
________________________________________ 
 
*Corresponding author: Email: hotoo@umat.edu.gh; 

 

Cite as: Otoo, Henry, Lewis Brew, and Benjamin Dadzie-Mensah. 2024. “Epidemiological Modelling of Yellow Fever Dynamics”. Asian 
Research Journal of Mathematics 20 (8):119-41. https://doi.org/10.9734/arjom/2024/v20i8821. 

 

 

 
 

 

Asian Research Journal of Mathematics 

 
Volume 20, Issue 8, Page 119-141, 2024; Article no.ARJOM.120503 
ISSN: 2456-477X 

 

 
_______________________________________________________________________________________________________________________________________ 

 

Epidemiological Modelling of Yellow Fever 

Dynamics 
 

Henry Otoo a*, Lewis Brew a and Benjamin Dadzie-Mensah b 
 

a Mathematical Science Department, University of Mines and Technology, Tarkwa, Ghana. 
b Faculty of Science and Technology, University of Silesia in Katowice, Sosnowiec, Poland. 

 

Authors’ contributions 

 

This work was carried out in collaboration among all authors. All authors read and approved the final 

manuscript. 

 

Article Information 
 

DOI: https://doi.org/10.9734/arjom/2024/v20i8821 
 

Open Peer Review History: 

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review 
comments, different versions of the manuscript, comments of the editors, etc are available here: 

https://www.sdiarticle5.com/review-history/120503 

 

 
Received: 26/05/2024 

Accepted: 30/07/2024 

Published: 06/08/2024 

__________________________________________________________________________________ 
 

Abstract 
 

Aims: Yellow fever is a severe and often fatal viral illness caused by the yellow fever virus Despite being 

largely overlooked, yellow fever continues to silently claim lives in many parts of the world. The study 

focuses on the epidemiological modelling of yellow fever dynamics between a host (human) and vector 

(mosquito) populations The human population was divided into five main compartments: Susceptible, 

Exposed, Infected, Isolated, and Recovered. The vector population was also divided into two compartments: 

Susceptible and Infected. Nonlinear differential equations describing these compartments were formulated. 

Stability analysis and numerical simulations were then performed based on the formulated equations. 

From the stability analysis, it was observed that the disease-free equilibrium is both locally and globally 

asymptotically stable. Similarly, the endemic equilibrium was found to be locally and globally asymptotically 

stable. The simulation also revealed a direct correlation between the transmission rate and disease spread. 
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1 Introduction 
 

Yellow fever is a severe and often fatal viral illness caused by the yellow fever virus. It is transmitted primarily 

by Aedes mosquitoes, particularly the Aedes aegypti species, which also serves as the vector for other viruses 

such as dengue, Chikungunya, and Zika [1], as well as by certain species of Haemagogus mosquitoes. The virus 

is typically transmitted to humans through the bite of infected mosquitoes, which can occur both during the day 

and at night. Yellow fever is predominantly found in tropical and subtropical regions of Africa and South 

America, putting approximately one billion people in forty-seven countries at risk [2]. Despite being largely 

overlooked, yellow fever continues to silently claim lives in many parts of the world. Yellow fever, a severe and 

often fatal viral illness, has largely been forgotten by many people, who live their lives without regard for its 

presence. However, many countries have recently reported cases of yellow fever. In 2016, Angola and the 

Democratic Republic of Congo (DRC) reported 965 confirmed cases of yellow fever, resulting in approximately 

400 fatalities. Additionally, 11 cases were exported to China. From 2021 to 2022, a total of 203 confirmed cases 

with 40 deaths were recorded across 12 countries, including Cameroon, the Central African Republic, Chad, 

Côte d'Ivoire, the Democratic Republic of Congo (DRC), Ghana, Kenya, Niger, Nigeria, Sierra Leone, the 

Republic of the Congo, and Uganda, according to the World Health Organization (WHO). Despite efforts to 

control the disease, yellow fever remains a persistent threat, causing significant harm and loss of life. The 

dynamics of infectious disease spread are often analyzed and predicted using mathematical models, which have 

played a crucial role in developing public health strategies for prevention and control [3]. Several studies have 

tackled the challenge of yellow fever by formulating mathematical models to understand its spread and devise 

effective interventions. Mathematical analysis and modeling are essential for studying the dynamics of 

infectious diseases, providing insights into the origin and evolution of viruses [4]. For instance, [5] formulated a 

statistical inference model utilizing contemporary likelihood-based methods to evaluate and rebuild key 

epidemiological mechanisms behind the yellow fever epidemic in Angola. [6] employed the differential 

transmission approach to resolve the yellow fever dynamics mathematical model that included a secondary host. 

[7] emphasized the significance of mathematical modeling in making informed decisions and shaping disease 

management strategies. [8] focused on modeling and stability analysis of yellow fever transmission dynamics, 

while [9] conducted stability and sensitivity analyses of various yellow fever models. [2] performed optimal 

control and stability analysis strategies for a yellow fever model considering vertical transmission. Nevertheless, 

according to [6-9], and [2], academic investigations on yellow fever do not consider the isolation of infected 

individuals. Infected individuals must be isolated to prevent mosquitoes from transferring the infection, as 

mosquitoes can serve as vectors for infecting other patients [10]. This study aims to develop and analyze a 

Susceptible Exposed Infected Isolated Recovered and Susceptible Infected (SEIISR-SI) Host and Vector 

mathematical model of yellow fever dynamics. This model will consider the isolation of infected individuals. 

Through mathematical modeling, we seek to enhance our understanding of yellow fever transmission dynamics 

and identify effective strategies for disease control. 
 

2 Methodology 
 

2.1 Model formulation  
 

The yellow fever model for the study divides the total human population ( )H
N t  into five classes: susceptible, 

exposed, infected, isolated, and recovered. Specifically, ( ) H
S t  represents susceptible humans, ( )H

E t represents 

exposed humans, ( )H
I t represents infected humans, ( )S H

I t represents isolated humans, and ( )H
R t represents 

recovered humans. Thus, the total human population is given by 

( ) ( ) ( ) ( ) ( ) ( )          
H H H H S H H

N t S t E t I t I t R t= + + + + . This model applies to completely unvaccinated 

geographical areas. The total vector population ( )V
N t  is divided into two classes: susceptible vectors ( )V

S t  and 

infected vectors ( )V
I t . Therefore, the total vector population is ( ) ( ) ( )    

V V V
N t S t I t= + . 

 

2.1.1 Susceptible human (SH)  
 

Susceptible human refers to individuals who are capable of or have the highest probability of being infected by a 

particular disease. The susceptible human population increases only by the birth rate
H

b , and decreases by the 

natural death rate 
H

 ,and by being bitten by infected vectors at a rate of H V

V

S I

N

 . Hence, we have:  
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V V H

V V V

H

dS S I
b S

dt N


= − −            (1) 

 

2.1.2 Exposed human (EH)  

 

Exposed human refers to individuals who have the disease but are not showing or experiencing any symptoms 

and are not capable of transmitting the disease. The exposed population increases as individuals are bitten by 

infected vectors at a rate of H V

V

S I

N

 and decreases as individuals become infected at a rate of  and by natural 

death at a rate of
H

 .Thus, the equation for the exposed human population is 

 

   H VH

H H H

V

S IdE
E E

dt N


 = − −            (2) 

 

2.1.3 Infected human (IH) 

 

Infected refers to individuals who have the disease, are showing symptoms, and can transmit the disease. The 

infected population increases as exposed individuals with weak immunity move to the infected class at a rate of 

 . The infected population decreases under the following assumptions: 

 

i. Infected individuals are isolated to avoid mosquito bites, as mosquitoes can transmit the virus to 

other humans [11], at a rate of  . 

ii. Infected individuals die from the disease at a rate of 
H

  and from natural causes at a rate of 
H

 . 

 

The Infected human equation therefore given by; 

 

 ( )H

H H H H

dI
E I

dt
   = − + +               (3) 

 

2.1.4 Isolated human (ISH) 

 

This refers to individuals being isolated to avoid mosquito bites, as mosquitoes can transmit the virus to other 

humans [11]. The isolated population increases as infected individuals are isolated at a rate of  and decreases 

due to the following reasons: 

 

i. Isolated individuals die from the disease at a rate of 
H

  

ii. Isolated individuals die from natural causes at a rate of 
H

 . 

iii. Isolated individuals recover at a rate of   

 

Hence, Isolated human equation is;   

 

( )SH

H SH H H

dI
I I

dt
   = − + +                   (4) 

 

2.1.5 Recovered human (RH) 

 

This refers to individuals receiving proper medical care and recovering from the disease. The recovered 

population increases as isolated individuals recover at a rate of  and 
H

 . 

Hence, recovered human equation is represented by; 

 

 H

SH H H

dR
I R

dt
 = −             (5) 
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2.1.6 Susceptible vector (SV) 

 

This refers to vectors that are capable of or have the highest probability of being infected by a particular disease. 

The susceptible vector population increases only by the birth rate 
V

b and decreases due to natural death at a rate 

of
V

 , and decreases by natural death at rate 
V

 , and bitten infected human at the rate V H

H

S I

N

 . Hence, we have; 

 

V V H

V V V

H

dS S I
b S

dt N


= − −            (6) 

 

2.1.7 Infected vector (IV) 

 

This refers to vectors that can transmit the disease. The infected vector population increases as susceptible 

vectors bite infected humans at a rate of V H

H

S I

N

  and decreases by natural death at the rate
V

 . The equation 

regarding the infected vector population is given by;  

 

V V H

V V

H

dI S I
I

dt N


= −             (7) 

 

2.2 Model assumptions 
 

The following are the model assumptions: 

 

i. Natural death rate is constant in all class. 

ii. Host recover from the disease with permanent immunity.  

iii. Death and birth occur at equal rates 

iv. Migration of both vector and host is ignored 

v. The model considers vertical transmission of the infection in the vector and the human population. 

vi. The recovered class of the vector is excluded because the vector does not recover from the infection or 

die from the infection since mosquitoes are only carriers of the virus. 

vii. The exposed class of the vector is excluded because the incubation period for the vector is short. 

 

2.3 Disease compartmental model 
 

The vertical transmission of yellow fever in Host and vector of the model is shown Fig. 1. 

 

 
 

Fig. 1. Compartmental Diagram of the Yellow fever in Host and Vector Population 
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2.4 Nonlinear equations using SEIISR-SI model (yellow fever) 
 

The differential equations that describe the dynamics of yellow fever in humans and mosquito vectors are 

formulated in equations (8) and (9). 

 

Host (Human) 

 

( )

( )

( )

H VH

H H H

V

H VH

H H

V

H

H H H H

SH

H SH H H

H

SH H H

S IdS
b S

dt N

S IdE
E

dt N

dI
E I

dt

dI
I I

dt

dR
I R

dt





 

   

   

 


= − − 




= − + 



= − + + 



= − + + 



= − 


           (8)  

 

Vector (Mosquito) 

 

V V H

V V V

H

V V H

V V

H

dS S I
b S

dt N

dI S I
I

dt N








= − − 



= −


              (9) 

 

2.5 Basic properties of the model 
 

2.5.1 Invariant region 

 

Theorem 1: All forward solutions in 7

+
of the system is feasible   0t   they enter the invariant region   for 

V H
 =   where ( ) 5

, , , ,
H H H H SH H

S E I I R
+

 =   : 
H H H SH H H

S E I I R N+ + + +  , ( ) 2
,

V V V
S I

+
 =   : 

V V V
S I N+  , then   is positively invariant and attracting under the flow described by the system.  

 

Proof:  

 

For Human Population: we need to prove that the solution of the model system is feasible   0t  as they enter 

the invariant region ( ) 5
, , , ,

H H H H SH H
S E I I R

+
 =   which is the solution space of the system with 

nonnegative initial conditions. 

 

Thus, the total human population is given by equation (10);  

 

H H H H SH H
N S E I I R= + + + + .                                    (10) 

 

Then,  

 

SHH H H H H
dIdN dS dE dI dR

dt dt dt dt dt dt
= + + + +                          (11) 
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( )

( )

( )H V H VH

H H H H H H H H H

V V

H SH H H SH H H

S I S IdN
b S E E I

dt N N

I I I R

 
      

     

= − − + − + + − + +

+ − + + + −

                  (12) 

 

( ) ( )H

H H H H H SH H H H SH

dN
b S E I I R I I

dt
 = − + + + + − +                            (13) 

 

( )H

H H H H H SH

dN
b N I I

dt
  − − +                            (14) 

 

In many epidemiological models, the invariant region represents the disease-free equilibrium state, where there 

are no infected individuals. In such a state, it is reasonable to assume that there are no disease-related deaths 

since the disease is not present in the population. 

 

 It implies 0
H

 =  

 

H

H H H

dN
b N

dt
 −                          (15) 

H

H H H

dN
N b s

dt
+                               (16) 

 

Using First order linear differential equation we have; 

 

H Hdt dt

H H
N e b e dt

                            (17) 

 

which gives 

 

H Ht tH

H

H

b
N e e C

 


 +                              (18) 

 

Making 
H

N  the subject it gives; 

 

H tH

H

H

b
N Ce





−
 +                           (19) 

 

Using the initial condition 0, ( 0) (0)
H H

t N t N= = = , then, we get;  

 

( )0 H

H

H

b
N C


−                    (20) 

 

Substituting for the constant 
H

N  into (19), results in; 

 

( )0 H tH H

H H

H H

b b
N N e



 

−
 

 + − 
 

          (21) 
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Further observation, make known that ( ) H

H

H

b
N t


→ as t →  . Therefore, it can be concluded that ( )H

N t is 

bounded as ( )0 H

H

H

b
N t


  . Hence, the feasible region of the human model in the non-negative region define 

by;  

 

 ( ) 5
, , , , : H

H H H H SH H H

H

b
S E I I R N


+

 
 =   

 

         (22) 

 

For Vector Population: we need to prove that the solution of the model system is feasible ∀𝑡 ≥ 0 as they enter 

the invariant region ( ) 2
,

V V V
S I

+
 =   be solution space of the system with nonnegative initial conditions. The 

total human population is; 

 

V V V
N S I= + .            (23) 

 

Then,  

 

V V V
dN dS dI

dt dt dt
= +            (24) 

 

V V H V H

V V V V V

H H

dN S I S I
b S I

dt N N

 
 = − − + −          (25) 

 

( )V

V V V V

dN
b S I

dt
= − +  but 

V V V
N S I= +          (26) 

 

It implies 

 

 V

V V V

dN
b N

dt
 −                          (27) 

 

Which can be rewrite as 

 

V

V V V

dN
N b

dt
+            (28) 

 

Using First order linear differential equation we have; 

 

V Vdt dt

V V
N e b e dt

              (29) 

 

which gives 

 

V Vt tV

V

V

b
N e e C

 


 +            (30) 

 

Making NV the subject in equation (30); 

 

V tV

V

V

b
N Ce





−
 +            (31) 

 



 
 

 

 
Otoo et al.; Asian Res. J. Math., vol. 20, no. 8, pp. 119-141, 2024; Article no.ARJOM.120503 

 

 

 
126 

 

Using the initial condition ( )0, 0 (0)
V V

t N t N= = = , then, we get;  

( )0 V

V

V

b
N C


−               (32) 

 

Substituting for the constant C into (4.24), we had 

 

( )0 V tV V

V V

V V

b b
N N e



 

−
 

 + − 
 

           (33) 

 

Further observation, make known that ( ) V

V

V

b
N t


→ as t →  . Therefore, concluded that ( )

V
N t is bounded as 

( )0 V

V

V

b
N t


   . Therefore, the feasible region of the vector model in the non-negative region is define as   

 

( ) 2
, : V

V V V V

V

b
S I N


+

 
 =   

 

           (34) 

 

2.6 Positivity of solution 
 

In epidemiological models, ensuring the positivity of solutions is crucial because the state variables and 

parameters of the model must be nonnegative 0t  . 

 

Theorem 2: The solution of both human and vector model systems with the initial conditions 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 , 0 , 0 , 0 , 0 , 0 , 0 0
H H H SH H V V

S E I I R S I   is positive in 7

+
for all 0t  . 

 

For Susceptible Human (SH) 

 

H VH

H H H

V

S IdS
b S

dt N


= − −                     (35) 

 

Further simplification we have; 

 

VH

H H H

V

IdS
b S

dt N




 
= − + 

 
         (36) 

Considering the 
H

S  terms, we have; 

 

VH

H H

V

IdS
S

dt N




 
 − + 

 
          (37) 

 

Using separable method, we have; 

 

0

t
VH

H

H V

IdS
dt

S N




 
 − + 

 
               (38) 

 

Which gives 

 

( )ln V

H H

V

I
S t

N




 
 − + 

 

           (39) 
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Which further gives 

 

0

V
H

V

I
t

N

H
S e



 

− +  
   ,             (40) 

 

Since 0

V
H

V

I
t

N
e




 
− +  
             (41) 

 

From the equation (2), we have  

 

( )H VH

H H

V

S IdE
E

dt N


 = − +              (42) 

 

Thus  

 

( )H

H H

dE
E

dt
  − +                 (43) 

 

Using separable method, we have  

 

( )
0

t
H

H

H

dE
dt

E
  − +            (44) 

 

Which gives 

 

( ) ( )ln
H H

E t  − +                                        (45) 

 

Which further gives 

 
( )

0H t

H
E e

 − +
                          (46) 

 

Since ( )
0H t

e
 − +

                            (47) 

 

From equation (3), we have  

 

( )H

H H H H

dI
E I

dt
   = − + +              (48) 

 

Thus  

 

( )H

H H H

dI
I

dt
   − + +              (49) 

 

Using separable method, we have  

 

0
( )

t
H

H H

H

dI
dt

I
   − + +                    (50) 

 

Which gives 

 

( )ln ( )
H H H

I t   − + +                   (51) 
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Which further gives 

 
( )

0H H t

H
I e

  − + +
                             (52) 

 

Since 
( )

0H H t
e

  − + +
               (53) 

 

From equation (4), we have  

 

( )SH

H SH H H

dI
I I

dt
   = − + +                           (54)  

 

Thus  

 

( )SH

SH H H

dI
I

dt
   − + +          (55) 

 

Using separable method, we have  

 

0
( )

t
SH

H H

SH

dI
dt

I
   − + +           (56) 

 

Which gives 

 

( )ln ( )
SH H H

I t   − + +                                                                 (57) 

 

Which further gives 

 
( )

0H H t

SH
I e

  − + +
                          (58) 

 

Since  

 
( )

0H H t
e

  − + +
 .            (59) 

 

From the equation (5),   

 

H

SH H H

dR
I R

dt
 = −           (60) 

 

Thus   

 

 H

H H

dR
R

dt
 −            (61) 

 

Using separable method,  

 

0

t
H

H

H

dR
dt

R
 −                         (62) 

 

Which gives 

 

( )ln
H H

R t −                (63) 
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Which further gives 
 

0H t

H
R e

−
  ,            (64) 

 

Since 0H t
e

−
              (65) 

 

For the vector population: 
 

From the equation (6), we have  
 

V V H

V V V

H

dS S I
b S

dt N


= − −             (66) 

 

Further simplification we have; 
 

V H

V V V

H

dS I
b S

dt N




 
= − + 

 

          (67) 

 

Thus  
 

V H

V V

H

dS I
S

dt N




 
 − + 

 
            (68) 

 

Using separable method, we have  
 

0

t
V H

V

V H

dS I
dt

S N




 
 − + 

 
           (69) 

 

Which gives 
 

( )ln H

V V

H

I
S t

N




 
 − + 

 
                         (70) 

 

Which further gives 
 

0

H
V

H

I
t

N

V
S e




 
− +  
             (71) 

 

Since  
 

0

H
V

H

I
t

N
e




 
− +  
              (72) 

 

From the second equation, we have  
 

V V H

V V

H

dI S I
I

dt N


= −             (73) 

 

Thus 
 

 V

V V

dI
I

dt
 −               (74) 
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Using separable method, we have  

 

0

t
V

V

V

dI
dt

I
 −              (75) 

 

Which gives 

 

( )ln
V V

I t −                 (76) 

 

Which further gives 

 

0V t

V
I e

−
  ,           (77) 

 

Since 0V t
e

−
                      (78) 

 

Since all the seven systems are greater than zero, it implies positives theorem is proved and tested. 

 

2.7 The disease-free equilibrium (DFE) 
 

Disease-free equilibrium points are steady-state solutions where no disease exists in either the human host or 

mosquito vector populations. To understand the dynamical behavior of all the compartmental equations in the 

system, we set the right-hand side of all the equations in the system to zero as follows: 

 

( )

( )

( )

0

0

0

0

0

0

0

H V

H H H

V

H V

H H

V

H H H H

H SH H H

SH H H

V H

V V V

H

V H

V V

H

S I
b S

N

S I
E

N

E I

I I

I R

S I
b S

N

S I
I

N





 

   

   

 








− − = 




− + = 

− + + =


− + + = 


− =



− − = 



− = 


         (79) 

 

Hence the result for the disease-free equilibrium is given as; 

 

, 0, 0, 0, 0, , 0VH

H H H SH H V V

H V

bb
S E I I R S I

 

 
= = = = = = = 

 

 

 

2.8 Determination of the basic reproductive number (𝓡𝟎) 
 

The basic reproductive number 
0

  is the estimated number of subsequent infections caused by an index case in 

a fully susceptible community (Driessche and Watmough, 2008). To calculate the basic reproductive number, 

the next generation method is applied. The basic reproduction number is computed as 1

0
( )  FV

−
 = ,where 

  is the spectral radius, also known as the dominant eigenvalue of 
1

FV
−

. In determining the basic reproductive 

number, the disease compartments considered are exposed host ( )H
E , infected host ( )H

I , isolated host ( )SH
I

,and infected vector ( )V
I . The disease compartmental equations are as follows: 
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( )

( )

( )

H VH

H H

V

H

H H H H

SH

H SH H H

V V H

V V

H

S IdE
E

dt N

dI
E I

dt

dI
I I

dt

dI S I
I

dt N


 

   

   





= − + 




= − + + 


= − + +


= −


         (80) 

 

From the above equations, next generation approach gives the transmission(Ƒ) and transition (ν) as; 

 

0

0

H V

V

V H

H

f

S I

N

S I

N





 
 
 
 

=  
 
 
 
  

              (81) 

 

And 

 

( )

( )

( )

H H

H H H H

H SH H H

V V

E

E I
v

I I

I

 

   

   



− + 
 

− + + =
 − + +
 

−  

         (82) 

 

The Jacobian matrix of the transmission ( )F  and transition ( )V  states of the model evaluated at the disease-

free equilibrium are as follows: 

 

, , ,

0 0 0

0 0 0 0
|

0 0 0 0

0 0 0

H H SH V

H

V H

E I I I

V

H V

b

N

F f

b

N









 
 
 
 

=  =  
 
 
 
  

                                    (83) 

 

( )

( )

( )
, , ,

0 0 0

0 0
|

0 0

0 0 0

H H SH V

H

H H

E I I I

H H

V

V v

 

   

   



− + 
 

− + + =  =
 − + +
 

−  

            (84) 

 

The inverse of V is obtained as; 

 

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1
0 0 0

1
0 0

1
0

1
0 0 0

H

H H H H H

H H H H H H H H H H H

V

V

 



       

 

                



−

 
− +

 
 

− − 
+ + + + + 

=
 
− − − 

+ + + + + + + + + + + 
 
 −
  

            (85) 
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( ) ( ) ( )

1

0 0 0

0 0 0 0

0 0 0 0

0 0

H

V H V

V V

H V H H H H V H H

b

N

FV

b b

N N



 

 

         

−

 
− 

 
 

=  
 
 
− − 

+ + + + +  

                (86) 

 

Therefore, eigenvalues for 
1

FV
−

 are; = 0,0,
H V V H V H

H V V H

N N b b abd

N N abd

  

 
− , 

H V V H V H

H V V H

N N b b abd

N N abd

  

 
. 

 

Where ( ) ( ) ( ), , ,
H H H H H V

a b c d        = + = + + = + + =  

 

The dominant eigenvalue is 
H V V H V H

H V V H

N N b b abd

N N abd

  

 
 

 

Therefore, the basic reproductive number for the model is given by 
0

H V V H V H

H V V H

N N b b abd

N N abd

  

 
 =  

Which can further be simplified as  

 

( ) ( )
0 2

V H

H V V H H H H

b b

N N



      
 =

+ + +
                      (87) 

 

2.9 The endemic equilibrium (EE) 
 

The endemic equilibrium (EE) is given by the system below: 

 

( )

( )

2 2

* *0 1 0

2

22 0

2 2 2 2

* *0 0

2 2

2 2

* *0 2

2

2 0

2

* 3 0

3

( ) ( 1)
,

( 1) ( 1)
,

( )

( 1)
,

( )

( 1)

H V H V V

H H

H

V H H V V H H V

H SH

H H

V H V V V

H V

H H V H V V H V

H V

V

H

b b N
S E

N N N N
I I

N N b N
R S

N b N

N
I

b

   

  

    

     

  

        

 

  

+   −
= = 

 
 −  −
= =

+ + 


 − = =
+ + + 

 −
=

+ 






                                               (88) 

 

Where 2

1
( )

V H V H H H
N N     = + + ,

2
( )

H V V V
N b   = + ,and

3
( )( )

V H H H H
N      = + + +  

 

2.10 Local stability of equilibrium solutions 
 

The stability analysis for the system of DFE and EE are performed in this section 

 

2.10.1 Local stability of disease-free equilibrium 

 

Theorem 3: The disease-free equilibrium of the system equation is locally asymptotically stable if and only if 

0
1   [2,12]. 

 

The Jacobian matrix, J of the system evaluated at the DFE, represented below as 
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0 0 0 0 0

0 ( ) 0 0 0 0

0 ( ) 0 0 0 0

( ) 0 0 ( ) 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

H

H

V H

H

H

V H

H H

H H

H

V

V

H V

V

V

H V

b

N

b

N

J DFE

b

N

b

N







 



   

   

 











 
− − 
 
 

− + 
 
 − + +
 

= − + + 
 −
 
 

− − 
 
 

− 
 

   (89) 

 

To prove the local stability of the DFE, Geshgorin’s Theorem [9]. Thus, the following are obtained; 

 

( )

( )

( )

H

H

H V

H

H

H V

H H

H H

H

V

V

H V

V

V

H V

b

N

b

N

b

N

b

N







 



   

   

 












−  




 + 

 + +


 + + 




−  



 


             (90) 

 

By multiplying the square of second equation by the square of the third and then by square of the seventh gives; 

 

( ) ( ) ( ) ( )

2 2

2 2 2 2VH

H H H V

H V V H

bb

N N


      

 

   
 + + +   

   
       (91) 

Further simplification gives; 

 

 ( ) ( ) ( ) ( )
22

2 2 2 2

2 2

( )( )

( ) ( )

VH

H H H V

H V V H

bb

N N


      

 
 + + +                                  (92) 

 

Dividing through the simplified equation by the right-hand side yields; 

 

 
( )

( ) ( ) ( )

22 2

2 2 22 2

( ) ( )
1

( ) ( )

H V

H V V H H H H V

b b

N N

  

       


+ + +
      (93) 

 

Further simplification gives; 

 

( ) ( )

2

2
1H V

V H H V H H H

b b

N N

  

      

 
  + + + 

         (94) 
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But 
( ) ( )

2

0 2

H V

V H H V H H H

b b

N N

  

      

 
 =   + + + 

       (95) 

 

It implies  

 
2 2

0
( ) 1             (96) 

 

Which can further be simplified as; 

 

0

4
1               (97) 

 

Hence 
0

1  .  

 

This proves that the disease-free equilibrium of the system is locally asymptotically stable. 

 

2.10.2 Local stability of endemic equilibrium 

 

In likewise manner as above, the Jacobian matrix, J  of the system evaluated at the endemic equilibrium (EE). 

This is done by differentiating each of the system with respect to each compartment and then substituting 

endemic equilibrium of each compartment. The Jacobian matrix evaluated at the endemic equilibrium is 

represented below; 

 

( )

( )
( )

( )

( )

2 2

3 0 0

2

3 2 0

2 2

3 0 0

2

3 2 0

2

2

2 2

0

( 1) ( )
0 0 0 0 0

( 1) ( )
0 0 0 0

0 0 0 0 0

( ) 0 0 0 0 0

0 0 0 0 0

0 0 0 0
( )

H H V H V V

H

H V H

H H V H V V

H

H V H

H H

H H

H

V V V

V

V H V V V H

b b N

b N

b b N

b N

J EE

b N

N b N

     


   

     
 

   

   

   

 

  


   

  − + 
− + −  +  

 − + 
− +

+ 

− + +

= − + +

−

− − +
+ 

2

0

2

2 2

2 0

2 2

20

( 1)
0

( 1)
0 0 0 0

( )

H V

V V V H V

V

V H V V V H

N

b N N

N b N



  


   

 
 
 
 
 
 
 
 
 
 
 
 

  − 
  
  

  −
− 

+  

   (98) 

 

Applying the Geshgorin’s Corollary to the above matrix gives; 

 

( )

( )
( )

( )

( )

( )

2 2

3 0 0

2

3 2 0

2 2

3 0 0

2

3 2 0

2 2

0 2

2 2

2 0

2

2

( 1) ( )

( 1) ( )

( 1)

H H V H V V

H

H V H

H H V H V V

H

H V H

H H

H H

H

V H V V V

V

H V V V V H

V V

V

H V

b b N

b N

b b N

b N

N b N

N b N

b N

N b

     


   

     
 

   

   

   

 

  


    




 

  − + 
+  −  +  

 − + 
+  +

+ 

+ + 

+ + 



  −
+  − 

+  


( )

2 2

0

2

20

( 1)
V H V

V V V H

N

N

 

 


















 − 
+ 

+  

                    (99) 

 

From the above equations, first, second, fifth and sixth equation gives us; 2

0
1 −  . 2

0
  is positive on itself. Due 

to that, For the inequalities above to hold 2

0
1 0 −  , which implies that 2

0
1  . Hence 

0
1  . 
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Therefore, this proves the endemic equilibrium to be locally asymptotically stable.  
 

2.11 Global stability of equilibrium solutions 
 

2.11.1 Global stability of DFE 
 

Using the approach by [13], the Lyapunov function is defined as:  
 

** **
( ) ( ln ) ( ln )

H H H H H SH H V V V V
W t S S S E I I R S S S I= − + + + + + − +                 (100) 

 

With the assumption that 

**

V

H

H

S

N


 =  and 

**

H

V

V

S

N


 = , where **

H
S and **

V
S are respectively the equilibrium points 

of the susceptible host and susceptible vector populations. 
 

Differentiating the above Lyapunov function with respect to time gives; 
 

****. . . . . . . .

( ) 1 1 VH
H H SH H VH V

H V

SS
W t S E I I R S I

S S

  
= − + + + + + − +  

   

                          (101) 

 

By substituting system of equations (14.1) of the model yields; 
 

( ) ( ) ( )

**.

**

( ) 1

1

H V H VH

H H H H H H

V H V

H H H H H H H H SH H SH SH SH H H

V H V V H

V V V V V

H V H

S I S IS
W t b S E E

N S N

E I I I I I I I I R

S I S S I
b S I

N S N

 
  

         

 
 

    
= − − − + − − +    

    

− − − + − − − + −

    
+ − − − + −    
    

               (102) 

 

Further simplification gives; 

 
** ** **.

** ** **

( ) 1 1

1 1

H H H

H H H V V H H H H

H H V

V V V

H SH H SH H H V V V H H

V V H

S S S
W t b S I E I

S S N

S S S
I I R b S I

S S N


   


    

    
= − − − + − − −    

     

     
− − − + − − − + −     

     

               (103) 

 

Substituting the assumptions 

**

V

H

H

S

N


 =  and 

**

H

V

V

S

N


 = ,the simplified equation may be rewritten as; 

 

( )
** **.

**

** **

**

( ) 1 1

1 1

H H

H H H H H H H H H SH

H H

V V

H H V V V

V V

S S
W t b S E I I

S S

S S
R b S

S S

    

 

   
= − − − − − − +   

   

   
− + − − −   

   

                             (104) 

 

At the DFE, 
** H

H

H

b
S


= and 

** V

V

V

b
S


= , substitution into rewritten equation gives; 

 

( )
**.

**

**

**

( ) 1 1

1 1

H H

H H H H H H H H SH

H H

V V

H H V V

V V

S S
W t b b E I I

S S

S S
R b b

S S

   



   
= − + − − − − +   

   

   
− + − + −   

   

                (105) 
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Further simplification gives; 

 

( )
** 2** 2.

** **

( )( )
( ) V VH H

H V H H H H H H SH H H

H H V V

S SS S
W t b b E I I R

S S S S
    

   −−
= − − − − − + −  

   

               (106) 

It implies that 
.

( ) 0W t  , therefore this proves that the disease-free equilibrium (DFE) of the system is globally 

asymptotically stable. 

 

2.11.2 Global stability of EE 

 

Theorem 4.3: Endemic equilibrium of the model is globally asymptotically stable in whenever 
0

1  . 

Using the approach by [14], the Lyapunov function is defined as: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

* * * *

* * *

( ) ln ln ln ln

ln ln ln

H H H H H H H H H SH SH SH

H H H V V V V V V

V t S S S E E E I I I I I I

R R R S S S I I I

= − + − + − + −

+ − + − + −
               (107) 

 

Differentiating the above Lyapunov function with respect to time gives; 

 
** * *. . . . .

.

* ** . .

( ) 1 1 1 1

1 1 1

SHH H H
SHH H H

H H H SH

V VH

H V V

H V V

IS E I
V t S E I I

S E I I

S IR
R S I

R S I

      
= − + − + − + −      
       

    
+ − + − + −    
     

                 (108) 

 

By substituting system of equation (4.1) of the model yields; 

( ) ( )

( )

* *.

**

**

( ) 1 1

1 ( ) 1 ( )

1 1 1

H V H VH H

H H H H H H

H V H V

SHH

H H H H H SH H H

H SH

V V H VH

SH H H V V V

H V H

S I S IS E
V t b S E E

S N E N

II
E I I I

I I

S S I IR
I R b S

R S N

 
  

       


  

      
= − − − + − − −      
      

  
+ − − + + + − − + +  
   

    
+ − − + − − − + −    

    

.

*

V H

V V

V H

S I
I

I N




   
−   

  

              (109) 

 

Further simplification gives; 

 
* * * * *.

** * * *

* *

( ) 1 1 1

( ) 1

( ) 1 1

H VH H H H H

H H H H H

H H V H H H

SHH H H H

H H H H H

H H H H SH

SH SH

SH H H SH H H

SH SH

S IS S S E E
V t b S E

S S N S E E

IE I I I
E I I

E I I I I

I I
I I R

I I


 

   

   

       
= − − − + − − −       

       

    
+ − − + − + −    

     

   
− + − + − −   

   

*

* * * * *

1

1 1 1

H

H

V V V H V V V

V V V V V

V V H V V V

R

R

S S S I S I I
b S I

S S N S I I


 

 
− + 

 

       
− − − + − − −       

       

                 (110) 

  

Which can be rewritten as; 
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( ) ( )( )

( ) ( )( )

* * * * *.
* *

* ** *

* *

* **

( ) 1

( )

1 1 1

H VH H H H H

H H H H H H H

H V H H H H

SH SHH H

H H H H SH SH H SH

SH H H SH

V VH

H H V V V

H V V

S IS E S I E
V t b S S E E E

S N E S I E

I II R
I I I I I I

I I R I

S SR
R b S

R S S


 

   

 

     
= − − − − + − − − − −     

     

   
− + − + − − − − −   

   

  
− − − − − −  

   

* * *

1V H V V V

V V

H V V V

S I I S I
I

N I S I




     
− − − −     

     

           (111) 

.

( ) 0V t   

 

Thus 
.

( ) 0V t  for 
0

1  , therefore this proves that the endemic equilibrium (EE) of the system is globally 

asymptotically stable according to LaSalle’s Invariance Principle [15]. 

 

2.12 Numerical simulations 
 

In this section, the numerical simulations of yellow fever model are presented values which were taken from 

various sources and others estimated. These parameter values are indicated in Table 1. All simulations in this 

section were performed using MATLAB Software. 

 

Table 1. Parameters, Values, Interpretation, and their sources 

 

Parameter  Interpretation Value Source 

SH (0) Susceptible Human 90,000 Estimated 

EH (0) Exposed Human 30,000 Estimated 

IH (0) Infected Human 10,000 Estimated 

ISH (0) Isolation Human 200 Estimated 

RH (0) Recovered Human 0 Estimated 

SV (0) Susceptible Vector  40,000 Estimated 

IV (0) Infected Vector 5,000 Estimated 

NH  Total population of Human 130,200 Estimated 

bH Birth (Recruitment) Human 4.9×10-5 [16] 

µH Natural death rate of Human 3×10-5 6×10-5 [12] 

αH Disease induced death rate of Humans 0.0001 0.0004 [12] 

β Transmission probability from IV to SH 0.167-0.3 [12] 

ε Rate of recovery 0.25 – 0.33 [12] 

NV Total population of Vector 450,000 Estimated 

µV Natural death rate of vector 0.0287 – 0.25 [12] 

bV Birth (Recruitment) Vector 0.05 – 0.1 [12] 

γ Progression rate of exposed human  0.01 – 0.04 [12] 

ω Transmission probability from IH to SV 0.15 – 1.0 [12] 

δ Rate of Isolation 0.04 Estimated 

 

The graph of the transmission dynamics of the various compartments considered in the study is shown in Fig. 2. 

As observed from Fig. 2, there is a steady decline in the number of susceptible humans, corresponding to an 

increase in the exposed, infective, isolated, and recovered human populations during the initial stage of the 

disease. Over time, the susceptible, exposed, infective, isolated, and recovered human populations become 

asymptotic to the horizontal axis. Similarly, the susceptible vector population shows a sharp decline at the onset 

of the disease and, after some time, follows a characteristic curve. The infectious vector population exhibits a 

similar pattern to that of the infective human population. 

 

Fig. 3 shows the dynamics of the susceptible human population. Initially, there is no disease infection, and no 

individuals have immunity to yellow fever, so the susceptible human population equals the total human 

population. At the onset of infection, the susceptible human population decreases gradually and becomes 

asymptotic over time as the disease spreads through the population. This occurs because, as the disease enters 

the population, individuals progress from the susceptible class to the infectious class through the exposed class, 
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causing the susceptible population to decrease and become asymptotic to the horizontal axis over time. Since the 

disease induces permanent immunity in individuals, those who recover do not return to the susceptible class. 

 

 
 

Fig. 2. Simulation of the human and vector (Mosquito) population 

 

 
 

Fig. 3. Simulation of susceptible human          Fig. 4. Simulation of exposed human 

 

Observations from Fig. 4 indicate that as infectives are introduced into the susceptible class, they become 

exposed to the disease. This results in a continuous increase in the exposed human class until it reaches its 

maximum, then decreases and becomes asymptotic to the horizontal axis over time. After a few days, members 

of the exposed class progress to the infectious human class. In Fig. 5, it is observed that initially, few individuals 

get infected with the disease, but as time progresses, the infection multiplies and the population becomes 

increasingly at risk. The infection rises to its peak and then begins to decline, eventually becoming asymptotic to 

the horizontal axis. The graph also demonstrates that the transmission rate significantly impacts the spread of the 

disease through the population. A higher transmission rate correlates with a higher rate of infection. Fig. 6 

shows that initially, few infected individuals are isolated, but as time progresses, more infected individuals are 

isolated. This causes the isolation class to increase to its maximum and then begin to decrease, eventually 

becoming asymptotic to the horizontal axis. 
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Fig. 5. Simulation of Infected Human            Fig. 6. Simulation of Isolated Human 

 

Fig. 7 is the simulation of the recovered human class which shows gradual rise from 0 to around 130,000 human 

population size. It then continues to remain constant due to the moderate human recovery rate and very low 

disease-induced death rate. Recovered individuals gain permanent immunity to the disease and hence 

individuals do not become susceptible again.  

 

Fig. 8 the susceptible vector population reveals a similar dynamic of the disease with respect to susceptible host 

population. It shows a gradual decline of susceptible vector with time. As number of susceptible vectors become 

infected to the disease, the susceptible vector population begin to reduce as they migrate to the infected class 

and becomes asymptotic to the horizontal as time goes on. 

 

From Fig. 9 observing the graph of infected vector, the number of infectious increases as the vector encounter 

infected human. It continues to rise to a maximum point after which it begins to decline as some of the infected 

vectors die naturally and there is no disease-induced death as vectors do not die from the yellow fever virus 

infection. The number of infected vectors will continue to decrease until they all become extinct leaving only 

susceptible vectors in the system and becomes asymptotic to the horizontal as time goes on. The graph also 

demonstrates that the transmission rate has significant impact on the spread of the disease through the 

population. If the transmission rate is observed to be high then the rate of infection of the disease will also be 

high. 

 

 
 

Fig. 7. Simulation of Recovered Human         Fig. 8. Simulation of Susceptible Vector 
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Fig. 9. Simulation of Infected Vector 

 

3 Conclusion 
 

The study utilized an SEIISR-SI epidemic model to analyze the stability of Yellow Fever transmission 

dynamics. Key components of the research included the determination of the basic reproduction number, 

comprehensive stability analysis, and numerical simulations. The analytical solution revealed that the basic 

reproduction number (R0) was less than the critical threshold of one, indicating that the infection would 

eventually die out under these conditions. The analysis demonstrated that the disease-free equilibrium is both 

locally and globally asymptotically stable, suggesting that the disease will be eradicated if no new infections are 

introduced. Similarly, the endemic equilibrium was found to be locally and globally asymptotically stable, 

meaning that if the disease persists, it will reach a steady state without leading to further outbreaks. An increase 

in the transmission rate led to a higher number of exposed and infectious individuals, highlighting a direct 

correlation between the transmission rate and disease spread. An increase in the number of infected vectors 

resulted in a decline in the susceptible vector population, underscoring the importance of vector control 

measures in managing the disease dynamics. This thorough analysis offers valuable insights into Yellow Fever 

transmission and provides a basis for effective control strategies derived from the model's findings. 
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