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Abstract 
 

This paper introduces a new inverse distribution called the Inverse Monsef Distribution (IMON), which is an 

extension of the Monsef distribution. Most of the statistical and reliability properties of the proposed 

distribution are derived. The parameters are estimated using two different methods: the maximum likelihood 

and Cramér-von Mises methods. The proposed distribution demonstrates excellent flexibility in modeling 

certain types of lifetime data. To illustrate its effectiveness, three real datasets are analyzed and compared 

with several well-known distributions. Additionally, the reliability properties of the inverse Monsef 

distribution are discussed. A simulation study is conducted to evaluate the performance of the parameter 

estimates. 
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1 Introduction 
 

The Monsef distribution (MON) and its variations, including the inverse Monsef distribution (IMON), provide 

flexible models for real-world data, especially in fields such as epidemiology and medical statistics. The MON 

distribution, introduced by Abd El-Monsef (2021) as a special case of the Erlang mixture distribution (Abd El-

Monsef, 2021), has applications in modeling COVID-19 case data, breast cancer tumor sizes, and survival times 

for infected animals. 

 

The weighted Monsef distribution (Alshrani & Abd El-Monsef, 2020) and the unit Monsef distribution with 

regression models (Abd El-Monsef et al., 2021) further broaden the utility of this family in handling diverse data 

types. The IMON distribution, introduced in this paper, is an extension of the MON distribution, offering 

improved flexibility for modeling lifetime data. Through simulation studies, the IMON distribution's parameters 

are effectively estimated using different methods, and applications with real data demonstrate its superior fit 

compared to other standard distributions. 

 

The probability density function (pdf) for a variable distributed according to the MON distribution with scale 

parameter 𝜃 is defined as follows: 

 

𝑓(𝑥, 𝜃) =
𝜃3

2+𝜃(2+𝜃)
(𝑦 + 1)2𝑒−𝑦𝜃                                                                                                        (1) 

 

where 𝑦 ≥ 0, 𝜃 > 0, and the cumulative distribution function is given by  

 

𝐹(𝑥, 𝜃) = 1 −
𝑒−𝑦𝜃

(𝑦+1)2+1
[(𝜃(𝑦 + 1) + 1)2 + 1]                                                                                      (2) 

 

If a random variable y has a Monsef distribution MON(θ) with pdf as in (1), then the random variable 𝑥 = 1/𝑦  

is said to follow the inverse Monsef distribution with pdf 

 

𝑓(𝑥, 𝜃) =
𝜃3𝑒

−
𝜃
𝑥(1+𝑥)2

𝑥4(2+𝜃(2+𝜃))
                                                                                                                             (3) 

 

where 𝑥 > 0, 𝜃 > 0, the function of the cumulative distribution (cdf) is provided by 

 

𝐹(𝑥, 𝜃) =
𝑒

−
𝜃
𝑥(𝜃2+2𝑥𝜃(1+𝜃)+𝑥2(2+𝜃(2+𝜃)))

𝑥2(2+𝜃(2+𝜃))
                                                                                                 (4) 

 

The proposed model gains its importance from the unimodal shape of its pdf; it can be used to model the 

temperature data or the rainfall amounts on wet days. Moreover, it can be used to model stock market returns, 

income distribution, price elasticity, traffic flow, some performance metrics in sports and many other 

applications in industry and medical fields. 

 

2 Statistical Properties 
 

In this section we will derive some statistical and reliability properties of the IMON distribution  

 

2.1 Behavior of the density function 
 

Theorem1 :  

 

The pdf of the IMON distribution is unimodal for all 𝜃 > 0, and it obtains its max at 

 

 𝑥0 =  
1

4
 (−4 + θ + √16 + 𝜃2). 
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Proof:  

 

The first derivative of 𝑓(𝑥) is given by 

 

𝑓′(𝑥) =
−𝑒

−
𝜃
𝑥(1+𝑥)𝜃3(2𝑥2−𝑥(−4+𝜃)−𝜃)

𝑥6(2+2𝜃+𝜃2)
                                                                                                       (5) 

 

By equating at 𝑓′(𝑥) with zero, we have    

 

𝑥0 =  
1

4
 (−4 + θ + √16 + 𝜃2) 

 

The second derivative of 𝑓(𝑥) given by  

 

𝑓′′(𝑥) =  
 𝑒

−
𝜃
𝑥𝜃3 (6𝑥4−6𝑥3(−4+𝜃)+2𝑥(−5+𝜃)𝜃+𝜃2+𝑥2(20−16𝜃+𝜃2))

𝑥8(2+2𝜃+𝜃2)
                                                                (6) 

 

By substitute the value of 𝑥0 at the second derivative we have  

 

 −
4096𝑒

−
4𝜃

−4+𝜃+√16+𝜃2𝜃3(−32(−4+√16+𝜃2)+𝜃(16(−4+√16+𝜃2)+𝜃(−4(−6+√16+𝜃2)+𝜃(−4+𝜃+√16+𝜃2))))

(2+𝜃(2+𝜃))(−4+𝜃+√16+𝜃2)8
               (7) 

 

Which is obviously less than zero. Hence, 𝑓(𝑥) is a unimodal. 

 

The behaviors of the density function of the IMON distribution in Fig. 1,  at 𝜃 =  3, 4, 5. 

 

 
 

Fig. 1. Behavior of the density functions of the IMON distribution 

 

2.2 Identifiability of the distribution 
 

In this section, we present the identifiability of the IMON distribution. Let 𝛩1 = 𝜃1and 𝛩2 = 𝜃2be two sets of 

parameters 𝑓1(𝑥; 𝛩1) and 𝑓2(𝑥; 𝛩2)be the corresponding pdfs. From the definition of identifiability, we have, 

 

𝑓1(𝑥; 𝛩1) = 𝑓2(𝑥; 𝛩2)
 

𝜃1
3𝑒

−
𝜃1
𝑥 (1+𝑥)2

𝑥4(2+𝜃1(2+𝜃1))
=

𝜃2
3𝑒

−
𝜃2
𝑥 (1+𝑥)2

𝑥4(2+𝜃2(2+𝜃2))
                                                                                                                 (8) 

 

Taking logarithms on both sides, we can write  

 

ln 𝜃1
3 −

𝜃1

𝑥
+ ln(1 + 𝑥)2 − ln 𝑥4 − ln(2 + 𝜃1(2 + 𝜃1)) = ln 𝜃2

3 −
𝜃2

𝑥
+ ln(1 + 𝑥)2 − ln 𝑥4 − ln(2 + 𝜃2(2 + 𝜃2))                 (9) 
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ln
𝜃1

3

𝜃2
3 + (𝜃2 − 𝜃1)

1

𝑥
+ ln

(2+𝜃1(2+𝜃1))

(2+𝜃2(2+𝜃2))
= 0                                                                                              (10) 

 

This equation is equal to zero for 𝑥 > 0 only when the coefficients are equal to zero, which is only possible 

when𝜃1 = 𝜃2. Then the parameter 𝜃 is identifiable. 

 

2.3 Reliability measures 
 

In this section, we obtain the Reliability (survival) function, the hazard rate function. Also, the reverse hazard 

rate function, odds function, MillsRatio, and the mean reverse hazard (failure) rate function are obtained for the 

proposed distribution. 

 

2.4 Reliability function 
 

The Reliability function (Surles & Padgett, 2001), denoted by 𝑅(𝑥), is given by 
 

 𝑅(𝑥) = 1 − 𝐹(𝑥) = 1 −
𝑒

−
𝜃
𝑥(𝜃2+2𝑥𝜃(1+𝜃)+𝑥2(2+𝜃(2+𝜃)))

𝑥2(2+𝜃(2+𝜃))
                                                                      (11) 

 

2.5 Hazard rate function 
 

The hazard (failure) rate function ℎ(𝑥) , is also called the failure rate, instantaneous death rate for the survivors 

to time𝑥during the next instant of time. The hazard rate function is given by 
 

     ℎ(𝑥) =  
𝑓(𝑥)

1−𝐹(𝑥)
=   

(1+𝑥)2𝜃3

𝑥2(−𝜃2−2𝑥𝜃(1+𝜃)+(−1+𝑒
𝜃
𝑥)𝑥2(2+𝜃(2+𝜃)))

                                                                (12) 

 

Fig. 2 presents the behavior of the hazard rate function of the IMON distribution for different values of 𝜃 =3, 4, 

5 
 

 
 

Fig. 2. Behavior of the hazard rate function of the IMON distribution 

 

2.6 Reverse hazard rate function 
 

The reverse hazard (failure) rate function is defined as 

 

𝐻(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
=

(1+𝑥)2𝜃3

𝑥2(𝜃2+2𝑥𝜃(1+𝜃)+𝑥2(2+𝜃(2+𝜃)))
      𝑥 ≥ 0 , 𝜃 > 0                                                            (13) 

 

2.7 Mean Reverse hazard rate function 
 

The mean reverse hazard (failure) rate function is  
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       𝑀𝑅 =  

𝑥2(𝜃+𝑥 (2+𝜃(2+𝜃))−𝑒
𝜃
𝑥  𝜃3 Γ(0,   

𝜃

𝑥
))      

𝜃2+2 𝑥 𝜃(1+𝜃)+𝑥2(2+𝜃(2+𝜃))
              𝑥 ≥ 0 , 𝜃 > 0                                                  (14) 

 

2.8 Mills Ratio (MiR) 
 

The Mills Ratio is given by 

 

MiR(x) =
1

     ℎ(𝑥)
=

𝑥2(−𝜃2−2𝑥𝜃(1+𝜃)+(−1+𝑒
𝜃
𝑥)𝑥2(2+𝜃(2+𝜃)))

(1+𝑥)2𝜃3                    𝑥 ≥ 0 , 𝜃 > 0                           (15) 

 

2.9 Odds function  
 

The odds function can be written as 

 

𝑂(𝑥) =
𝐹(𝑥)

𝑅(𝑥)
=

1

−1+
𝑒

𝜃
𝑥𝑥2(2+𝜃(2+𝜃))

𝜃2+2𝑥𝜃(1+𝜃)+𝑥2(2+𝜃(2+𝜃))

                                                                                             (16) 

 

3 Order Statistics  
 

Let 𝑋(1), 𝑋(2), . . . , 𝑋(𝑛) are the 𝑛 ordered random sample drawn from pdf (3). Then, the density of the 𝑟th order 

statistic with the pdf of 𝑋(𝑟)is given 

 

𝑓𝑟:𝑛(𝑥) =
1

𝐵(𝑟,𝑛−𝑟+1)
∑ (

𝑛 − 𝑟
𝑘

) (−1)𝑘𝑛−𝑟
𝑘=0 [𝐹(𝑥)]𝑟+𝑘−1𝑓(𝑥)         , 𝑥 > 0                                             (17) 

 

and the rth order cdf 𝐹𝑟:𝑛(𝑥) is 

 

𝐹𝑟:𝑛(𝑥) = ∑ ∑ (
𝑛
𝑗

) (
𝑛 − 𝑗
𝑘

) (−1)𝑘𝑛−𝑟
𝑘=0 [𝐹(𝑥)]𝑗+𝑘𝑛

𝑗=0                                                                              (18) 

 

Hence, using Equations (17), (18), the pdf and the cdf of rth order statistics are, respectively, given by 

 

𝑓𝑟,𝑛(𝑥) =
(1+𝑥)2𝜃3𝑒

−
𝜃
𝑥

𝑥4(2+𝜃(2+𝜃))𝐵[𝑟,1+𝑛−𝑟]
 (

𝑒
−

𝜃
𝑥(𝜃2+2𝑥𝜃(1+𝜃)+𝑥2(2+𝜃(2+𝜃)))

𝑥2(2+𝜃(2+𝜃))
)

−1+𝑟

(
𝑒

−
𝜃
𝑥(−𝜃2−2𝑥𝜃(1+𝜃)+(−1+𝑒

𝜃
𝑥)𝑥2(2+𝜃(2+𝜃)))

𝑥2(2+𝜃(2+𝜃))
)

𝑛−𝑟

                  (19) 

 

𝐹𝑟,𝑛(𝑥) = ∑ ∑ (𝑛
𝑗
) (𝑛−𝑗

𝑘
)(−1)𝑘[

𝑒
−

𝜃
𝑥(𝜃2+2𝑥𝜃(1+𝜃)+𝑥2(2+𝜃(2+𝜃)))

𝑥2(2+𝜃(2+𝜃))
]𝑗+𝑘𝑛−𝑟

𝑘=0
𝑛
𝑗=0                                             (20)  

 

3.1 Estimation  
 

In this section, we consider some methods of estimation and inference techniques to estimate the parameters of 

the proposed distribution (Bekker & Roux, 2005; Lehmann & Casella, 1998; Swain et al., 1988).  

 

3.2 Maximum likelihood estimators (MLES) 
 

Here, we discuss maximum likelihood estimation method for estimating the unknown parameter 𝜃 of the IMON 

distribution. Suppose 𝑋1, 𝑋2, . . . , 𝑋𝑛  be independent and identical Then, the likelihood function based on 

observed sample {𝑥1, 𝑥2, . . . , 𝑥𝑛}, is written as 

 

∏ 𝑓(𝑥, 𝜃) = [
𝜃3

2+2𝜃+𝜃2]
𝑛

(𝑒
−𝜃 ∑

1

𝑥𝑖

𝑛
𝑖=1 ) [∏ 𝑥𝑖

−4](∏ (1 + 𝑥𝑖)
2𝑛

𝑖=1
𝑛
𝑖=1

𝑛
𝑖=1 )                                                  (21) 

 

The log-likelihood function corresponding to (21) is given by  
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𝐿(𝜃) = 3𝑛 ln(𝜃) − 𝑛 ln(2 + 2𝜃 + 𝜃2) − 𝜃 ∑
1

𝑥𝑖
− 4 ∑ ln(𝑥𝑖)

𝑛
𝑖=1

𝑛
𝑖=1 + 2 ∑ ln (1 + 𝑥𝑖)

𝑛
𝑖=1                  (22) 

 

The maximum likelihood estimator (MLES) and 𝜃̂ is obtained as the simultaneous solution of the following non-

linear equations: 

 
𝜕 

𝜕𝜃
𝐿(𝜃) =

3𝑛

𝜃
−

𝑛(2+2𝜃)

2+2𝜃+𝜃2 − ∑
1

𝑥𝑖

𝑛
𝑖=1                                                                                                          (23) 

 

Using (23), the MLE of 𝜃 can be obtained in terms of 𝜃̂ as 

 

𝜃̂ =
−𝐴2+𝐴𝑛−𝑛2+2𝑛𝑥

_
(−𝐴−4𝑛+𝑛𝑥

_
)

3𝐴𝑛𝑥
_       

 
where   

 

𝐴 = (−𝑛3(1 + 2𝑥
_
(6 + 𝑥

_
(24 + 5𝑥

_
))) + 3√6√𝑛6𝑥

_
2(1 + 2𝑥

_
(7 + 𝑥

_
(27 + 𝑥

_
(8 + 𝑥

_
)))))1 3⁄               (24) 

  

3.3 Cramer-von-mises estimators 
 

The Cramer-von Mises estimator (CME) is 𝜃̂𝐶𝑀𝐸  of 𝜃 are obtained by minimizing 

 

𝑐(𝜃) =
1

12𝑛
+ ∑ (𝐹(𝑥𝑖 ; 𝜃) −

2𝑖 − 1

2𝑛
)

2𝑛

𝑖=1

 

 
with respect to 𝜃, this estimator can also be obtained by solving the nonlinear equations: 

 

𝜕𝑐(𝜃)

𝜕𝜃
= ∑ (𝐹(𝑥𝑖; 𝜃) −

2𝑖 − 1

2𝑛
)

2𝑛

𝑖=1

𝐹′(𝑥; 𝜃) = 0 

 

𝐹′(𝑥; 𝜃) =
𝑒−

𝜃
𝑥𝜃2(−2 − 6𝑥(1 + 𝑥) − 2(1 + 𝑥)(1 + 2𝑥)𝜃 − (1 + 𝑥)2𝜃2)

𝑥3(2 + 𝜃(2 + 𝜃))2
 

 
where 𝐹′(𝑥; 𝜃) is defined above. 

 

3.4 Simulation 
  
The performance of the various estimator techniques of the unknown parameters for the IMON (θ) is verified by 

simulation research (Jorda, 2010). The following is how the simulations work: 

 

• Generate random sample with size n from the IMON distribution. 

• Step 1 data are used to calculate the𝜃̂ considering the MLES, CME estimators. 

• Repeat the steps 1 and 2 N times. 

• Using 𝜃 and𝜃̂to compute the Bias and the mean square errors (MSE). 

• From the IMON (θ) distribution, 1000 samples were generated, where n ={20, 40, 60, 80, 100}, and by 

choosing θ = {0.5, 1, 1.5}. The estimators MLE, CME were evaluated in Tables 1–3  

• All estimates show the property of consistency i.e. the MSE decrease as sample size increase for all 

parameter combinations. 

 

where      𝑀𝑆𝐸𝜃̂ = 𝐸 ((𝜃̂ − 𝜃)
2

) = 𝑉𝑎𝑟(𝜃̂) + (𝐵𝑖𝑎𝑠(𝜃̂))2    &     𝐵𝑖𝑎𝑠(𝜃̂) = 𝐸(𝜃̂) − 𝜃 
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Table 1. Simulation results for 𝜽 = 𝟎. 𝟓 
 

n  MLES CME 

20 MSE θ 0.00477 0.00691 

Bias θ 0.010253 0.01125 

40 MSE θ 0.002335 0.0025 

Bias θ 0.005443 0.00624 

60 MSE θ 0.001482 0.00143 

Bias θ 0.000388 0.00184 

80 MSE θ 0.001102 0.00148 

Bias θ 0.001933 0.000067 

100 MSE θ 0.00081 0.00061 

Bias θ 0.001175 −0.00111 

 

Table 2. Simulation results for 𝜽 = 𝟏 
 

N Est MLES CME 

20 MSE θ 0.0208415     0.04195 

Bias θ 0.022947 0.02174 

40 MSE θ 0.010037     0.01033 

Bias θ 0.012119 0.01099 

60 MSE θ 0.006361    0.00844 

Bias θ 0.00864789 0.00704 

80 MSE θ 0.00472626    0.00510 

Bias θ 0.00436392 0.01296 

100 MSE θ 0.00346287    0.00423 

Bias θ 0.0047964 -0.01544 

 

Table 3. Simulation results for 𝜽 = 𝟏. 𝟓 
 

n  MLES CME 

20 MSE θ 0.0520211 0.0498258 

Bias θ 0.0386468 0.0161715 

40 MSE θ 0.0246393 0.023869 

Bias θ 0.0203567 0.0026093 

60 MSE θ 0.0155995 0.017438 

Bias θ 0.0144589 0.019178 

80 MSE θ 0.0115832 0.014064 

Bias θ 0.00743873 0.009797 

100 MSE θ 0.00845126 0.011602 

Bias θ 0.00795635 -0.002503 

 

It can be concluded that the MLE is more better than the CME as it shows minimum values of MSE and Bias for 

all the parameter values. 
 

3.5 Applications 
 

In this section, we perform the practical applicability of the proposed model using maximum likelihood estimate 

of the parameter to represent the potentiality of the new model as compared to some other existing life-time 

models by using the real data set (Anderson & Darling, 1954). 
 

3.6 Data 1 
 

A complete set of skewed to right data, in which 20 items are tested till failure are discussed and the values are: 
 

List 1. Resulted value for Data 1 
 

11.24 1.92 12.74 22.48 9.6 

11.5 8.86 7.75 5.73 9.37 

30.42 9.17 10.2 5.52 5.85 

38.14 2.99 16.58 18.92 13.36 
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3.7 Data 2 
 

The following skewed to right set of data, discussed by Nassar & Nada, (2011) with mean (13.49) greater than 

the median (10.6) and the skewness equals 1.61. It represents the monthly actual taxes revenue (in 1000 million 

Egyptian pounds) in Egypt between January 2006 and November 2010. The values are: 

 

List 2. Resulted value for Data 2 

 

5.9 20.4 14. 9 16.2 8.4 17.2 

7.8 6.1 9.2 10.2 11 9.6 

35.7 15.7 9.7 10 11.6 4.1 

36 8.5 8 9.2 11.9 26.2 

21.9 16.7 21.3 35.4 5.2 14.3 

13.3 8.5 21.6 18.5 6.8 5.1 

6.7 17  8.6  9.7 8.9 39.2 

8.5 10.6 19.1 20.5 7.1 7.1 

7.7 18.1 16.5 11.9 10.8 7 

8.6 12.5 10.3 11.2 6.1  

 

Table 4. The goodness of fit measures for the data 

 
Model Measures 

MLE KS p-value -L AIC BIC HQIC CAIC 

IMON(θ) 9.35102 …… 0.186713 0.488374 71.3471 144.694 145.69 144.889 144.916 

IGM(α,β) 6 1.4494 0.18851 .475945 71.30 146.60 148.59 146.99 147.31 

IMAX(θ) .019539 …… 0.428196 .001305 80.266 162.532 163.528 162.726 162.754 

IPAR(θ) 8.52173 …… 0.20988 .34166 71.797 145.594 146.594 145.788 145.816 

IXGM(θ) 9.16452 …… 0.202687 .383896 71.6697 145.339 146.335 145.534 145.562 

 

Table 5. The goodness of fit measures for the data 

 
Model Measures 

MLE KS p-value -L AIC BIC HQIC CAIC 

IMON(θ) 12.05 …… 0.2892 0.000103 211.01 424.02 426.10 424.83 424.09 

IL(θ) 11.20 …… 0.2906 0.00009 211.16 424.33 426.41 425.14 424.40 

IGM(α,β) .1998 13.02 0.8323 2.2 × 10−16 314.04 632.09 636.25 633.71 632.31 

IPAR(θ) 10.95 ……. 0.3020 .00004 213.41 428.83 430.91 429.64 428.90 

IXGM(θ) 11.79 ……. 0.3003 0.00004 212.89 427.79 429.87 428.60 427.86 

IWEI(α,β) 1.274 3.942 0.4995 3.2× 10−13 230.51 465.03 469.18 466.65 465.24 

 

3.8 Data 3 
 
The following data representing the rainfall amounts in Tanta reveals valuable insights into the region's climate 

patterns. Tanta, located in the Nile Delta of Egypt, typically experiences a Mediterranean climate, with most of 

its rainfall occurring during the winter months. 

 
List 3. Resulted value for Data 3 

 
0.529 0.266 0.506 0.260 0.250 0.069 

0.136 0.130 0.531 0.265 0.254 0.107 

0.232 0.195 0.264 0.129 1.219 0.221 

0.125 0.119 0.447 0.124 0.154 0.207 

0.227 0.682 0.172 0.635 0.152 0.165 

0.044 0.147 0.128 0.209 0.085 0.263 

0.192 4.013 0.131 1.459 0.361 0.186 

0.344 0.119 1.758 0.197 0.461 0.065 

0.110 0.574 0.130 0.123 0.190 0.142 

0.080 0.186 0.090 0.690 1.086 0.342 

12.710 0.412     
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Table 6. The goodness of fit measures for the data 
 

Model Measures 

MLE KS p-value -L AIC BIC HQIC CAIC 

IMON(θ) 0.4628 …… 0.0642 0.9600 -6.978 -11.957 -9.8301 -11.122 -11.8906 

IGM(α,β) 0.129 0.0684 0.1191 0.3426 -5.567 -7.134 -2.879 -5.4636 -6.9306 

IPAR(θ) 0.5915 …… 0.3145 9.37× 10−6 28.501 59.002 61.1298 59.837 59.069 

IPMA(α, β) 0.5407 0.2300 0.1058 0.4913 -6.688 -9.377 -5.1233 -7.7072 -9.1742 

IWEI(α,β) 1.3791 0.1649 0.0975 0.5964 -7.1012 -10.202 -5.9481 -8.5320 -9.9990 

 
The IMON distribution was compared with the following distributions 

  

• Inverse Gamma               IGM(α,β) 𝑓(𝑥) =
𝛼𝑒

𝛽
𝑥

𝑥2 𝑒
(

−𝛼

𝛽
(𝑒

𝛽
𝑥−1))

      where 𝑥 > 0 

 

• Inverse Maxwell           IMAX(θ)𝑓(𝑥) =
4

√𝜋
𝜃

−3

2 𝑥−4𝑒−𝜃−1𝑥−2
             where 𝑥 > 0 

 

• Inverse pareto                          IPAR(θ) 𝑓(𝑥) =
𝜃𝑥𝜃−1

(1+𝑥)𝜃+1         where 𝑥 > 0 

 

• Inverse X-Gamma             IXGM(θ) 𝑓(𝑥) =
𝜃2

1+𝜃

1

𝑥2 (1 +
𝜃

2

1

𝑥2)𝑒
−𝜃

𝑥      where 𝑥 > 0   

 

• Inverse Lindely                               IL(θ) 𝑓(𝑥) =
𝜃2

𝜃+1
(

1+𝑥

𝑥3 )𝑒
−𝜃

𝑥                  where 𝑥 > 0   

 

• Inverse Weibull                            IWEI(α,β) 𝑓(𝑥) =
𝛼𝛽𝛼

𝑥𝛼+1 𝑒−(
𝛽

𝑥
)𝛼

                 where 𝑥 > 0 

 

• Inverse power Maxwel    IPMA(α,β) 𝑓(𝑥) =
4

√𝜋
𝛼𝛽

3

2𝑥−3𝛼−1𝑒−𝛽𝑥−2𝛼
     where 𝑥 > 0 

 
Tables 4, 5, and 6 indicate that the Inverse Monsef (IMON) distribution provides a better fit to the data 

compared to other models. The tests presented in these tables demonstrate that the IMON distribution achieves 

the lowest test statistics and the highest p-values when compared with seven other distributions (Al-Kzzaz & 

Abd El-Monsef, 2022; Eliwa et al., 2018; Jamal & Ahmad, 2022; Sharma et al., 2015; Singh & Srivastava, 2014 

and Yadav et al., 2019). Therefore, the proposed distribution can be recommended as a strong alternative to the 

existing Monsef family of distributions.  

 

4. Conclusion  
 
In this paper, we propose the Inverse Monsef (IMON) distribution as an extension of the Monsef distribution, 

which exhibits an upside-down bathtub shape in the behavior of its density function. We derived the probability 

density function (PDF) and cumulative distribution function (CDF) of the IMON distribution, as well as 

analyzed the behavior of the PDF and hazard rate for various parameter values. Key statistical properties, 

including the reliability function and odds function, were also established. To estimate the unknown parameter 

θ\thetaθ, we applied the maximum likelihood estimation (MLE) and Cramér-von Mises methods. The flexibility 

and superior fit of the IMON distribution compared to other distributions were demonstrated using three 

datasets. 
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