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ABSTRACT 
 

This study was carried out using dataset consisted of 15 multi-environment trials (MET) in Alpha 
lattice design with two replications arranged in plot arrays of rows and columns conducted in 
Ethiopia during 2021 and 2022 main seasons. The objective of this study was to identify promising 
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wheat genotypes that might suite diverse agro-ecology of the country through analysis of multi-
environment trials (MET) data using factor analytic mixed models. The result of the study revealed 
that estimates for genetic variance components ranged from 0.049 to 1.036 and 0.33 to 1.915 for 
error variance. By ranking average best linear unbiased prediction (BLUPs) within clusters, the 
fifteen bread wheat environments were clustered into five mega environments (C1, C2, C3, C4 and 
C5) for grain yield. Thus, factor analytic linear mixed model can be fitted to large and complex MET 
datasets using a large and highly unbalanced MET dataset where there is a factorial treatment 
structure. This method is used as a selection indicator, assisting in screening superior and 
adaptable genotypes. The predicted performance of genotypes based on BLUP values averaged 
across correlated trails after eliminating C4 and C5 due to low genetic correlation with the other 
trials and low genetic variation. In addition, the results of the factor analysis for considering 
relationships among measured traits were confirmed through the cluster analysis. Based on these 
clusters, the genotypes EBW202104, EBW202058, EBW202057 and EBW202088 were identified 
as potential genotypes in Bread wheat improvement programs. Moreover, about 58.33% of the 
genotypes had average grain yield above grand mean; accordingly these genotypes might be 
selected for subsequent study in bread wheat breeding activities. The examined FA models have 
also better data fitting, which significantly improves heritability. Therefore, increasing the application 
of this efficient analysis method will improve the selection of superior bread wheat genotypes. Our 
study also supports the usefulness of this statistical tool to interpret MET data results and assist 
decision-making for its routine use in Bread wheat breeding programs. 
 

 
Keywords: Cluster; factor analysis; linear mixed model; multi-environment trials (MET). 
 

1. INTRODUCTION 
 

Wheat (Triticum aestivum L.) is one of the 
world’s major food crops and has great economic 
importance. In Ethiopia Bread wheat is the most 
important food security crops which is cultivated 
on a total area of 2.1 million(1.7 million ha rain 
fed and 0.4 million ha irrigated) hectares annually 
with a total production of 6.7 million tons of grain 
at an average productivity of 3.0 and 4.0 t/ha 
under rain-fed and irrigated conditions, 
respectively during 2021/22(CSA, 2022), 
relatively lower than the attainable yield of the 
crop, which is reaching up to 5 t /ha (Zegeye F. 
et al., 2020). The yield gap observed could be 
due to lack of high yielding and stable varieties 
well adapted to diverse agro-ecologies; biotic 
stresses (Olivera et al., 2015; Singh et al., 2015; 
Tolemariam et al., 2018) and abiotic stresses 
(Hodson et al., 2020; Negash et al., 2022; Abate, 
2023). Thus, development of wheat varieties with 
higher grain yield potential and adapted to 
different environmental conditions is a major 
priority in enhancing grain yield and yield stability 
of bread wheat across different areas of Ethiopia. 
Better performing genotypes should be evaluated 
based on multi-environment trials (MET) to 
ensure that the selected genotypes have higher 
performance in diverse environments of the 
target areas. Based on this, MET are carried out 
all over the world for major crops each year 
where various traits are mostly recorded (Yan 
and Rajcan, 2002).  

Multi-environment trials (METs) are used to 
determine sites representing the target 
environment and can identify superior cultivars 
for recommendation to farmers in which data 
collected from METs are required for precise 
estimation of genotypic value and yield stability 
(Yan and Hunt, 2001). Hence, efficient 
approaches that account for more complex 
environmental variation require complementing 
experimental designs with appropriate models of 
analysis (Qiao CG, et. al (2000) and Smith A, et. 
al (2002)). The analysis of MET data is 
significantly improved by the FA models 
developed by Smith et al. (2001a), which were 
used to model genetic effects. More importantly, 
modeling genetic effects using FA models in 
conjunction with spatial models for non-genetic 
effects significantly improves the analysis of the 
MET data set. This was also demonstrated in 
related studies by Cullis et al. (2010) and Kelly et 
al. (2007). The FA models have been found to be 
useful not only for accurately 
estimating/predicting genetic effects, but also for 
estimating their variance and performing 
graphical analysis. Correlated environments can 
be identified using estimated genetic variance, 
and breeders can select genotypes using BLUPs 
averaged across correlated environments. Its 
significance for the estimate of the related 
variance structure for GxE effects is a crucial 
component of the factor analytic (FA) model for 
multi-environment trials (MET). Thus this study 
aimed to improve selection strategies in bread 
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wheat breeding through data analysis of multi-
environment trials using linear mixed models (FA 
model) frame work. Therefore, the present study 
was conducted to evaluate the performance of 
Bread wheat genotypes that might suite diverse 
agro-ecology of the country through analysis of 
MET data using more efficient statistical 
methods. 
 

2. MATERIALS AND METHODS 
 

2.1 Used Materials and Experimental 
Design  

 

A total of 60 bread wheat genotypes including 
five controls (Boru, Deka, Lemu, Danda’a, 
Dursa,) were evaluated under MET across eight 
locations (Kulumsa, Bekoji, Asassa, Debrezeit, 
Sinana, Goro (only in 2021 data), Holleta and 
Adet) in 2021 and 2022 main cropping seasons. 
In this study, fifteen MET datasets trials were 
conducted using Alpha lattice design with two 
replications laid out in row x column array of 
plots. All crop management practices such as 
land preparation as well as rates of fertilizers, 
fungicides, herbicides and Insecticides were 
applied as recommended for specific testing 
sites. These eight locations represent the 
different wheat growing agro-ecologies of 
Ethiopia and detailed descriptions of the study 
locations are presented in Table 1. 
 

2.2 Data Collection  
 
Data were collected on the following traits: days 
to heading, plant height, thousand kernel 
weight and grain yield. The description of the 
collected data/traits has been shown as follows: 
 

1. Days to Heading (DTH): recorded as the 
number of days from sowing to the stage 
where 75% of spikes have fully emerged. 

2. Plant height(cm)(PHT):  The average 
height of five plants from ground level to 
the tip of spike excluding the awns. 

3. Thousand Kernel Weight (g)(TKW): 
Weight of 1000 seeds in gram 

4. Grain Yield (t/ha):  Grain yield in gram 
was obtained from the central four rows of 
each plot and converted to  tone per 
hectare at 12.5% moisture content. 

 

2.3 Statistical Analysis 
 
The factor analytic linear mixed model can be 
fitted to large and complex MET datasets using a 
large and highly unbalanced MET dataset where 
there is a factorial treatment structure. For the 
statistical analysis, the matrix structure of the 
mixed linear model was applied using the R 
software. In multi-environment trial (MET) data 
analysis, there are many possible forms of 
genetic variance matrix structures, While fitting a 
linear mixed model in this study, spatial field 
trend fitted first for each environment and tested 
for the potential existence of field trend between 
the neighbor plots. The comparison of means 
was carried out using the BLUP predictors (best 
linear unbiased prediction) that represent the 
predicted value for each genotype concerning 
the general mean (Smith AB, et. al. 2018). The 
BLUP pair grain yields were ordered in 
descending order to identify the genotypes or 
superior lines. This methodology allowed 
comparing free genetic values of environmental 
effects and not the phenotypic means to improve 
genetic gain in the subsequent selection cycle.   

Table 1. Detailed Agro-ecological and Weather descriptions of the study locations 
 
Location  Code Soil 

type 
Altitude 
(m) 

Latitude Longitude Annual average 
Temp.(0

C) 

Average 
Rainfall 
(mm) Min. Max. 

Kulumsa KU Luvisol 2200 08°01'10"N 39°09'11"E 10.5 22.8 820 
Bekoji BE Nitosol  2780  07°32'629''N  39°15'360''E  7.9  18.6  1010 
Asasa AA Gleysol  2360  07°07'228''N  39°11'932''E  5.8  23.6  620 
Debre 
Zeit  

DZ NA 2050  08°38'08''N  38°30'15''E  NA  NA  900 

Sinana SN NA 2450 7˚7'N   39˚49'E  10˚C  22˚C 791 
Goro GR NA 1650 09°11′0"N 38°43′0"E NA NA 829.5 
Holleta HL Nitosol  2400  09°03'414''N  38°30'436''E  6.1  22.4  976 
Adet AD NA 2216 11°16’ N  37° 29’ E  9.2  25.5  1250 
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Table 2. Summary of trial parameters and Average trait measurements across trials 
 
Trials Reps Row Column Entry  Average Measurement 

GYD  DTH PHT  TKW 

21AAP 2 10  6 60 7.00 69.4 87.17 37.2 
21ADP 2 10  6 60 4.04 63.4 81.73 37.6 
21BEP 2 10  6 60 5.41 83.1 89.67 21.9 
21DZP 2 10  6 60 6.07 63.8 84.15 40.1 
21GRP 2 10  6 60 2.20 72.6 56.77 29.9 
21HLP 2 10  6 60 5.72 73.0 94.22 45.0 
21KUP 2 10  6 60 8.46 73.0 91.35 44.2 
21SNP 2 10  6 60 6.26 75.6 102.0 42.9 
22AAP 2 10  6 60 8.83 62.5 96.17 38.8 
22ADP 2 10  6 60 5.69 84.3 80.4 39.7 
22BEP 2 10  6 60 7.51 66.0 94.4 48.2 
22DZP 2 10  6 60 7.32 71.9 89.83 40.3 
22HLP 2 10  6 60 8.81 66.6 92.73 47.9 
22KUP 2 10  6 60 6.41 68.4 93.87 41.9 
22SNP 2 10  6 60 5.95 69.4 97.22 36.0 

GYD= grain yield, DTH= Days to heading, PHT=Plant height, TKW=Thousand kernel weight 

 

3. RESULTS AND DISCUSSION 
 
This study identified the relative genetic merits of 
different genotypes where trials were correlated. 
According to the summarized data (Table 3), the 
average performance of all genotypes at the 
22AAP environment was greater (8.83t/ha) than 
other trials. In contrast, the potential of the 
21GRP environment trial was the lowest 
(2.2t/ha). Looking at the performance of each 
genotype and the rank change across testing 
conditions is critical for selecting a multi-
environmental breeding program. When trials are 
correlated (similar response of genotypes in one 
environment), choosing the best material in one 
environment is the same as choosing the best 
material in another. The information from 
numerous environments may then be integrated 
to increase the accuracy of genetic gains in 
specific experiments. In this scenario, MET 
analysis can also aid in comprehending the wide 
and narrow adaptation of genotypes across a 
variety of target environments. As a result, the 
reaction of these genotypes in various 
environments is used to decide genotype 
selection for the next trial. The predicted GxE 
variance may be used to identify correlated 
environments, and breeders can choose 
genotypes using BLUPs averaged over 
associated environments (Tesfaye K et. al. 
2023). 
 

3.1 Variance Components  
 

The genetic variance and error variances for 
each trial from FA model are presented in Table 
3. The estimates for variance component 
parameters ranged from 0.049 to 1.036 for 

genetic variance and from 0.33 to 1.915 for error 
variance. A higher genetic variance for                         
yield was observed for 22AAP trials. Seven trails 
(22AAP, 22ADP, 22HLP, 22BEP, 21KUP, 
21ADP and 22KUP) of the fifteen trials had 
higher genetic variance for yield. This indicated 
that relatively high genotypes discrimination 
power of these testing locations. On other hand, 
the trials 22DZP, 22GRP, 21BEP and 22SNP 
were poor trials with little genetic variation, which 
might be due to unfavorable weather condition 
during the evaluation season in these 
environments. As a result, while averaging 
across trials for picking better genotypes, we 
excluded the BLUPs from these trials. In general, 
using FA model to analyze MET data improved 
precision and accuracy of genotype evaluation 
by capturing non-genetic variation                          
associated with agricultural field                       
experiments and appropriately exploiting the 
information stored in the MET dataset (Smith AB, 
et al. 2005). 
 
Heritability for days to Heading ranged from 
77.08% to 99.25% with an average of 95.15% 
over all testing environments and this indicates 
that days to heading is one of the highly heritable 
traits. Similarly, plant height had heritability value 
ranged from 34.58% to 93.39%. Similarly, 
84.53% to 97.71% heritability range for thousand 
kernel weight and 26.45% to 88.79% for grain 
yield. Hence, according to this experiment output 
days to heading and thousand kernel weight 
were found to be highly heritable traits (Table 3) 
and those most of trail environments are highly 
correlated which indicated that the genotypes 
were evaluated in ideal testing environments and 
selection made for a given environment could be 
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compliment for another location (Fig. 2) for these 
traits. This indicates that taking more samples to 
measure days to heading and thousand kernel 
weight may not give significant result deviate 
from the result obtained from single observation 
of correlated trial environments. Similar finding 
was reported for experiment across 
environments and over season following                    
similar fashion of this study (Tajalifar M, et al. 
2022).  
 

3.2 Factor Analysis 
 
Robust statistical techniques offer a theoretically 
sound and intuitively appealing framework for 
getting around some of the limitations of 
traditional analysis, most notably its limitation in 
the analysis of incomplete and correlated MET 
data. Thus, learning more about the genetic 
components that contribute to significant 
character variations is of primary interest to plant 
breeders. Additionally, having a precise and 
accurate understanding of heritability is essential 
for the plant breeding program to be successful. 
Due to this, it is essential from the perspective of 
plant breeding programs to quantify various 
genetic variances and make decisions regarding 
their inheritance based on estimates of various 
genetic characteristics acquired by using 
reputable statistical techniques like FA mixed 
model statistics which demonstrates how 
applying FA analysis strengthens heredity. 
Factor analysis is applied to the matrix whose 
elements consist of the sum of the                             
BLUPs of the genotypic effects and the BLUPs of 
the effects of the interaction (G+GE),                            
which were obtained from multi-environment 
analysis. Thus, properly utilizing the data 
recorded in the MET dataset, processing this 
dataset with factor analytic model often            
increases genotype generation precision and 
accuracy (Smith & Cullis, 2018; Cullis et al., 
2010). 
 
The FA models were considered for                          
genotype by environment (GxE) analysis while 
keeping the spatial models provided in the 
individual trial analysis. The adequacy of the FA 
models of several orders was formally assessed 
as it was fitted within a mixed model framework 
based on the percentage of GxE variance 
explained by the factor components.  The 
findings of the factor analysis are shown in Table 
4. It comprises the total percentage of (GEI) 
variance explained by the model's factor 

components for each trial as well as the overall 
percentage of variance explained by the model's 
factor components for all trials. The FA models fit 
virtually most trials well and the two-factor 
components well described the genetic variation. 
Overall, the factor analytic models accounted for 
>50% of the genetic variance, with the first FA 
term accounting for about 80.24 percent. The 
inadequate fit of 21BEP and 22ADP                               
trials with the FA model implies that the                      
trials are not as well correlated as some of the 
other trials (Cullis BR, et al, 2010, Gadisa A et al. 
2024). 
 
Factor analysis also produces another                     
important summary of statistics when cluster 
analysis is performed using a dendrogram. The 
cluster analysis using the dendrogram was used 
to group trials based on genetic                             
similarity. The cluster analysis grouped the trials 
according to how environmentally related they 
were using the dendrogram in Fig. 1.                   
Based on Cullis et al. (2010) suggestion on the 
dissimilarity cut-off (approximately below 0.5) 
that clusters are formed, the dendrogram (Fig. 1) 
suggests possibly two clusters of trials for DTH, 
where one cluster is comprised of at most two 
trials and only one cluster was identified for 
TKW. This shows that the genotype ranking is 
almost similar for all trials found within these 
formed clusters and a different ranking of 
genotype for the trials found in different                     
clusters. However, we can find about five 
clusters of trials for YLD, and four clusters for 
PHT which implies that we would have different 
genotype rankings for a range of clusters of trials 
for these particular traits. In this regard, yield is a 
complex trait, which could potentially have high 
GEI effects.  Genotype selection,                             
therefore, was performed for each cluster using 
average BLUPs as a selection index, provided 
that the formed clusters are reasonably justified 
for making genotype selection                           
independently for each of the clusters (Tadese D. 
et al. 2021, Alemu G. et al.; 2024). This 
demonstrates that, whereas genotype rankings 
differ for trials located in different                                 
clusters, they are substantially the same for trials 
located inside these established clusters. Given 
that the produced clusters are logically 
reasonable for doing genotype selection 
independently for every one of the clusters, 
genotype selection was performed for each 
cluster individually utilizing average BLUPs as a 
selection index. 
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Table 3. Variance components and heritability results in MET analysis FA models 
 

Trial DTH PHT TKW GYLD 

Gvar Evar H2 Gvar Evar H2 Gvar Evar H2 Mean Gvar Evar H2 

21AAP 2.84 1.04 89.82 18.19 36.48 89.32 8.85 5.48 85.52 7.00 0.20 0.33 72.63 
21ADP 21.25 0.41 99.25 12.84 7.02 89.72 7.39 1.57 92.09 4.04 0.45 1.90 63.70 
21BEP 0.06 8.62 99.23 1.14 39.64 63.63 2.69 7.98 96.81 5.41 0.05 0.75 26.45 
21DZP 16.45 1.01 97.98 3.13 18.06 92.60 3.93 4.83 84.53 6.07 0.17 0.46 70.87 
21GRP 25.53 1.37 98.33 13.20 54.99 77.94 11.37 1.26 97.71 2.20 0.06 0.85 68.07 
21HLP 15.25 1.24 97.46 17.51 10.67 93.39 11.03 4.61 91.23 5.72 0.15 0.42 81.19 
21KUP 11.23 1.23 96.53 26.21 10.48 92.48 5.76 6.55 96.84 8.46 0.46 0.34 82.51 
21SNP 13.39 4.43 94.19 2.27 30.87 34.58 12.74 7.70 89.88 6.26 0.16 0.37 63.64 
22AAP 21.68 0.73 99.00 13.41 20.37 92.60 6.02 2.46 91.74 8.83 0.14 0.85 83.23 
22ADP 4.20 0.42 95.69 11.45 13.15 91.76 7.53 5.09 91.64 5.69 1.04 1.92 59.94 
22BEP 37.03 1.78 98.20 21.33 22.43 80.50 4.59 5.81 97.12 7.51 0.52 0.61 74.70 
22DZP 23.55 1.83 97.41 18.04 23.73 81.70 12.53 2.40 96.61 7.32 0.06 1.47 78.61 
22HLP 17.08 2.37 96.70 9.98 18.75 90.16 8.83 6.61 88.11 8.81 0.92 0.54 88.79 
22KUP 0.90 0.88 77.64 13.55 19.37 93.07 8.25 5.30 90.32 6.41 0.40 0.47 79.45 
22SNP 2.84 1.04 89.82 1.34 20.49 66.79 8.85 5.48 85.52 5.95 0.05 0.61 56.75 

GYD= grain yield, DTH= Days to heading, PHT=Plant height, TKW=Thousand kernel weight, Gvar= Genetic variance, Evar= Error variance, H2 = heritability 
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Table 4. Results from fitting the factor analytic model 
 
Environments Factor_1 Factor_2 Factor_3 Factor_4 Total 

21AAP 44.22 19.46 3.1 0.65 67.43 
21ADP 37.5 57.7 1.68 3.13 100 
21BEP 7.85 0.08 8.58 8.94 25.45 
21DZP 48.94 0 6.33 21.31 76.57 
21GRP 4.98 1.86 2.18 90.98 100 
21HLP 77.56 2.54 6.36 13.54 100 
21KUP 58.05 4.66 18.74 18.55 100 
21SNP 3.68 17.26 29.53 49.54 100 
22AAP 86.8 1.66 5.64 5.89 100 
22ADP 18.01 31.4 5.72 0.75 55.89 
22BEP 52.9 0.14 17.12 0.01 70.17 
22DZP 40.28 18.23 2.56 38.92 100 
22HLP 80.24 5.56 7.82 6.38 100 
22KUP 37.69 30.99 28.7 2.62 100 
22SNP 34.98 9.07 1.44 22.13 67.62 

 

  

  
 

 
Fig. 1. Dendrogram of the dissimilarity matrix from the final FA models fitted to the Yield (YLD), 

Plant Height (PHT), Day to Heading (DTH) and Thousand Kernel weight (TKW) 
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Fig. 2. Heat map representation of the genetic correlation matrix 
 

In addition to the dendrogram, other typical 
summaries from the MET analysis include a heat 
map of the genetic correlations between all trials 
for each trait. A heatmap depicting the genetic 
links among all trials is another popular 
component of factor analysis reports. These are 
presented in Fig. 2, which shows the different 
correlation patterns for each trait.                        
Only a few of the trials had a poor correlation, as 
evidenced by the heatmap, which reveals that 
the majority of the trials are highly connected. 
This suggests that almost all of the trials in the 
first cluster with the red hue can be used to 
average genotype means for genotype selection. 
Additionally, there are trials with a negative 
genetic association, such as the one between 
21SNP and 22ADP (Table 6), which suggests 
that genotype rankings may have reversed in 
these trials. 
 
From the heat map, we can see most of the trials 
are highly correlated for the DTH, TKW, and 
PHT, and have a weak correlation for the GYLD. 
This indicates that it is possible to carry out 

genotype selection through averaging of 
genotype means over nearly all trials for all traits 
except grain yield. However, for yield, BLUPs for 
genotype means should be averaged over trials 
for C1, C2 and C3, not for C4 and C5 since the 
genetic correlation is weak between trails for C4 
and C5. Therefore, based on the dendrogram 
and heat-map (Figs 1 and 2) and the genetic 
variance as well from Table 3, we considered five 
clusters of trials (C1, C2. . .C5) for YLD, where 
22ADP was in C5; 22BEP in C4; 21GRP, 
21KUP, 22SNP, 21SNP in C3; 21ADP,21HLP, 
22AAP, 22BEP,22HLP, In C2 and 21AAP, 
22KUP AND 21DZP in C1.  Similarly, two 
clusters were considered for DTH, where only 
one cluster for TKW, PHT (4 clusters) C4; 
21SNP, C3; 21BEP AND 2GRP; C2; 22SNP and 
C1; with 11 Trials. Thus, Application of factor 
analytic mixed models and BLUP, both of which 
are well-suited for analysing genotype-by-
environment interactions and predicting 
performance which ensure unbiased, accurate 
assessments critical for selecting stable, high-
yield genotypes. 
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Table 5. BLUPs for genotype means across cluster of correlated environments 
 

Genotype 21AAP 21ADP 21BEP 21DZP 21GRP 21HLP 21KUP 21SNP 22AAP 22ADP 22BEP 22DZP 22HLP 22KUP 22SNP 

EBW202004 5.73 3.81 5.20 5.13 2.08 5.03 6.80 6.07 8.01 5.40 6.17 6.74 6.30 4.58 5.55 
EBW202005 7.14 3.53 5.45 5.90 2.35 5.57 8.63 6.42 8.78 4.85 7.14 7.41 8.35 6.57 6.04 
EBW202006 6.88 4.28 5.33 6.17 2.22 5.66 8.49 6.02 8.91 6.36 7.17 7.23 8.32 6.30 5.90 
EBW202014 6.35 4.12 5.37 5.81 2.25 5.54 8.12 6.16 8.69 5.89 6.77 7.16 7.78 5.84 5.81 
EBW202018 7.00 5.03 5.52 6.33 2.19 6.20 8.55 6.35 9.18 6.07 8.42 7.30 9.63 6.12 6.01 
EBW202019 7.39 3.99 5.42 6.34 2.23 5.83 8.82 6.29 9.04 5.51 7.46 7.41 9.31 6.85 6.00 
EBW202020 7.56 3.48 5.38 6.06 2.35 5.59 8.85 6.35 8.88 4.57 7.42 7.46 8.58 6.88 6.01 
EBW202021 7.49 3.50 5.46 5.96 2.58 5.79 9.40 6.64 9.07 4.77 7.55 7.70 8.73 7.16 6.17 
EBW202025 6.80 4.40 5.36 6.26 2.40 5.84 9.10 6.12 9.17 6.53 7.34 7.44 8.49 6.69 6.02 
EBW202035 6.98 3.62 5.23 6.03 2.19 5.40 8.44 5.98 8.75 6.24 6.79 7.24 8.12 6.59 5.82 
EBW202036 7.18 3.87 5.44 6.11 2.22 5.62 8.59 6.14 8.88 5.50 7.14 7.31 8.61 6.62 5.94 
EBW202043 6.39 2.89 5.37 5.18 2.33 5.03 7.72 6.43 8.17 4.11 5.66 7.16 6.74 5.70 5.80 
EBW202045 6.38 3.89 5.39 5.48 2.26 5.38 7.68 6.32 8.42 4.94 7.18 7.07 7.25 5.35 5.79 
EBW202047 6.60 4.32 5.36 6.43 1.98 5.66 8.24 5.83 8.90 6.34 7.19 7.10 8.98 6.41 5.77 
EBW202049 6.41 3.50 5.35 5.49 2.20 5.14 7.63 6.10 8.31 4.83 6.78 7.02 6.95 5.58 5.62 
EBW202057 7.29 4.91 5.44 6.70 1.99 6.22 8.55 6.19 9.24 6.87 8.70 7.26 10.50 6.56 6.08 
EBW202058 7.12 5.18 5.42 6.68 2.07 6.26 8.78 6.08 9.36 6.97 8.59 7.30 10.23 6.58 6.02 
EBW202061 6.88 4.49 5.48 5.95 2.50 5.99 8.87 6.57 9.07 6.31 7.40 7.48 8.53 6.18 6.07 
EBW202062 7.31 3.59 5.47 6.00 2.28 5.57 8.76 6.21 8.88 5.00 7.33 7.39 8.61 6.85 5.96 
EBW202067 7.17 3.83 5.49 6.25 2.31 5.80 8.74 6.49 8.94 5.49 7.34 7.45 9.08 6.67 6.03 
EBW202071 6.97 4.26 5.56 5.69 2.32 5.90 8.08 6.76 8.73 5.61 8.02 7.29 8.72 5.62 6.02 
EBW202072 7.34 3.37 5.15 6.32 2.30 5.66 9.00 6.38 8.96 4.99 7.10 7.52 9.16 7.22 6.06 
EBW202073 7.33 3.51 5.51 6.09 2.27 5.89 8.82 6.73 8.95 5.04 7.89 7.54 9.89 7.00 6.12 
EBW202074 6.91 3.57 5.42 5.95 2.05 5.56 7.84 6.43 8.54 4.20 7.71 7.16 8.96 6.11 5.87 
EBW202075 7.65 3.34 5.37 6.22 2.15 5.74 8.77 6.48 8.92 5.10 7.68 7.47 9.88 7.22 6.06 
EBW202077 7.26 3.31 5.43 6.27 2.20 5.65 8.63 6.47 8.81 4.46 7.76 7.43 9.36 6.97 6.06 
EBW202079 7.32 3.76 5.37 6.48 1.97 5.79 8.26 6.34 8.84 5.19 8.24 7.26 10.04 6.73 5.97 
EBW202080 7.00 3.36 5.40 6.38 1.91 5.36 8.10 5.92 8.64 5.29 6.94 7.12 9.00 6.78 5.84 
EBW202081 6.99 4.21 5.45 6.03 2.13 5.76 8.41 6.16 8.92 6.76 7.88 7.25 9.01 6.40 5.94 
EBW202082 7.05 4.13 5.51 6.43 2.13 5.74 8.46 6.15 8.92 5.64 7.84 7.26 9.08 6.51 5.95 
EBW202084 7.06 3.63 5.36 5.92 2.09 5.47 8.01 6.20 8.60 5.41 7.42 7.16 8.52 6.23 5.91 
EBW202085 6.71 3.43 5.30 5.93 2.13 5.26 8.11 5.99 8.56 5.28 6.50 7.14 7.84 6.34 5.77 
EBW202086 7.38 4.12 5.42 6.36 2.17 5.91 8.74 6.30 9.06 5.90 8.12 7.39 9.64 6.81 5.98 
EBW202087 6.81 3.92 5.40 5.85 1.96 5.41 7.51 6.05 8.47 5.14 7.21 6.95 8.26 5.69 5.72 
EBW202088 7.17 4.80 5.51 6.25 2.34 6.09 9.02 6.25 9.27 7.01 7.56 7.43 9.16 6.53 6.01 
EBW202099 6.37 3.66 5.48 5.58 2.26 5.46 7.76 6.53 8.43 4.51 6.91 7.16 7.79 5.57 5.86 
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Genotype 21AAP 21ADP 21BEP 21DZP 21GRP 21HLP 21KUP 21SNP 22AAP 22ADP 22BEP 22DZP 22HLP 22KUP 22SNP 

EBW202102 6.60 2.99 4.91 5.99 1.82 4.63 7.57 5.17 8.25 5.49 5.93 6.79 6.82 6.39 5.44 
EBW202104 7.72 3.92 5.58 6.26 2.58 6.15 9.77 6.76 9.38 5.42 7.89 7.83 9.77 7.46 6.26 
EBW202105 7.45 3.99 5.48 6.42 2.10 5.86 8.59 6.30 8.99 5.79 7.64 7.34 9.74 6.79 5.97 
EBW202106 6.89 5.06 5.63 5.97 2.56 6.35 8.89 6.85 9.22 5.77 8.30 7.53 9.08 5.86 6.18 
EBW202107 6.93 4.28 5.51 6.20 1.96 5.79 7.86 6.25 8.75 5.35 7.87 7.09 9.40 5.99 5.86 
EBW202108 6.64 3.64 5.35 5.73 2.29 5.48 8.18 6.39 8.60 5.11 6.86 7.25 7.94 6.04 5.88 
EBW202109 6.94 4.02 5.23 6.52 1.68 5.39 7.59 5.56 8.62 6.12 7.59 6.85 9.01 6.25 5.62 
EBW202110 7.48 4.59 5.52 6.24 2.62 6.19 9.82 6.44 9.51 6.38 7.94 7.74 9.14 7.15 6.30 
EBW202111 7.49 4.14 5.37 6.50 2.07 5.78 8.80 5.94 9.11 6.27 7.51 7.31 9.51 7.04 6.05 
EBW202112 7.14 4.03 5.34 6.17 2.13 5.53 8.40 5.91 8.84 6.33 7.23 7.19 8.37 6.46 6.25 
EBW202113 6.60 4.22 5.32 6.13 1.87 5.38 7.61 5.65 8.59 6.72 7.21 6.87 8.18 5.85 6.53 
EBW202114 6.78 4.81 5.59 5.64 2.52 6.23 8.79 6.82 9.13 6.13 7.94 7.50 9.00 5.92 5.17 
EBW202115 6.70 3.64 5.35 5.46 2.33 5.42 7.88 6.50 8.44 5.31 7.01 7.19 7.46 5.58 6.76 
EBW202116 7.03 4.82 5.32 6.39 2.18 5.88 8.91 5.76 9.25 7.30 7.68 7.28 8.88 6.67 6.30 
EBW202117 7.46 4.34 5.35 6.48 2.31 6.01 9.32 6.19 9.32 5.94 7.81 7.53 9.55 7.18 6.85 
EBW202118 7.23 5.04 5.57 6.42 2.59 6.33 9.69 6.43 9.56 7.55 7.79 7.68 9.25 6.83 6.25 
EBW202119 7.34 4.60 5.41 6.43 2.03 6.00 8.47 6.15 9.09 6.27 8.07 7.24 9.87 6.51 6.39 
EBW202120 7.69 4.52 5.47 6.63 2.20 6.12 9.18 6.20 9.36 6.33 8.14 7.48 10.12 7.15 5.56 
EBW202121 7.20 3.66 5.34 6.48 2.22 5.56 8.91 6.00 8.98 5.79 7.14 7.39 8.74 7.12 6.30 
Boru 7.09 4.30 5.45 6.00 2.20 5.85 8.48 6.29 8.95 6.62 7.81 7.29 9.04 6.32 5.98 
Danda'a 6.97 3.83 5.59 5.87 2.12 5.96 8.03 6.90 8.71 4.46 8.41 7.32 9.98 6.12 6.11 
Deka 7.13 4.50 5.51 6.00 2.43 6.24 8.95 6.82 9.18 4.87 8.65 7.57 9.68 6.43 6.20 
Dursa 7.08 4.71 5.50 6.05 2.38 6.00 8.79 6.34 9.12 6.17 7.89 7.39 8.72 6.21 5.99 
Lemu 6.68 3.94 5.42 5.71 1.95 5.50 7.34 6.27 8.41 5.40 7.80 6.95 8.50 5.48 5.19 
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Table 6. Genetic correlation between environments 
 

Trial 21AAP 21ADP 21BEP 21DZP 21GRP 21HLP 21KUP 21SNP 22AAP 22ADP 22BEP 22DZP 22HLP 22KUP 

21AAP 1                           
21ADP 0.035 1                         
21BEP 0.123 0.241 1                       
21DZP 0.549 0.31 -0.016 1                     
21GRP 0.157 0.182 0.308 -0.246 1                   
21HLP 0.441 0.758 0.426 0.382 0.489 1                 
21KUP 0.643 0.323 0.221 0.444 0.674 0.686 1               
21SNP 0.158 -0.003 0.435 -0.325 0.691 0.499 0.304 1             
22AAP 0.585 0.681 0.26 0.599 0.457 0.871 0.889 0.167 1           
22ADP 0.084 0.639 0.007 0.394 -0.029 0.371 0.269 -0.342 0.503 1         
22BEP 0.395 0.526 0.321 0.408 0.088 0.748 0.363 0.343 0.582 0.231 1       
22DZP 0.588 0.154 0.329 0.199 0.819 0.68 0.914 0.651 0.726 0.014 0.374 1     
22HLP 0.671 0.361 0.264 0.674 -0.05 0.729 0.503 0.244 0.676 0.203 0.76 0.467 1   
22KUP 0.761 -0.145 -0.018 0.642 0.138 0.257 0.75 -0.056 0.588 0.091 0.205 0.612 0.572 1 
22SNP 0.467 0.232 0.35 0.168 0.604 0.676 0.666 0.635 0.598 0.013 0.465 0.778 0.515 0.39 
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3.3 BLUPs for Genotypes across Trials 
 
In this study, an average of BLUPs was used as 
a selection index to choose superior and stable 
genotypes through ranking average BLUPs 
within clusters and assessing the stability for all 
the traits across clusters of trials. Hence, the 
performance of genotypes was graded using 
BLUP values averaged across correlated 
settings of the first three clusters (C1, C2 and 
C3), eliminating C4 and C5 due to low genetic 
correlation with the other trials and low genetic 
variation. More than 58.33% of genotypes 
exhibited average grain yields of more than 
grand mean. Hence, these candidate genotypes 
with higher mean grain yield could be advanced 
for further testing in breeding program and 
release as new variety after subsequent yield 
trails.  
 
Furthermore, BLUP analysis revealed that 
22AAP, 22HLP, 21KUP, 22BEP and 22DZP 
produced high grain yields, implying that these 
sites are the best testing locations for 
distinguishing between bread wheat genotypes 
and the best-suited agro-ecologies for bread 
wheat production in general. The genotypic 
BLUPs for grain yield over the 15 trials for 
EBW02104, EBW2202058, EBW202057 and 
EBW202088 genotypes with highest overall 
average grain yield (Table 5). These genotypes 
were found ideal for further utilization in bread 
wheat breeding program. Genotype performance 
can be graded based on the averaged values of 
BLUPs across the correlated environments of the 
first cluster (C1), excluding 21BEP and 22ADP 
because they are in distinct clusters. According 
to the enhanced method of analysis we used 
here, cluster one (C1) would be the basis for 
genotype selection, and thus the genotypes with 
higher yield performance over correlated trials 
and can potentially be used as stable genotypes 
with broad adaptability (Cullis BR et .al.(2010). 
 

3.4 Interrelationship among 
Environments  

 
Correlation coefficients among the 15 
environments are presented in Table 6 with bold 
characters indicating values that are statistically 
different from zero (P 0.05). This study identified 
the relative genetic merits of different genotypes 
where trials are correlated with the 
corresponding environments of the experiments. 
When trials are correlated (similar response of 
genotypes at testing environment) selecting best 
genotypes in a given environment is the same as 

selecting best material in another environment. 
Most of the trials were strongly positively 
correlated for DTH and TKW which are important 
trait to get good genotype for grain yield purpose. 
Then, information from one of the correlated 
environments is the same as selecting from the 
other site and can be combined to improve 
genetic gains. In this case, MET data analysis 
can help the breeder to understand the broad 
and specific adaptation of genotypes over a 
range of target environments. The correlations 
between testing environments for grain yield 
performance of testing genotypes in respect to 
testing environments ranged from 0.91(22DZP 
and 21KUP) to-0.342(21SNP and 22ADP). 
Hence, negative correlations indicate that the 
performance of the genotypes at that specific 
testing environment falls in opposite direction, 
implying that the best performing genotypes in 
one environment were the lowest performing 
genotypes in the other environment (Argaw T et. 
al. 2024). The cause this low correlation among 
the location could due to year differences or 
spatial variation. On the other hand, correlation 
of positive values (approximate to +1) is an 
indication of perfect similarity between the 
environments, hence selection of superior 
genotypes in one environment is the same as 
selection for another environment (Fig. 2 and 
Table 6) (Piepho et al. 2021, Rut et al. 2024). 
 

4. CONCLUSION 
 
Efficient statistical methods must be employed 
for the evaluation of Bread wheat genotypes to 
accurately select superior varieties that 
contribute to agricultural productivity. The Factor 
Analytic (FA) model is superior in achieving the 
most common aim of METs which is the 
selection of superior genotypes for future use 
and release as a variety. Hence, FA model is a 
parsimonious form used to approximate the fully 
unstructured form of the genetic variance-
covariance matrix in the model for MET data. 
The linear mixed model with the FA models 
showed to be an effective data analysis 
technique for this investigation. EBW02104, 
EBW2202058, EBW202057 and EBW202088 
were found to be potentially useful as stable 
genotypes with a wide range of adaptability 
because they demonstrated good yield 
performance over correlated locations. This is 
due to the fact that the enhanced method of 
analysis we employed here revealed that 
correlated locations served as the base for 
genotype selection. Moreover, the factor analytic 
linear mixed model can be fitted to large and 
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complex MET datasets using a large and highly 
unbalanced MET dataset where there is a 
factorial treatment structure. Hence, further 
application of such an efficient analysis method 
is very important for enhancing the selection of 
superior genotypes in breeding program. 
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