≈ �� + �� ∙��(�) + �� ∙���(�) + �� ∙���(�) …  +  �� ∙���(�) =  �� + � �� ∙

���→ �
���(�) 

 
he study has been limited to the value � = 5 and for any of these cases the linked fit has been examined with 

the results shown hereafter, where � = 100 is the number of the data points, being � < 1�–4the probability 
that a data point may fall off the fit curve between ± �. 
 
1rst degree fit   ��/� ≈  (0.764 ± 0.027) + (1.059 ± 0.001) ∙��(�)   �� = 0.99992    � = 0.109 
 
2nd degree fit 

��/� ≈  (0.28848± 0.01352)  +  (1.11946 ± 0.00155) ∙��(�) – (0.00157 ±                           ± 3.9�–5) ∙
���(�)                         �� = 0.99998                   � = 0.02537 
 

3rd degree fit      ��/� ≈  (0.07212 ± 0.01259)  +  (1.16378 ± 0.00237) ∙��(�) – (0.00411 ±

±  1.312�–4) ∙���(�)  +  (4.28116 ± 0.219539)�–5 ∙���(�)      �� = 1.000000      � = 0.01116  
 

4th degree fit ��/� ≈ (0.06734 ± 0.02643) + (1.165144 ± 0.00702) ∙��(�)–(0.00424±  ± 6.253�–4) ∙

���(�) +  (4.7442 ± 2.2597)�–5 ∙���(�)–(5.8543 ± 0.28433)�–8 ∙���(�)  �� = 1.000000         � =
0.01122  
 

5th degree fit    ��/� ≈   (0.25167 ±  0.04979)  +  (1.09778± 0.01715) ∙��(�) – (0.00451 ±

±  0.00214) ∙���(�) – (4.66717 ± 1.2308)�–4 ∙���(�)  +  (1.38534 ±  0.329314)�–5 ∙

���(�) – (1.40693±  ± 0.331994)�–7 ∙���(�)               �� = 1.000000        � = 0.01028  
 
Of course the value ��  =  1.000000 means merely that the precision of the algorithm used for the fit is 
limited to the value of 10–6 = 1E–6 that is up to the 6th decimal digit. All these five curves plotted on a ��/� 
vs. ��(�) graph (though not shown) are undistinguishable one from each other so that, in order to clarify the 

whole situation, the five plots of the percentage differences  �% = [(�����/�–���)/�����/�]∙100  are 
shown in the next Fig. 4a (for the 1rst and 2nd degree polynomial fits) and b (for the 3rd, 4th and 5th degree 
polynomial fits).  
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Fig. 4. A. The 1rst & 2nd degree % difference     b. The 3rd, 4th & 5th degree % difference 
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It is manifest that a polynomial fit of higher and higher degree is a good choice, in that the error term 
diminishes more and more despite the fact that the 3rd and 4th degree fits appear similar. Therefore higher 
degree polynomials would be very useful though difficult to manage and other solutions in a closed form 
have been looked for and found.  
 
The next step is quite plain and consists in fitting the actual values of ��/� by the polynomials  
 
��/� ≈  ∑ � ��→ � �� ∙���� (�) 
 
where the value of  � = 2 has been chosen just as an example. Thus the differences  
 
��  = �����/� – ∑ � ��→ ��� ∙���� (�) 
 
have been reported vs. ����(�)  as shown in the next Fig. 5a and fitted by the relationship 
 

�� ≈ (0.812 ± 0.004)  +  (2.868 ± 0.002) ∙���/(�.�����± �.�����)    �� = 0.9996   ���� = 6.8�–5  
 
thus obtaining a formula, though approximate, for a better PNT that is (apart from the errors)  
 

��/� ≈  ��(�) + ��  ≈  ��(�) + 0.812 +  2.868 ∙���/�.�����  
 

Also this formula has been compared with the actual values ��/�  finding that the trend of the further 
difference ��� is that reported in Fig. 5b where, again as in the other cases already found, after some initial 
random fluctuations the trend becomes regular.  
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Fig. 5. a. �� = ���� � /�–��� vs. � �� (�)⁄           b. 2nd differences �� � = ���� � /�–��� vs. ��(�) 
 
Of course other approaches might be attempted as for instance reporting the actual values ��(��/�) vs. the 
variable  ��[����(�)]  as shown in Fig. 6a. to get the (weakly) quadratic fit  
 

��(��/�) ≈ 0.19236 ± 9.254�–4–(0.9815 ± 6.�–4) ∙��[����(�)] – (0.0044 ± 1.�–4) ∙ ∙
��2[��− 1(�)]           �2 = 1.000000       � = �� = 4.732�–4        � < 1 �–4   

 
and afterwards calculating the differences with the actual values of ��/� as in Fig. 6b that shows that the 
difference d in this case is fitted by   
 

��  ≈ – 0.99684 ± 0.00554 – (1.02763± 0.00383) ∙��[����(�)]– �0.00446± 6.516�–4�∙

 ���[����(�)]                   ��  =  0.99995             � =  0.00283               � <  1�–4 
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being � the probability that a value may fall off the fit between ± �, with the limit    lim�→ ∞ �� = 0�   The 
latest figure is to be compared with the analogue Figs. of the differences of the preceding techniques.  
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Fig. 6. a. Quadratic fit in ��[����(�)]               b. Difference d between ���� � /� and fit 
 
As in the earlier situations the fit procedure stops here for space reasons. However there are clues that one is 
entering a new area of prime numbers that is the stochastic area. This is not the context in which to debate 
such a matter owing to its deepness and vastness, nonetheless it is clear that this issue, together with many 
other topics emerging from the present study and not yet examined, is of the utmost interest to understand 
the inner nature of prime numbers and it deserves future profound investigations. For instance it would be 
very interesting to examine the statistical behaviour of the distances between any actual prime number and 
the fit curve got by any technique in order to ascertain whether or not there is a stochastic trend in addition to 
the deterministic one found just now in this study. This will be the matter of future studies.  
 
Once again, one of the most important remarks is that the whole matter and the investigation methodology 
adopted is well suited to many analyses and versions thus showing a high versatility that can be used in 
future in view of the utmost results. As a matter of fact, the power of the methodology of computational 
mathematics and the ensuing approximations is the paramount statement of the entire research, well beyond 
any single result found. 
 

2.3 The refinement of the canonical method by �� ∙��(�)  =  �(�) ∙��(�) 
 
A further technique has been using an ad hoc coefficient �� = �(�) so that a more refined relation of the 
type ��/� ≈ �(�) ∙��(�) = �� ∙��(�)  can be written. The difference with the ��/� = �� + �� ∙��(�)  
method is evident in that now the coefficient �� i.e. �� = �(�) is not fixed but it depends on the prime 
counter �.  
 
The best fit of few primes (about 100 values from �~ 10,000 up to � = 2�15 = 2 ∙10��, neglecting the few 
first values) leads to the function  
 

��  =  �(�) ≈  1.000 +  (0.13894 ± 0.00206) ∙���/(��.�����± �.�����  +  (0.0482 ± 0.0032) ∙
∙��/�.��������          ���

� = 4.479�–6       �� = 0.9921 
thus  
 

�� ≈ �� ∙� ∙��(�)   ≈  � ∙��(�) ∙[1.000 +  0.13894 ∙���/��.�����]   
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Fig. 7. a. The coefficient  �� = �(�) vs. ��(�)          b. The trend of the coefficient �(�) 
 

where the latter form neglects both the term ��/�.��������~ 1.00 and the errors (i.e. uncertainties) on the 
parameter values.  

 

One can easily check (from Fig. 7a too as well as analytically) that the asymptotic trend of the canonical 
PNT is respected at all being lim�→ ∞ �� = 1.  

 

However the result, though apparently better than the classical �� ≈ � ∙��(�), is not satisfying first of all 
because the error (approximately 4.3%  though not shown) does not decrease vs. n but on the contrary it 
seems to increase so that some corrections must be brought. As a matter of fact, instead of the fixed 
coefficient (0.13894 ± 0.00206) one should write the varying coefficient �� = �(�)  owing to the scale 
non-invariance of the finite sequences of prime numbers, as shown later on. Thus  

 

��  =  �(�)  ≈  1.0000 +  �(�) ∙���/(��.�����± �.�����)  

 

and a deep investigation shows that   

 

�(�) ≈ (0.1281 ± 0.0026) + (0.057 ± 0.002) ∙�� ��(�)/(��.��± �.��   �� = 6.58�–7  �� =  0.99981  

 

Hence the final formula for a PNT refined in such a way is  

 

��  ≈  � ∙�(�) ∙��(�)  ≈  � ∙��(�) ∙[1 +  (0.12812 +  0.05656 ∙� + 1/22.83) ∙���/��.�����] 

 

neglecting the errors just for practical calculations.   

 

The Fig. 7b describes the trend of the coefficient c(n) while the Fig. 8 shows the inaccuracy of this technique 
that is the % error of ��/� ≈ �(�) ∙��(�) much better than that of the previous technique.  

 

At the present time this latest method appears to be very good in that leading to very small errors as in Fig. 8 
a & b the trend of which again seems to suggest that of damped oscillations around zero, though still to be 
thoroughly checked with many more data.  
 



 
 
 

Lattanzi; JAMCS, 35(9): 34-56, 2020; Article no.JAMCS.64455 
 
 
 

45 
 
 

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
-0,10

-0,08

-0,06

-0,04

-0,02

0,00

0,02

0,04

0,06

0,08

0,10 a 

%
 P

n/
n
=

(c

n)
*l

n
(n

)

ln(n)

14 16 18 20 22 24 26 28 30 32 34 36
-0,02

-0,01

0,00

0,01

0,02

0,03
 b 

 %
 P

n
/n

=

(c

n
)*

ln
(n

)

ln(n)

 
 

Fig. 8. a. The percent error of  �(�) ∙��(�) vs. ��(�)      b. Zoom of the previous plot 8a 

 

As a matter of fact it is plain and evident that many more data points, namely primes, are required in order to 
validate this latest assumption not only in this case but also in all the other cases showing such apparent 
trend.  

 

2.4 The Fit of � �/� by the modified chi-square function 
 

An important fact concerning the finite sequences of prime numbers as already shown in other                    
works by the same author [31-33] is to be mentioned. This circumstance is the leading point i.e. the core of 
the whole study in that it can be shown that any finite sequence of {��/�} can be fitted by the functions 

1/��
�(�,�/��)  and �� ∙�� at the utmost level with � = 2–2�  within the ranges � ∈ (0,+ 1) and � ∈

(0,+ 2). In addition, the function �� ∙��(�)  too is a fit function of these sequences as already shown. The 
next Fig. 9 a and b shows the three fits of the actual values of {��/�} by �� ∙��(�)  by 1/��

�(�,�/��)and by 
�� ∙��   together with the canonical form ��/� ≈ �(�) in the example of the finite sequence of 200 data-
points of {��/�}   � = 1� → 10� = 1 ∙10� → 1 ∙10�� and the �%  differences between the fits and the 
actual ��/� values. The features are:    ���� /10�     fit 

 

by   � ∙ln(�) ≈  1.097050419011610∙ln(�)          �� = 0.99999855      � = 0.997737           

 

 ���
� = 0.020084                  ��� = 0.205178   

 

by   �� ∙��  ≈  8.97848152322202∙��.�������������     �� = 0.999420   � = 0.998835       

 

���
� = 0.010509              ��� = 0.115539 

 

by    1/��
�(�,�/��)                  with         � = 1�–3      �� = 1.76769784891350� + 52   

 

��/� = 1.028002319483930     � =  2 – 2� =  2–2 ∙0.0449075421740= 1.9101849156520 

 

�� = 0.999420               � =  0.998835             ���
�  =  0.010456             ��� =  0.115539           
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Fig. 9. a. Fits by � ∙��(�), �/��
� ,�� ∙��   & ��(�)   b. The �%  differences for the 3 previous fits 

 
The next Fig. 10 a and b (semi-log plots) show the case of the finite sequence of 200 data-points of {��/�} 
up to 40� = 40�12 showing the following features:  {����/40�}   fit 
 
by   � ∙ln(�) ≈  1.080994362779060∙ln(�)          �� = 0.999996          � = 0.997890  
 
    ���

� = 0.013165               ��� = 0.19187 
 
by  �� ∙��  ≈ 12.2869934353820∙��.�������������    �� = 0.999705    � = 0.999409    
 
���

� = 3.728�–3                ��� = 0.05871 
 

by     1/��
�(�,�/��)         with     � = 1�–3        �� = 2.17161641280590� + 68      

 
 ��/�  = 1.019736442394910     � = 2–2� = 2–2 ∙0.032344741313730=  1.93531051737254  

 
�� = 0.999705             � =  0.999409              ���

�  =  3.7184�–3           ��� =  0.05871   
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Fig. 10. a. Fits by � ∙��(�), �/��
�,�� ∙��   & ��(�)   b. The %  differences for the 1rst three fits 

 
where two features are evident: the improvement of all the fit markers in increasing the value  of n i.e. of �� 
and the almost perfect matching between the fit markers (��, �, ���

�  & LSS) of the 1/��
�(�,�/��) fit and the 

�� ∙�� fit. Actually in all the cases examined the fits between these two latest functions have the following 
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features: �� = 1.000…  up to the 15th decimal digit; � = 1.000…  up to the 15th decimal digit; 
���~ (10��� ÷ 10���) and ���

� ~  (10��� ÷ 10���). 
 

As a matter of fact, being 1/� − ��
�(�,�/��) = 1/[�/(2 ∙��/�) ∙(�/2��)(

�

�
��) ∙�–���/���] ≈≈ �� ∙��  it 

is enough to set �� = ��(�,��) = 1/[�/(2 ∙��/�) ∙(1/2��)(
�

�
��)] to get the result  ����/� ∙���/���  ≈ �� 

and being ��(��) > > ��(�) always as shown in Fig. 11a, i.e. �� > > � so that ���/���~ 1 one gets ����/� =

��  i.e. � = 2–2� at the utmost precision.  
 
Another interesting feature of these fits is that one has the possibility to choose the fitting functions not only 
on linear plots (Fig. 9 a & b) but also on semi-log plots as shown in Fig. 10 a & b thus being able to select 
the best way to illustrate a fit. 
 
In both cases (the linear plot and the semi-log one) the huge difference between the actual values of ��/� 
and the classic ��/� ≈ ��(�) is remarkable. In addition, being in these two examples ���� = �(10�) =
1.09705041901161 ≠  ���� = �(40�) = 1.08099436277906 one has the validation of the dependence 
of ��  on � i.e. �� = �(�) and of the soundness of the previous fit by ��� ∙��(�) as well as of the scale non-
invariance of the finite sequences of prime numbers. 
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Fig. 11. A. ��(��) vs. n for the 90 {� �/�} sequences     b. �(�) for the 90  {� � /�} sequences 
 
Many interesting results and findings have been obtained in such a manner, among which the trend of all the 
parameters vs. n, that is �� = ��(�) in the previous Fig. 11a with lim�→ ∞ �/�� = 0�  � = �(�) as in the 
previous Fig. 11b with lim�→ � �(�) = 2� and also ��/� =  ��/�(�) in the next Fig. 12a with lim�→ ∞ ��/2 =

1�  useful to derive reliable formulations for the relationship �� ≈ �(�). The matter has been also deeply 
treated in previous works, already cited, by the same author for the variables {��}≡ {��(��)/��(�)} and 
{��}≡ {�/��} with remarkable findings. 
 
The fact that it is possible to treat the fits in two different ways - remarking that the previous graph in Fig. 9a 
can be plotted vs. n also on a ��� scale appearing like Fig. 10a (and the same for the uncertainties Figs. 9b 
and 10b) - shows that there are several ways to make the fits of the finite sequences of ��/� and of �� 
themselves too.  
 
Another remarkable finding of this study is the result that the finite sequences of prime numbers have not the 
property of scale invariance and that scale laws hold for them. In addition any prime sequence {��/�} is in 
correspondence with one and only one progression {����} as well as with the function �� ∙��(�) for which 
the limit exists lim�→ � �/ = 1�  thus giving back the standard law �� ≈ � ∙��(�). So it is evident that useful 



 
 
 

Lattanzi; JAMCS, 35(9): 34-56, 2020; Article no.JAMCS.64455 
 
 
 

48 
 
 

relationships can be got for the prime sequences {��/�}  in order to obtain a relationship for the values of 
�� = �(�), yet approximate.  
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Fig. 12. a. Plot of ��vs. ��(�)                        b. The % � of the fit by �/��
�(��–�,�/��) 

 
Combining the three fit functions �� = ��(�)  � = �(�)  and ��/� =  ��/�(�)  into Eq. (1) suitable 

relationships can be found linking ��/� to �. However the propagation of errors is very high in this case so 
that this technique deserves deeper investigations from this viewpoint too. As a matter of fact it is well 
known that for a set of data points fitted by an analytic function just like, for instance, the inverse of the 
modified chi-square function where � = �(�) ��/� =  ��/�(�) �� = ��(�)  the propagation of the errors is 

trivially (�� = 0 being � fix and �� = 0 of course):  
 
�(1/��

�) =  [[�(1/��
�)/���/�]∙�� + [�(1/��

�)/���/�]∙(���/�/��) ∙�� + [�(1/��
�)/���]∙���    

 
so that even small errors ��, ���/� and ��� can lead to big uncertainties on the final formula and that’s why 

it is not shown here, apart from its complexity. Despite that, Fig. 12b shows that the resulting error might 
have again the features of damped oscillations around zero, that is diminishing more and more vs. ln(n): an 
encouraging effect.  
 
Notwithstanding its poor precision, the technique of fitting the ��/� values by the function 1/��

�(�,�/��) 
with the accurate choice of the two parameters � , ��  and possibly �  too remains very interesting and 
intriguing in primis in that leading to the conclusion that any finite set ��/� can be put into correspondence 
not only with the related 1/��

�(�,�/��)  function but also with the associated function �� ∙�� (� > 0) as 
also shown later on and that the finite sequences of prime numbers (whatever their form:  �� = �/��   �� =
���(��)/���(�)   ��/� or ��  themselves) have not the property of scale invariance holding for them the 

scaling laws given by the modified chi-square function in one of its four forms ± (1/٠)��
�(�,�/��) and by 

the progressions �� ∙�± � and � =  2 ±  2�. Such results could explain the eluding and elusive nature of 
prime numbers. 
 

2.5 The Fit of � �/� by the function �� ∙��   
 
According to the finding that any finite sequence of prime numbers can be put into correspondence with the 
related values of the 1/��

�(�,�/��) and thus with the related values of the �� ∙��  function, the last natural 
and obvious fit of the Pn/n values is  ��/� ≈  �� ∙��   with the ad-hoc values of the parameters�� =
�(�,�) =  ��(�) and � = �(�). 
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Fig. 13. a. The plot of  ��   vs. ��(�)                           b. The fit of  �   vs. ��(�) 

 
Again the basic approach has been to choose few (~100) values of ��/�, approximately equally distributed 
within the range � ∈ [1�3,2�15]≡ [1 ∙10�,2 ∙10��], thus cutting the first few primes, finding the value of 
�� ∙��   ≈  ��/� for any prime number, finding the values of both �� and � and fitting all these values �� 
and � by the ad hoc curve or function as reported in the Fig. 13 a for ��  =  ��(�) and b for � =  �(�) with 
the fitting equations  
 
�� ≈–(1.015 ± 0.002) + (0.457 ± 0.002) ∙ln(�) –(0.00105 ± 5�–5) ∙���(�)  
 
�� = 0.9999  � = 0.034   

 
a weakly quadratic fit in ln(n) but basically a linear fit within approximately 2‰ i.e.  
 
��  ≈ – 1.015 +  0.457 ∙��(�)  

 
neglecting the uncertainties on the coefficients, while for �(�)  
 

� ≈ (0.01823 ± 0.0014) + (0.895 ± 0.012) ∙���/(�.��± �.��) +  (0.154 ± 0.008) ∙���/(��.��± �.��)      

��  =  0.99983                   � =  6.58�–7  
 

The final result is   
 
��/� ≈ �� ∙�� ≈ [–(1.015 ± 0.002) + (0.457 ± 0.002) ∙��(�) –(0.00103 ± 5�–5) ∙���(�)]∙ 
 

∙� ∗∗{(0.01823 ± 0.0014)  +  (0.895 ± 0.012) ∙���/(�.��± �.��)  +  (0.154 ± 0.008) ∙∙���/(��.��± �.��)}  
 

(where � ∗∗�(�) = ��(�)) leading to the % error (in comparison with the actual values of Pn/n) identical to 
that shown in the previous plot of Fig. 12b as it must be owing to the coincidence 1/��

�(�,�/��)  =

 1/[�/(2 ∙��/�) ∙(�/2��)� ���⁄ ∙���/���] ≈  �� ∙��  at the utmost level as already told. 
 
Despite a result not better than the previous ones certainly much better than the standard � ∙��(�) and most 
of all a very interesting one in that showing seemingly damped oscillations around zero, once again just like 
the fit by 1/��

�(�,�/�� function. 
 
As for the future advancements, turning back to the modified chi-square function in the form 1/��

�(�,�/��, 
it has to be remarked that it is a reliable and flexible function that can be used also for many further cases 
other than those here shown, as for instance to treat, in the same form 1/��

�(�,�/��, the relative frequencies 
of the first significant digits of prime numbers and of the first two, three and four (and so on maybe) 
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significant digits of �� in addition to the generalized Benford’s law (GBL) [61] or, in the form ��
�(�,�/��, 

the sequential Bayes factors in favour of equal occurrence probabilities of the four irrational numbers 

�,�,��2 and √2 [62] in order to show whether these irrational numbers are normal, that is whether or not do 
the 10 digits occur equally often in their decimal expansions. 
 

2.6 The fit of � �/� by the harmonic series 
 
Going back to the standard prime number theorem, a refined version of it could examine the harmonic series 
��  considering that the discrete function that associates the natural numbers � ∈  N  with the harmonic 
numbers �� is the usual logarithm function ��(�) [63] so that  
 
 ��  =  0            ��  =  ∑ 1/����→ �  ≈  ��(�)            (�,� ∈  � ≥ 1) 
 
taking into account that harmonic numbers and logarithms are asymptotically convergent i.e.  lim�→ � ��/
ln (�)  =  1. Thus it seems natural and trivial to examine the fit of  ��/�  by the harmonic numbers i.e.     
��/�  ≈  ��  =  ∑ 1/����→ �  
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Fig. 14. a. Trends of  � � /�,   � �   and ��(�)          b. 2nd difference �� �  =  � � /� – (� ′� + �� ) 
 
Fig. 14a clarifies the actual values ��/�  compared with the discrete function ��  and the function ln(n) 

where it can be easily checked that the difference �� = ��–��/� seems to increase so that  lim�→ � �� = ∞   
 
However a closer look at the percent difference % � (not shown) reveals that starting from approximately 
��(�)~ 13.8 that is �~ 1�6  the % � begins to decrease. Whatever the situation, it is easy to ascertain that the 
harmonic series ��  is much better than the PNT in its standard form to fit the values of ��/�. Nonetheless, 
despite its reasonable results this part of the study has been dropped in that, implying the summation  
�� = ∑ 1/����→ �  as the best fit function, the memory of the PC used by the author could not allow to treat 
values of the summation ∑ 1/����→ �  with � > 6�6 that is ��(�) > 15.6. As already told the number of 6�  
is too small to allow to draw reliable conclusions so this topic, on the other hand promising using a 
mainframe, has been dropped.  
 
The same reason has compelled to drop the Euler formula for the representation of harmonic numbers 
expressing ��  in terms of a sum of binomials owing to the presence of factorials. As a matter of fact just at 
the value of 170! ~  7.2574156153080… � + 306  the memory of the PC used by the author fails. 
It is obvious that these interesting topics could be examined only by much more powerful tools that is by a 
mainframe or, even better, a supercomputer.  
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However, a step ahead can be made using the well-known approximation for �� with the Euler-Mascheroni 
constant  � =  0.57721566490153…    in the form of   (valid for � → ∞ )   
 

��/� ≈ �′�~ ��(�) + � + 1/(2�)–1/(12��) + 1/(120��)–1/(252��) + 1/(240��) + � (1/��)  
 
As usual the various stages are the same of the prior cases, that is consecutive approximations, finding the 
differences (and/or the percent differences) between the fit function (in  this case �′�) and the actual values 
of ��/�, fitting these differences by an ad-hoc analytic function, summing up, finding the new differences, 
fitting them by a new ad-hoc function and so on with an iterative process up to the maximum precision 
attainable or up to the step in which it is no longer possible to make any fit.  
 
The previous plot b of Fig. 14 shows the results obtained in the case of  ��/� ≈  �′� for what concerns the 
second difference neglecting the � (1/��) term.   
 

The best fit of the first differences �� = ��������/�–�′� vs. � (figure not shown) is:  
 

�� ≈–0.59124 + 1.98382∙�1–���/��.������+ 1.66071 ∙�1–���/��.������  
 
 �� = 0.99909        ���

�  =  0.00025   
 
while the best fit of the second differences ���(Fig. 14b) is:   
 
��� ≈–2.99128 + 0,18364 ∙��(�)–0.00528 ∙���(�) + 5.10702� − 5 ∙���(�) + 1.0071� − 6 ∙ 

∙���(�) – 1.97307�–8 ∙���(�)              ��  =  0.99902          ���
�  =  0.00038      

 
Once again another interesting result has been got for the final stage of the second difference ��� vs. � (plot 
14b) that seems to show the asymptotic limit lim�→ � ��� = 0�  what allows to assume that this 2nd 
difference might be the end of the fit procedure with an adequate number of data so that:      ��  ≈  �′�  +
 ��  +  ���        
 

3 Future Perspectives and Developments  
 
As a final comment it is well known that the famous relationship linking the Riemann Zeta function and the 
Euler product holds i.e.  �(�)  =  ∑ ���

���→ �  =  ∏ (1 − ��
��)��

���→ �  so that prime numbers are firmly 
related to the non-trivial zeroes of the Zeta Riemann function and another interesting correlation linking the 
finite sequences of the Zeta zeroes and the finite sequences of primes is reported just as an anticipation of the 
next future investigations. 
 
As a matter of fact, it has been checked that the modified chi-square function is appropriate to fit the trend of 
the finite sequences of the zeroes of Riemann zeta function �� as shown in the example of next Fig. 15a and 
the same for the ���� function of course.  
 
In this case (the first 100,000 = 100�  �� zeroes) the characteristics of the two fit functions 1/��

�(�,�/��  

and ����  are  � = 1�–06   � = 0.2497839450603    ��/� = 7.54077473653752      

�� = 2.1657654627587� + 07    � = 1–�/2 = 0.87510802746985  �� = 3.134839902477510   
 
while the fit parameters between �� and 1/��

�(�,�/�� ≈ ���� are  �� = 0.99998162   
 

 � = 0.999934179      ��� = 6.6206�–03   and    ���
� =  164.051436      
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Fig. 15. a. Fits of the first ��� Zeta zeroes ��                 b. Fits of the first �����/�� 
 
At the present time this part of the study is still under development being rich of expectations, opening a 
suggestive and intriguing scenario to be furtherly deepened and expanded.  
 
Moreover Fig. 15b shows the fit of ��/��   for the first 100� �  function zeroes up to ����  and the first 
100,000 prime ������ that is {�����/�����} by the 1/��

�(�,�/��   function with  
 
� = 1�–3      � = 1.545627290739160       ��/� = 1.196211772438570      

 
 �� = 1.2157612685612� + 14   

 
and the fit parameters  
 
��  =  0.997822      � =  0.995173       ��� =  0.461994088      ���

� =  0.616423 
 
and by the ����  function with the values    � = 0.22718635463042   �� = 1.2899201262216100 
 
and fit parameters ��  =  0.997822       � =  0.995173        ��� =  0.461994088         ���

�  =  0.655860     
despite the fact that in this case the former fit of the first 100,000 Zeta zeroes �� by the 1/Xk

2(A, tn/xo) function and by 
the ���� function (Fig. 15a) is much better than the latter fit of the first 100,000 ��/�� by 1/��

�(�,�/��  and 
����   (Fig. 15b) as clearly shown by  the values of the fit parameters.  
 

4 Discussion and Concluding Remarks  
 
Just to summarize, in conclusion the chief and leading findings of the current research are:   
 

- the finite sets of prime numbers ��/�  (and the same holds for the ��  themselves) have not the 
property of scale invariance holding for them the scaling laws given by vthe modified chi-square 

function and the ����   function with � = 2–2�  being  
 

��/� ≈ 1/��
�(�,�/��   =  1 / {�/(2 ∙��/�) ∙[�/2��(�)](�/2–1) ∙���/���(�)} ≈ ≈ ��� ∙�= �� ∙����/�    

 
- the ��/� values are best fitted by many further kinds of analytic functions, just some of which are 

reported in the present study, i.e. the nth degree polynomial in ��(�), the function �(�) ∙��(�), the 
harmonic series �� = ∑ 1/����→ �  and its approximation �′�  as well as probably further types of 

functions; in addition the percent differences % ��or differences �� = ��������/�–��(�) are fitted 
by the exponential decay or the (single or double) exponential growth, according to the variable 
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examined; thus it is a must to choose, among the many possibilities, the best approximation most 
suitable to find the most approximate value of ��;  

- the entire methodology and all these techniques allow to get the finite value of a prime number f 
�� ≈ �(�) starting from its counter n in many different ways though with approximations that is 
uncertainties;  

- all the prime sequences reach their infinite limit showing well-defined patterns on their trends towards 
the standard asymptotical limit; 

- it is implicit that a mainframe or, even better, a supercomputer could help a lot in reducing all the 
uncertainties first of all by examining as many prime numbers as possible;  

- as it is possible to find many inductive algorithms which allow to get the approximate value of a 
prime number �� ≈ �(�) from its counter n yet with uncertainties, so it is also conceivable to assert 
that prime numbers have a partial deterministic component in their behaviour without any doubt, as 
well as probably also a stochastic component resulting from the remainder (i.e. the difference between 
the ��������/� and the fit function values i.e. the distance of any prime from the fit curve) yet still to 
be studied. This still not uncovered aspect will be the issue of next studies. 

 
Nonetheless - though the research here shown has led to numerous interesting conclusions and results as 
well as to many findings all of them useful in ascertaining the nature of prime numbers - a caveat is 
necessary.  
 
There is no doubt that there are many means and ways to describe the deterministic aspect of primes, some 
of which shown here, and that many of these methods may result better (or even much better) than the ones 
here reported. Nonetheless, what is important in the present context is the methodology implemented and the 
innovative process exploited i.e. fitting prime number finite sequences by analytic functions in the 
framework of computational/experimental mathematics and the approximation theory.  
 
Soon after, it is the author’s opinion that it has little or no sense to examine a limited number of initial prime 
numbers i.e. ��������  with � < ~ 10,000  as they show a seemingly random behaviour without any 
significant trend differently from the �� with higher � values. The best thing to do, in order to understand the 
inner nature of prime numbers, is to treat as many of them as possible up to the highest achievable values of 
� and ��.  
 
Much more has to be done in the field by deepening many distinctive aspects and facets, most of all for what 
concerns the improvement of the calculations in order to reduce the uncertainties. Nonetheless the 
algorithms and the techniques here presented can open a new field of study rich of useful suggestions for 
number theory revealing all their power and efficacy in the future by the use of computers with faster and 
larger CPUs which could treat prime numbers one by one and not just one out of n as done in the present 
study. 
 
Finally, as a closing remark, it is to be highlighted that at this very early stage of the investigation what is 
important is not just the single result attained, however remarkable it might be, but the fact that an original 
methodology has been introduced that may reveal itself of the utmost utility now and in the future. In other 
words what is noteworthy is having laid out a route towards an inner comprehension of prime numbers and 
their behaviour. 
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