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Abstract 
 

In this paper, the test of unit root for bounded AR (2) model with constant term and dependent errors has 
been derived. Asymptotic distributions of OLS estimators and typet  statistics under different tests of 

hypotheses have been derived. A simulation study has been established to compare between different 
tests of the unit root. Mean squared error (MSE) and Thiel's inequality coefficient (Thiel’s U) have been 
considered as criteria of comparison. 
 

 
Keywords:  Bounded AR (2) model; asymptotic distributions; OLS estimators; typet  statistics; mean 

squared error; Thiel's inequality coefficient. 
 

1 Introduction 
 
Many unit root tests have been developed for testing the null hypothesis of a unit root against the alternative 
of stationarity, the tests for unit roots in AR (1) processes were first proposed and investigated by Dickey 
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and Fuller [1,2] but these unit root tests are proposed to unbounded time series in case of independent error 
terms. 
 
Cavaliere [3] tested the presence of unknown boundaries which constrain the sample path to lie within a 
closed interval that is in the framework of integrated processes of AR (1) model with a unit root or random 
walk model (with and without linear trend) and in (2002) he introduced the logged nominal exchange rates 

}{ ty  that change in time accordingly to a first-order integrated process, )1(I within the framework of 

non-managed flexible exchange rates. In (2005), Cavaliere [4] developed an asymptotic theory for integrated 
and near-integrated time series whose range is constrained in some ways. Such a framework arises when 
integration and cointegration analysis are applied to persistent series which are bounded either by 
construction or because they are subject to control. 
 

Cavaliere and Xu [5] defined bounded process as time series tx  with (fixed) bounds at bbbb ;, , is a 

stochastic process satisfying ],[ bbx t  for all t.  

 
Carrion and Gadea (2013) showed that the use of generalized least squares (GLS) detrending procedures 
leads to important empirical power gains compared to ordinary least squares (OLS) detrending method when 
testing the null hypothesis of unit root for bounded processes. In (2015), they discussed the unit root testing 
when the range of the time series is bounded considering the presence of multiple structural breaks. But they 
all concentrated on the model of bounded AR (1) with constant or without constant under various 
assumptions for the error terms, and in this paper the concentration will be on the bounded AR (2) with 
constant model in case of dependent errors.  
 

2 Test of Unit Root for Bounded AR (2) Model with constant Term in 
Case of Dependent Errors  

 
The bounded second order autoregressive AR (2) model takes the form:   
 

)1(,,...,1,2211 Ttuyyy tttt   
 

 where ty
 
is bounded time series with fixed bounds with lower bound at b  and upper bound at b , 

],[ bby t  , and 
1

1
2/11

1
2/1 ]1[,]1[    TcbTcb  and T  

is the sample size, 

ccRcc  and}0{/, , }9.0,...,2.0,1.0{1  , 010  yy , tu are dependent 

error terms which achieved Beveridge-Nelson Decomposition, 21 and  are the autoregressive 

coefficients and  is the constant term. 

 

2.1 Asymptotic distributions of OLS estimators under different tests of hypothesis  
 
Concepts of relative magnitude or order of magnitude are useful in investigating limiting behavior of random 
variables, where if )( xh and )( xg are two real functions that have a common domain ,RD   and if the 

following relationship is exists for any positive constant )0( kk  
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0

0

 lim , ( ) 

      Where, (  ( )).                                             (2)

h (x) 
  k           x  D - x

g (x)x  x

h (x) O g x

 




  

 
Schatzman [6] 
 

If 









ED

CB
A  an nm  matrix with )(Arankr   where B  is 

rr  and invertible 

then  the generalized inverse G for a given singular matrix A can be obtained as follows:  

 

)3(
00

01











B
G

 
 
And if an equation represented as:  
 

RxhxA  ,
 

 

Where, x is a vector or a matrix of unknown elements, h is vector or a matrix that has the same order as 

the product of xA . So, to obtain the forms of unknown elements of x the following equation is need to 

be used: 
 

)4(,)( RzzGAIhGx 
 

Where I  is an identity matrix, z is a vector or a matrix of real numbers and G  is the generalized 

inverse of the matrix A that satisfied AGAA  . Sawyer [7] 

 

If ty is a pure random walk without drift as ttt uyy  1 , where
 

010  yy , tu are dependent 

error terms, and assume that tu is defined as follows:  

 

)5(,...,2,1,1,)( 1011 TteeLeuu jtjjtttt  

   

 
Where: 
 

)6(
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Then the following relationship exists: 



 
 
 

El-Sayed et al.; JAMCS, 35(9): 14-33, 2020; Article no.JAMCS.64076 
 
 
 

17 
 
 

 

)7(,...,2,1,)1( 011 Tteu ts
t
ss

t
s   

 
 










































.....)...(

)...()...(

,)...(

)1(

2543

143203210

01321

0

0

e

ee

aa

ea

jjijijjjj

jtjjt

jj











 
 
By defining the following quantities:  
 

2
0

0

1 2

( ) , 0 ,1, 2 , ...

(1) (8)

. . . , 1 , 2 , . . . ,

j t t j s s s j

j j

t t

E u u j

y u u u t T

   

    


  




   


   


       
 
Then the following results are obtained:   
 

1
1

1 2 21
1 1 02

3/2 1
1 1 0

2 2 2 1 2
1 1 0

1) , 0 , 1 , 2 , . . .

2 ) { [ (1) ] }
(9)

3 ) ( )

4 ) [ ( ) ]

pT
t t t j j

dT c
t t t c

dT c
t t c

dT c
t t c

T u u j

T y u W

T y W r dr

T y W r dr



 






 


 


 


 

  

   


   


     
 

Where, )(rW c
c is a Regulated Brownian Motion, when 1r , then:  

 

1
1 (1) (1) (1) (10)dT c c

t t c cT
u W W   

 
 

By using equation (2) the results for orders of convergence of estimators in these equations will be as 
follows:  
 

1 / 2
1

1

1 1

3 / 2
1 1

2 2
1 1

1) ( )

2 ) ( )

3 ) ( )
. (1 1)

4 ) ( )

5 ) ( )

6 ) ( )

p

T
t t p

T
t t t j p

T
t t t p

T
t t p

T
t t p

T O T

u O T

u u O T

y u O T

y O T

y O T



 

 

 

 

 


  


  


  


  
    

Amer [8] 
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The asymptotic distributions of OLS estimators 21
ˆandˆ,ˆ   for bounded AR (2) model that 

represented by equation (1) for testing the null hypothesis 0,1,0: 210  H , (i.e.

ttt uyy  1 ) against the alternative hypothesis  1,1,0: 21  aH , (i.e.

tttt uyyy   2211  ) will be derived as follows: 

 

Lemma (1): If ty is a pure random walk without drift as ttt uyy  1 , where 010  yy , tu
are dependent error terms that achieved the Beveridge-Nelson Decomposition as in equation (7)

 
then as 

T
 the following results are obtained:   

 

1 2 21
1 2 0 12

3/2 1
1 2 0

2 2 2 1 2
1 2 0

2 2 1 2
1 1 2 0

1) { [ (1)] }

2) ( )
(12)

3) [ ( )]

4) [ ( )]

dT c
t t t c

dT c
t t c

dT c
t t c

dT c
t t t c

T y u W

T y W r dr

T y W r dr

T y y W r dr

  








 


 


 


  

   

   


   


     
 

Where, 10
2

1
2

0
2

0 , 




  sssss   and 

  
.)1(0   

 jj   

 
Proof:  
 
Part (1) 
 

From the successive substituting of ty then: 

 

2 1 1 (13)t t ty y u   
 

 
So, 
 

1 1 1
1 2 1 1 1 1 (14)T T T

t t t t t t t t tT y u T y u T u u  
         

 
 
By using equation (9) then:  
 

1 2 21
1 1 02

1
1 1 1

1) { [ (1)] }
(15)

2)

dT c
t t t c

dT
t t t

T y u W

T u u

 




 


 

   


    
 
Then, by substituting from equations (15 ) in (14) it can be concluded that:  
 

10
22

2
1

21
1 }])1([{   
 c

c
d

tt
T
t WuyT
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Part (2) 
 
From equation (13);  
 

3 / 2 3 / 2 3 / 2
1 2 1 1 1 1 (1 6 )T T T

t t t t t tT y T y T u  
         

 
 

From equation (11) the order of convergence of )( 2/1
11 TOu Pt

T
t    then: 

 
3/2

1 1 0 (17)dT
t tT u
     

 
By using equation (9) it can be concluded that:    
 

3/2 1
1 1 0 ( ) (18)dT c

t t cT y W r dr
       

 
Then, by substituting from equations (17 & 18) in (16) it can be concluded that:  
 

)0(,)( 1
1
021

2/3  
 ydrrWyT c

c
d

t
T
t 

 
 
Part (3) 
 
From equation (13); 
 

2 2 2 2 2 2 2
1 2 1 1 1 1 1 1 12 (19)T T T T

t t t t t t t t tT y T y T y u T u   
              

 
 

From equation (11) the order of convergence of )( 22
11 TOy Pt

T
t   and the order of convergence of 

)(2
11 TOu Pt

T
t   then: 

 
2

1 1 1

2 2
1 1

1 ) 0
(2 0 )

2 ) 0

dT
t t t

dT
t t

T y u

T u


  


 

   


   

 

By using equation (9) then:  
 

2 2 2 1 2
1 1 0 [ ( ) ] ( 2 1)dT c

t t cT y W r d r
    

 
 
Then, by substituting from equations (20 & 21) in (19), it can be concluded that:   
 

)0(,])([ 1
21

0
22

21
2  

 ydrrWyT c
c

d
t

T
t 

 
 
Part (4)  
 
From equation (13); 
 

2 2 2 2
1 1 2 1 1 1 1 1 ( 2 2 )T T T

t t t t t t t tT y y T y T y u  
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Then, by substituting from equations (20 (1) & 21) in (22) it can be concluded that: 
 

drrWyyT c
c

d
tt

T
t

21
0

2
211

2 ])([ 
 

 
 

Lemma (2): For model (1) and under the test 0,1,0: 210  H , then the asymptotic 

distributions of )1ˆ(,ˆ
1

2/1  TT 2
ˆand T will be as follows:   
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Proof: 
 
Model (1) can be rewritten in matrix form as follows:  
 

( 2 3 )Y X   u  
 
Where:  
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The OLS Estimators of 21
ˆ,ˆ,ˆ   are:  

 

YXXX   1)(̂
 

 
By using equation (23):  
 

uXXX  1)(ˆ 
 

 

Under the null hypothesis that 0,1,0: 210  H  or  010  then:  
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1

1 1 1 2 1

2
1 1 1 1 1 1 1 2 1 1

2
2 1 2 1 1 2 1 2 1 2

ˆ

ˆ 1 (24)

ˆ
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t t t t t t

T T T T
t t t t t t t t t t

T T T T
t t t t t t t t t t
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From equation (11) the order of convergence of T , t
T
t u1 , 

tt
T
t uy 11  , 11  t

T
t y

 
 

( 22  t
T
t y ) and 

2
11  t

T
t y (

2
22  t

T
t y ) will be )(TOp , )( 2/1TO p , )(TOp , )( 2/3TO p  and 

)( 2TO p respectively. Also, from equation (12 (1&4))) and by using equation (2) then the order of 

convergence of 1 2
T
t t ty u  , and 1 1 2

T
t t ty y   will be ( )PO T and 

2( )PO T respectively.  

 

Then, the order of convergence of the elements in equation (24) will be as follows:  
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To obtain the asymptotic distributions of the estimators equation (24) will be multiplied by the following 
scaling matrix: 
 



















T

T
T

T

00

00
002/1



 
 

Then equation (24) will be:  
 

  uXXX TTTT
  1111 )()ˆ( 

 
13/2 3/2 1/21/2

1 1 1 2 1

3/2 2 2 2 1
1 1 1 1 1 1 1 2 1 1

3/2 2 2 2 1
2 1 2 1 1 2 1 2 1 2

1ˆ

ˆ( 1)

ˆ

T T T
t t t t t t

T T T T
t t t t t t t t t t

T T T T
t t t t t t t t t t

T y T y T uT

T T y T y T y y T y u

T T y T y y T y T y u







  
    

   
        

   
        

     
  

       
           

(25)


 
 
 
 

  
 

Form equation (10), )1(1
1 c

c
d

t
T
tT

Wu  
, from equation (9), tt

T
t uyT 11

1


  , 

11
2/3


  t

T
t yT and 

2
11

2


  t
T
t yT convergence in distribution to }])1([{ 0

22

2
1  c

cW , 

drrW c
c)(1

0  and drrW c
c

21
0

2 ])([  respectively. Also, from equation (12), 

tt
T
t uyT 21

1


  , 21
2/3


  t

T
t yT  and 

2
21

2


  t
T
t yT  ( )211

2


  tt
T
t yyT

convergence in distribution to 10
22

2
1 }])1([{  c

cW , drrW c
c )(1

0 and 

drrW c
c

21
0

2 ])([ respectively. 

Then, as T  
and by using the above results equation (25) will be as follows:    



 
 
 

El-Sayed et al.; JAMCS, 35(9): 14-33, 2020; Article no.JAMCS.64076 
 
 
 

22 
 
 

 
1

5 5 5 5 (3 1), (i.e. vecto r o f order (3 1) of real num bers) (26)x A h x R
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Since the value of the determinant of 5A  is equal to zero, a generalized inverse for 5A  is need to be 

used. There is a generalized inverse 51G  of 5A  will obtained by using equation (3) as follows: 
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Now to obtain the forms of elements of 5x  in equation (26), since:  
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Then, by using equation (4) it can be concluded that:  
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Where
sz '

 are real numbers, then the asymptotic distributions of 
 

 21
2/1 ˆand)1ˆ(,ˆ  TTT  will be as follows: 
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2 1 2 1 2 21
0 0 02
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2 1 2 1
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Corollary (1): If there is another generalized inverse 52G of 5A  that can be obtained by using equation 

(3), it will be as follows: 
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Then, the asymptotic distributions of 21
2/1 ˆand)1ˆ(,ˆ  TTT  will be as follows: 
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2.2 Asymptotic distributions of the typet   statistics under different tests of 
hypothesis 
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In addition to the previous tests in (2.1), the tests that based on typet  statistics for the estimators

21
ˆandˆ,ˆ  under the test 0,1,0: 210  H , (i.e. ttt uyy  1 ) against 

1,1,0: 21  aH , (i.e. tttt uyyy   2211  ) will be derived as follows: 

 
Lemma (3): If the variance-covariance matrix of the estimators of model (1) under the null hypothesis

0,1,0: 210  H  that can be written in matrix form as follows:  

 
2 1ˆ( ) ( ) ( 2 9 )TV ar S X X     

 
Such that, 

1 2

1 1 1 2

2 1 2 2

1 1 1 2

1 2
1 1 1 1 1 1 2

1 2 1 1 2 1
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ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( )
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T T
t t t t

T T T
t t t t t t t

T T T
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T y y

X X y y y y

y y y y
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Then, the asymptotic distributions for 
21 ˆˆˆ and,  ttt will be as follows:  
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Where 21 ,  are defined as in lemma (2), 
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Proof:  

By multiplying equation (29) by T  that defined as in lemma (2),then; 
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2 1 1 1ˆ( ) ( ) (3 1)T T T T TV ar S X X         

 
So, by substituting from equation (30 (1,2)) in (31) then the variance- covariance matrix will be:  
 

3/ 2 3/ 2
1 2

3/ 2 2 2 2
1 1 1 2 3

3/ 2 2 2
2 1 2 2

ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( , )

ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( , ) (32)

ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ( )
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T Cov T V ar T Cov S B

T Cov T Cov T V ar
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As T and from the weak law of large number, Bell [9], and from equation (13 (1)) then the 

convergence in probability of 
2

TS   will be as follows: 

 
2 2

1 0
ˆ / ( 3) (33)pT

T t tS u T 
      

 

From equations (9 (3,4)), 11
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Then, as T , by using the above results equation (32) will be: 
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and 6A is the asymptotic distribution of the matrix .3
2 BS T


 
 

Since, 06 A  a generalize0d inverse 61G  of 6A  will obtained by using equation (3) and it will be 

as:  
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Now to obtain the forms of elements of 6x  in equation (37), equation (4) will be used, the forms of the 

asymptotic distributions of )ˆ(and)ˆ(,)ˆ( 2
2

1
2  VarTVarTVarT , and the asymptotic 

distributions for will be derived as follows:  
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Then, by using equation (4) it can be concluded that: 
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Where sz '  are real numbers, then the asymptotic distributions of ˆ( ),TVar  2
1̂( )T Var 

 
 

and 
2
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ˆ( )T Var  will be as follows: 
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To achieve the variances in equation (35) to be positive, 032 z  and it is assumed to be Tcz 32  and 

033 z  and it is assumed to be Tcz 33 .   

 

The statistics for the estimators will be obtained as:    
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Then, by substituting from equation (27) that contains the asymptotic distributions of OLS estimators

21
2/1 ˆand)1ˆ(,ˆ  TTT  , and (35) in (36) then the asymptotic distributions for 

21 ˆˆˆ and,  ttt
respectively will be: 

typet  21
ˆandˆ,ˆ 
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Corollary (2): If there is another generalized inverse 62G of 6A  that can be obtained by using 

equation (3), it will be as follows: 
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Then, the asymptotic distributions for 
21 ˆˆˆ and,  ttt will be: 
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3 Simulation Study 
 
A simulation study is used to obtain MSE and Thiel’s U under the null hypothesis ttt uyyH  10 :  and 

under the alternative hypothesis aH with constant term will be obtained in case of five samples size  T = 30, 

50, 100, 200 and 500 for five boundaries value 1.1and9.0,7.0,5.0,3.0 cc  in case of ten values 

for the coefficient of dependent errors 1.0and2.0,3.0,4.0,5.01   by 5000 replications 

as follows:     
 
OLS estimators of bounded AR (2) with constant model in case of dependent errors which obtained in 

lemma (2) that used the generalized inverse 15G and in corollary (1) that used the generalized inverse 25G  

are used to obtain MSE and Thiel’s U and the results can be summarized and discussed for the next five 
cases:  
 
Case (1): T = 30 

Table 1. Alternative hypothesis aH  for all values of of cc   (T= 30) 

 

cc                   1   

Criteria                     

0.5 0.4 0.3 0.2 0.1 -0.1 -0.2 -0.3 -0.4 -0.5 

G51 0.3 MSE H 0 H a 

Thiel's U H a 

0.5 MSE H 0 H a 

Thiel's U H a 

0.7 MSE 
Thiel's U 

0.9 MSE 
Thiel's U 

1.1 MSE 
Thiel's U 

G52 0.3 MSE H 0 

Thiel's U 
0.5 MSE H a H 0 

Thiel's U 
0.7 MSE H a H 0 

Thiel's U H a H 0 

0.9 MSE H a 

Thiel's U H a H 0 

1.1 MSE H a 

Thiel's U H a H 0 

 

It can be notice from Table (1) that 51G  approve the alternative hypothesis aH  for all values of cc   

except for values of MSE, 0.5and3.0 cc  in case of positive values of 1  and 52G approve the 

alternative hypothesis 
aH  for most values of cc  except for the values of MSE, Thiel’s U and 

3.0 cc for all values of 1 and for the values of MSE, Thiel’s U and 5.0 cc in case of 

negative values of 1 .  

Case (2): T = 50  
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Table 2. Alternative hypothesis 
aH  for all values of cc  (T= 50) 

 

cc               1  

Criteria 

0.5 0.4 0.3 0.2 0.1 -0.1 -0.2 -0.3 -0.4 -0.5 

G51 0.3 MSE H 0 H a 

Thiel's U H a 

0.5 MSE 
Thiel's U 

0.7 MSE 
Thiel's U 

0.9 MSE 
Thiel's U 

1.1 MSE 
Thiel's U 

G52 0.3 MSE H a H 0 

Thiel's U H a H 0 

0.5 MSE H a H 0 

Thiel's U H a H 0 

0.7 MSE H a H 0 

Thiel's U H a H 0 

0.9 MSE H a 

Thiel's U H a H 0 

1.1 MSE H a 

Thiel's U 
 

It can be notice from Table (2) that 51G  approve the alternative hypothesis 
aH  for all values of cc   

except for values of MSE, 3.0 cc  in case of positive values of 1 and 
52G approve the alternative 

hypothesis aH  for most values of cc   except for the values of MSE, Thiel’s U and 3.0 cc in 

case of negative values of 1 and for the values of Thiel’s U and 5.0 cc  in case of negative values 

of 1 .  
 

Case (3): T = 100  
 

Table 3. Alternative hypothesis aH  for all values of cc  (T= 100) 

 

cc               1  

Criteria 

0.5 0.4 0.3 0.2 0.1 -0.1 -0.2 -0.3 -0.4 -0.5 

G51 0.3 MSE H 0 H a 

Thiel's U H a 

0.5 MSE 
Thiel's U 

0.7 MSE 
Thiel's U 

0.9 MSE 
Thiel's U 

1.1 MSE 
Thiel's U 
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cc               1  

Criteria 

0.5 0.4 0.3 0.2 0.1 -0.1 -0.2 -0.3 -0.4 -0.5 

G52 0.3 MSE H a H 0 

Thiel's U H a H 0 

0.5 MSE H a H 0 

Thiel's U H a H 0 

0.7 MSE H a 

Thiel's U H a H 0 

0.9 MSE H a 

Thiel's U H a H 0 

1.1 MSE H a 

Thiel's U 
 

It can be notice from Table 3 that 51G  approve the alternative hypothesis 
aH  for all values of cc   

except for values of MSE, 3.0 cc in case of 0.3 and4.0,5.01   and 52G approve the alternative 

hypothesis aH  for most values of cc   except for the values of MSE, Thiel’s U and 3.0 cc in 

case of negative values of 1 and for the values of Thiel’s U and 5.0 cc  in case of negative values of 

1 .  
 

Case (4): T = 200 
 

Table 4. Alternative hypothesis aH  for all values of cc  (T= 200) 

 

cc   
              1  

Criteria 

0.5 0.4 0.3 0.2 0.1 -0.1 -0.2 -0.3 -0.4 -0.5 

G51 0.3 MSE H a 

Thiel's U 
0.5 MSE 

Thiel's U 
0.7 MSE 

Thiel's U 
0.9 MSE 

Thiel's U 
1.1 MSE 

Thiel's U 
G52 0.3 MSE H a H 0 

Thiel's U H a H 0 

0.5 MSE H a H 0 

Thiel's U H a H 0 

0.7 MSE H a 

Thiel's U H a H 0 

0.9 MSE H a 

Thiel's U 
1.1 MSE 

Thiel's U 
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It can be notice from Table (4) that 51G  approve the alternative hypothesis 
aH  for all values of cc   

and 52G approve the alternative hypothesis 
aH  for most values of cc   except for the values of Thiel’s 

U and 0.5 and3.0 cc in case of negative values of 1 .  

 
Case (5): T = 500 
 

It can be notice from Table (5) that 51G  approve the alternative hypothesis aH  for all values of cc   

and 
52G approve the alternative hypothesis aH  for most values of cc   except for the values of 

Thiel’s U and 3.0 cc in case of negative values of 1 .  

 

Table 5. Alternative hypothesis aH  for all values of cc  (T= 500) 

 

cc   
            1  

Criteria 

0.5 0.4 0.3 0.2 0.1 -0.1 -0.2 -0.3 -0.4 -0.5 

G51 0.3 MSE H a 

Thiel's U 
0.5 MSE 

Thiel's U 
0.7 MSE 

Thiel's U 
0.9 MSE 

Thiel's U 
1.1 MSE 

Thiel's U 
G52 0.3 MSE H a  H 0  

Thiel's U H a H 0  

0.5 MSE H a H 0 

Thiel's U H a H 0  

0.7 MSE H a 

Thiel's U H a H 0 

0.9 MSE H a 

Thiel's U 
1.1 MSE 

Thiel's U 
 

4 Conclusion 
 
The asymptotic distributions of OLS estimators of bounded AR (2) model with constant term in case of 
dependent errors under different tests of hypothesis have been derived. Also, the asymptotic distributions of 
the statistics of OLS estimators have been derived. 

 

The measurement of MSE approve aH more than the measurement of Thiel’s U. Also, the positive values 

of 1 approve aH more than the negative values of 1 .  

 

typet 
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The generalized inverse 15G approve aH more than the generalized inverse 25G in all cases of sample 

size T , cc  and 1 . Also, for each sample size T , cc  and for generalized inverses 

2515 andGG  the values of MSE are decreasing for decreasing of positive values of  1  and increasing 

for decreasing of negative values of  1 , while the values of Thiel’s U are increasing for both decreasing of 

positive values of 1  and decreasing of negative values of  1  under both the null and alternative 

hypotheses.  
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