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ABSTRACT 
 

Estimating rainfall-runoff within a catchment is inherently intricate and crucial for water resource 
planning via hydrological evaluations. The study focuses on utilizing the MIKE 11 NAM model to 
simulate rainfall-runoff dynamics within the Ravishankar Sagar Reservoir catchment in the 
Chhattisgarh state. In order to ensure accurate estimation, data on stream flows from 2004 to 2015 
was used for calibration, and from 2016 to 2020 was used for validation. The MIKE 11 NAM model 
accurately predicted daily runoff and adequately reproduced the hydrological response of the 
Ravishankar Sagar watershed to rainfall. The calibrated model outputs were good to employ in the 
water resources management model, specifically for MIKE BASIN. During calibration, the optimal 
values of the nine NAM model parameters were determined and subsequently employed in the 
simulation. The reliability of the MIKE 11 NAM model was assessed for the study area using the 
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Coefficient of Determination (R2) and the Nash–Sutcliffe Efficiency Index (EI). The sensitivity 
analysis helped to determine the most important model parameters. R2 values of 0.730 and 0.704 
were obtained from the model's calibration and validation, respectively. With an Efficiency Index of 
81%, the model demonstrated its efficiency and ability to forecast runoff for Ravishankar Sagar 
Reservoir over an extended period. This study helps to manage the water resource and to improve 
the reservoir operation policy for the reservoir. 
 

 
Keywords: MIKE 11 NAM; MIKE BASIN; simulation; Nash–Sutcliffe efficiency index. 
 

ABBREVIATIONS 
 
RSR : Ravishankar Sagar Reservoir 
CC : Climate Change 
R2 : Correlation Determination 
NSE : Nash-Sutcliffe Efficiency 
IMD : India Meteorological Department 
Avg : Average 
etc. : Etcetera (so on) 
et al. : Et Alia (and others) 
i.e. : id est (that is) 
mcm : Million Cubic meter 
Max : Maximum 
RF : Rainfall 
NSE : Nash–Sutcliffe Efficiency 
EI  : Efficiency Index 
 

1. INTRODUCTION 
 
Rainfall and runoff estimations are important for 
many reasons, including decision-making, policy-
making, pollution management, flood forecasting, 
planning for water resources, and interbasin 
water transportation. Factors that affect rainfall-
runoff modeling include soil types, watershed 
topography, evaporation, transpiration, 
abstraction, and distribution of precipitation [1]. A 
common hydrological challenge involves 
determining the runoff from a catchment in 
response to rainfall and guiding the runoff 
downstream through a river network. The 
relationship between rainfall and runoff is highly 
intricate and challenging due to numerous 
interconnected variables. Effective models 
typically perform optimally when provided with 
data on the physical attributes of the watershed 
at the grid scale of the model [2,3,4]. Due to its 
non-linear and multi-dimensional nature, rainfall-
runoff modeling poses significant complexity [5]. 
The established models for predicting rainfall-
runoff encompass the rational method [6], Soil 
Conservation Service-Curve Number Method [7] 
and Green - Ampt Method [8]. 
 
The watershed's characteristics, seasonal 
rainfall, and numerous other elements affect the 
runoff volume and flow rate at a river site 

throughout time. Many models, which can be 
categorized into "physical," "conceptual," and 
"black box" models, have been developed to 
simulate hydrological phenomena like the 
rainfall-runoff process. All these models have 
their own advantages and disadvantages as the 
requirements of data differ temporally as well as 
spatially. The duration also differs in these 
different methods as well. In 1972, the Danish 
Hydraulic Institute (DHI) developed the MIKE 11 
NAM model, a conceptual and integrated model 
of rainfall-runoff that can simulate base, 
subsurface, and surface flow, in order to address 
these issues. The sensitivity analysis problem for 
the MIKE 11 NAM rainfall-runoff model is 
indicated in a broad multi-objective framework [9] 
using a unique sensitive analysis approach. 
Model calibration is necessary because the 
parameters of such models cannot be obtained 
directly from counts of quantifiable features of 
watersheds. Adjusting parameters by trial and 
error is a part of manual calibration. The actual 
and simulated hydrographs are visually 
compared as the basis for the calibration 
procedure in these cases. According to a 
predetermined search strategy and the resulting 
numerical measures of the goodness of fit, 
modelling parameters are automatically 
calibrated in auto-calibration [10]. The MIKE 11 
NAM model has been widely utilized for rainfall-
runoff modeling in diverse global regions, 
demonstrating its effectiveness, particularly in 
areas with limited data availability 
[11,12,13,14,15]. The MIKE 11 NAM model apply 
to an ungauged catchment in the Nzhelele River 
sub-quaternary catchment, successfully 
transferring parameters to achieve optimal 
results in rainfall-runoff modeling [16]. Another 
study conducted on a modeling of rainfall and 
runoff processes, incorporating the MIKE 11 
NAM model alongside two other models, and 
achieved commendable results [17]. 
 
The NAM model applied to forecast runoff rates 
in the Liang River, situated in the northern region 
of Malaysia, achieving satisfactory results with 
the model's predicted values closely aligning with 
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historical data [18]. SCS-CN and the MIKE 11 
NAM model used compared two models for 
rainfall-runoff simulation in the Shipra River basin 
of Madhya Pradesh, India using four 
performance evaluation techniques, they found 
that the MIKE 11 NAM model performed better 
than the SCS-CN [19]. In a similar vein, study 
revealed how well the MIKE NAM rainfall-runoff 
model performed when simulating daily flows in 
the Gonbad catchment in Hamedan Promising 
results from their study revealed the 
effectiveness of the model at three different 
catchment stations [20]. 
 
The study area of the research is the catchment 
of Ravishankar Sagar Reservoir which is 
constructed on Mahanadi River in Dhamtari 
district of Chhattisgarh. The reservoir is one of 
the biggest reservoirs of Chhattisgarh state. The 
rainfall-runoff modelling for this reservoir is done 
with the help of Mike 11 NAM model which is a 
lumped, conceptual and deterministic model. 
This water of the reservoir is supplied to fulfil the 

irrigation, domestic and industrial demands          
of the Mahanadi basin. As the requirement of this 
basin increases rapidly, there is a need to 
calculate the availability of water and plan it 
accordingly. 
 

2. STUDY AREA 
 

The Mahanadi River is one of India's most 
significant river systems, comprising twelve main 
river basins. Situated in the upper reaches of the 
Mahanadi River is the Mahanadi Reservoir 
Project (MRP). The MRP complex consists of 
four reservoirs: Ravishankar Sagar, Dudhawa, 
Murumsilli, and Sondhur Reservoir. The first 
three reservoirs are situated in the Mahanadi 
Basin, while the last one is located in the Pairi 
basin on the Sondhur River. The reservoir is 
constructed on river Mahanadi in Dhamtari 
district of Chhattisgarh. The Ravishankar Sagar 
Project (RSP) is the name given to the three-
reservoir system that is part of the Mahanadi 
basin. In the RSP system, Murumsilli and 

 

 
 

Fig. 1. Index map of Ravishankar sagar reservoir 
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Dudhawa reservoirs act as feeders to the 
Ravishankar Sagar reservoir. The one of the 
upstream reservoirs namely Murumsilli, do not 
have any irrigation demands and only storage 
regulation structure while the other reservoir, 
Dudhawa have separate irrigation demands. The 
reservoir was built primarily for irrigation and also 
for hydroelectricity, but it is now also used for 
drinking water and to supply the adjacent Bhilai 
Steel Plant in the district of Durg. The system is 
therefore a multiple-reservoir system with several 
uses. The Ravishankar Sagar Reservoir has 
been chosen to develop the rainfall runoff model. 
It is situated at latitude 20037'00'' N and longitude 
81034'00'' E. With a catchment area of 2509 km2, 
Ravishankar Sagar receives 1274.65 mm of rain 
on average annually. The index map of the 
Ravishankar Sagar Reservoir is displayed in            
Fig. 1. The topography of the basin is usually 
seen to be undulating and rolling. Soil that looks 
like black cotton covers most of the terrain. 
Nonetheless, the southern and northern sections 
of the study area have clay loam soil and sandy 
clay loam soil. The major rocks that may be 
found nearby are basalt, quartzite sandstone, 
lime stone, and sandstone. The principal land 
cover and land use, including bare ground, 
human settlements, forests, and agriculture. The 
principal crops grown during the Kharif and Rabi 
seasons, are Paddy and moong, chana 
respectively. The region's average lowest and 
maximum temperatures in May and June are 
11.50°C and 40.70°C, respectively. 
 

3. METHODOLOGY 
 

3.1 Mike 11 Nam Model 
 
The MIKE 11 module, developed by the Danish 
Hydraulic Institute (DHI) in Denmark, integrates 
the rainfall-runoff model called MIKE11 NAM. 
This program is designed to simulate water 
quality, sediment transport, and flow in various 
water bodies such as rivers, irrigation systems, 
and channels. As a component of the MIKE 
HYDRO program, the MIKE 11 NAM model 
functions as a deterministic, lumped, conceptual 
rainfall-runoff model. It maintains continuous 
monitoring of moisture content across three 
distinct storage compartments, representing 
overland flow, interflow, and base flow. [21].            
Fig. 2 illustrates the physical procedures 
necessary for simulating runoff in the MIKE11 
NAM model. This involves parameters and 
variables that depict average values for the entire 
sub-catchment, treating each sub-catchment as 
a unified unit. As a result, the model produces a 
continuous time series of the catchment's runoff 
throughout the modeling period. MIKE11 NAM 
accounts for peak and base flow conditions, 
considering soil moisture conditions throughout 
the modeled time period. The NAM model has 
been utilized in numerous catchments globally, 
assesing a range of hydrological regimes and 
climatic conditions. Researchers [22,23,24,25,18] 
and numerous others have conducted rainfall-
runoff modeling using the MIKE 11 NAM model. 

 
 

Fig. 2. Structure and Processes of NAM Model 
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Table 1. Model parameter description and effects 
 

Parameters Unit Specification Effect 

Umax mm Maximum water content in surface 
storage 

Overland flow, infiltration, 
evapotranspiration, interflow 

Lmax mm Maximum water content in lower 
zone/root storage 

Overland flow, infiltration, 
evapotranspiration, base flow 

CQOF  Overland flow coefficient Volume of overland flow and 
infiltration 

CKIF hrs Interflow drainage constant Drainage of surface storage as 
interflow 

TOF  Threshold for overland flow  Soil moisture required to be satisfied 
for overland flow to occur 

TIF  Threshold for interflow Soil moisture required to be satisfied 
for interflow to occur 

TG  Threshold for groundwater 
recharge 

Soil moisture required to be satisfied 
for groundwater recharge to occur 

CK1 hrs Timing constant for overland flow Routing overland flow along 
catchment slopes and channels 

CK2 hrs Timing constant for interflow Routing interflow along catchment 
slopes 

CKBF hrs Timing constant for base flow Routing recharge through linear 
groundwater recharge 

 
The NAM model incorporates a total of 9 
parameters and features four storage layers, 
namely (i) snow, (ii) surface, (iii) lower zone, and 
(iv) underground, encompassing overland flow 
(QOF), interflow (QIF), and underground flow 
(QBF). The parameter Umax denotes the 
maximum capacity of water that can be stored on 
the surface. 
 
Within the soil, the lower zone storage, denoted 
as L, represents moisture in the root zone - a 
layer of soil beneath the surface that vegetation 
can tap into for transpiration. Lmax signifies the 
maximum quantity of water this storage layer can 
hold. Initially, evapotranspiration demands are 
met at the potential rate from the surface 
storage. However, once surface storage exceeds 
its maximum capacity (U > Umax), surplus water 
from precipitation leads to both overland flow and 
infiltration. QOF denotes the proportion of 
precipitation that contributes to overland flow, 
while QIF is assumed to be directly proportional 
to U and fluctuates linearly with the relative 
moisture content of the lower zone storage. The 
interflow travels along a route through two 
parallel linear reservoirs sharing the same time 
constant, Ck1k2. Overland flow routing similarly 
utilizes the linear reservoir principle but with a 
variable time constant. The volume of infiltrating 
water, which replenishes groundwater storage G, 
depends on the moisture level of the soil in the 
root zone. The discharge from a linear reservoir 
with time constant CKBF is used to compute 

base flow (BF) originating from the groundwater 
storage. Table 1 shows a comprehensive 
overview of the parameters and their 
corresponding impacts. 
 

3.2 Input Data  
 
The MIKE11 NAM model relies on essential input 
data, primarily meteorological and discharge 
data, to facilitate model calibration, define 
catchment parameters, and establish initial 
conditions. The essential meteorological time 
series needed comprise precipitation and 
potential evapotranspiration. Based on this data, 
the model generates a time series of catchment 
runoff, demonstrating the evolution of subsurface 
flow contributions to the channel across time. 
Moreover, the model gives information about 
diverse elements of the land phase in the 
hydrological cycle, including soil moisture content 
and groundwater recharge. These outputs enrich 
the comprehension of hydrological dynamics 
within the catchment, augmenting the model's 
capability to simulate and scrutinize runoff 
behavior. 
 
3.2.1 Rainfall 
 
During the modeling process, daily rainfall data 
are collected from five rain-gauge stations 
(Mahod, Khajurawan, Birgudi, Murumsilli, and 
Gangrel) were employed for a sixteen-year 
period spanning from 2004 to 2020. To derive 
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areal precipitation for the entire area, the 
Thiessen Polygon Method (1911) was applied to 
the point precipitation data from these rain-gauge 
stations. The ArcMap 10 software facilitated the 
calculation of areal precipitation, enabling a 
spatial representation that considers the 
influence of each rain gauge's coverage area. 
This method enhances the accuracy of 
estimating precipitation over the entire region by 
accounting for spatial variations based on the 
proximity of each rain gauge station. For the 
modeling phase, daily rainfall data from five rain-
gauge stations—Mahod, Khajurawan, Birgudi, 
Murumsilli, and Gangrel—were utilized over a 
sixteen-year period spanning from 2004 to 2020. 
Using ArcMap 10 software, the areal precipitation 
for the area was computed from the point 
precipitation data employing the Thiessen 
Polygon Method (1911). 
 

3.2.2 Runoff 
 

In the context of modeling rainfall runoff for the 
Ravishankar Sagar, gauge-discharge data 
spanning a sixteen-year period (2004 to 2020) 
was collected from Water Resource Department, 
Raipur Chhattisgarh. To ensure the reliability and 
consistency of the rainfall and runoff records, an 
assessment was conducted. This process 
included determining the correlation coefficient 
between the two time series and calculating the 
runoff coefficients for annual runoff. These 
measures of correlation and runoff coefficients 
were examined to gauge the degree of 
association between rainfall and runoff patterns. 
The evaluation of these statistical parameters 
served as a crucial step in validating the data 
before proceeding with the construction of the 
rainfall-runoff model, providing confidence in the 
data's suitability for modeling purposes. 
 

3.2.3 Potential evapotranspiration 
 

In the development of the MIKE 11 NAM model, 
potential evapotranspiration (ETo) plays a crucial 
role as it significantly influences runoff through 
surface evaporation. ETo was estimated using 
the CROPWAT 8.0 software, which employs the 
Penman Monteith Method (1965). This method 
considers meteorological parameters such as 
temperature, wind speed, humidity, and sunshine 
hours to calculate potential evapotranspiration. 
The climatological data from the meteorological 
department of Indira Gandhi Krishi 
Vishwavidyalaya in Raipur, Chhattisgarh, was 
utilized to gather the necessary meteorological 
information for ETo estimation. By incorporating 
these climatic variables into the Penman 

Monteith Method through the CROPWAT 8.0 
software, an estimation of potential 
evapotranspiration was derived. This information 
contributes as a key input to the MIKE 11 NAM 
model, providing insights into the water loss 
through evapotranspiration in the modelled area. 
 

3.3 MIKE 11 NAM Model Setup 
 

The MIKE 11 NAM model was set for the 
Ravishankar Sagar reservoir, situated within the 
Mahanadi River basin, featuring a catchment 
area of 2509 km² and an average annual rainfall 
of 1229 mm. Rainfall-runoff modeling was 
conducted using the MIKE ZERO software, 
which facilitated the conversion of daily input 
data for rainfall, runoff, and potential 
evapotranspiration spanning sixteen years (2004 
to 2015) into dfso format. This dfso format was 
then applied to the model development process. 
The input data for the model encompassed daily 
records of rainfall, runoff, and potential 
evapotranspiration at the Ravishankar Sagar for 
the entire sixteen-year period, extending from 
2004 to 2020. During the calibration phase of the 
NAM model, parameters were fine-tuned to 
achieve a close match between the simulated 
and observed stream flow data. This calibration 
process ensures that the model accurately 
captures the hydrological behavior of the 
Ravishankar Sagar catchment, thereby 
enhancing its reliability and predictive 
capabilities. 
 

3.4 Model Calibration 
 

The process of standardizing predicted values is 
referred to as calibration. During calibration, 
deviations between predicted and observed 
values for a specific area are scrutinized to 
calculate correction factors. These correction 
factors are subsequently applied to adjust 
predicted values, thereby aligning them more 
closely with observed values. In the case of the 
MIKE 11 NAM model, the calibration process 
extended over eleven years, from 2004 to 2015, 
subsequent to the input of pertinent 
data.following the input of relevant data. Utilizing 
the NAM model's automatic calibration option, 
model parameters underwent adjustments to 
enhance the model's accuracy during this 
calibration period. The auto calibration option 
streamlined the parameter tuning process. The 
optimal parameters obtained through automatic 
calibration were further verified using trial and 
error methods. These refined parameters were 
then employed in calculating runoff from the 
Ravishankar Sagar. 
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The calibration phase involved testing the model 
for the selected time period (2004 to 2015), and 
model statistics from calibration and validation 
outputs were analyzed. This examination served 
to confirm the model's effectiveness in predicting 
runoff. The MIKE11 NAM model was 
successfully set up for the Ravishankar Sagar 
reservoir, incorporating input data and 
undergoing calibration for eleven years (2004 to 
2015). The calibrated model parameters, as 
detailed in Table 6, fell within their specified 
ranges. This set of refined parameters aimed to 
achieve the best fit, enabling the model to 
simulate runoff with a high level of agreement 
with observed runoff. 

 
3.5 Model Validation 
 
Model validation involves evaluating the 
performance of the calibrated model using a 
portion of historical records that were not utilized 
during the calibration process. Following the 
calibration phase, the MIKE 11 NAM model 
underwent validation for the final four years, 
encompassing the period from 2016 to 2020. 
During validation, the model was run without the 
auto-calibration mode, employing the set of 
refined model parameters acquired during the 
calibration period. The primary goal during 
validation was to simulate runoff using the 
calibrated model and assess its performance 
against observed data. By comparing the 
simulated results with actual runoff data, 
statistical analyses of the simulated output were 
conducted. This process aimed to confirm that 
the calibrated model could effectively replicate 
the observed runoff patterns, providing 
confidence in its predictive capabilities. In 
summary, model validation is a crucial step to 
ensure that the calibrated model performs well 
on data not used in the calibration process, thus 
enhancing its reliability for predicting runoff 
beyond the calibration period. 

 
3.6 Accuracy Criteria 
 
The efficiency index (EI), and coefficient of 
determination (R2) can all be used to evaluate 
the model's accuracy. The coefficient of 
determination is used to evaluate a model's 
goodness of fit and determine how well it 
accounts for and forecasts future events. It is 
represented as a number between 0 and 1. The 
following equation was used to determine the 
MIKE 11 NAM model's coefficient of 
determination (R2): 

R2 =
∑ (q0−q̅0)(q0−q̅s)n

i=1

∑  n
i=1 (q0 −q̅0)2(q0−q̅s)2                              (1) 

 
Where, qo= observed flow, ͞qo= mean value of 
observed flow, qs= simulated flow and n = 
number of data points. The value of efficiency 
index lies between 0 to 1. The efficiency index 
equal to 1 indicates the best performance of the 
model. 
 
The reliability of the model was evaluated on the 
basis of Efficiency Index (EI) as described by the 
Nash and Sutcliffe. EI is directly proportional to 
errors in the model's input data and is dependent 
on errors in the model, such as missing data or 
inconsistent data. The formula below was used 
to obtain the efficiency index: 
 

 EI =
∑ (q0 − q̅0 )

2−∑ (q0−qs)2n
i=1

n
i=1

∑ (q0 − q̅0 )
2n

i=1

                      (2) 

 
Where, qo= observed flow, ͞qo= mean value of 
observed flow, qs= simulated flow and n = 
number of data points. The value of efficiency 
index lies between 0 to 1. The efficiency index 
equal to 1 indicates the best performance of the 
model. 
 

3.7 Sensitivity Analysis 
 
The MIKE11 NAM model is systematically 
evaluated to determine the sensitivity of its 
output to variations in individual parameters. In 
this case, the model was run multiple times, each 
time with one parameter set as a variable while 
keeping the other parameters constant. The 
chosen parameter's values from the calibrated 
model were then adjusted by both increasing and 
decreasing them by 20%. 
 
By systematically varying each parameter and 
observing the resulting changes in model output, 
sensitivity analysis helps identify which 
parameters have the most significant impact on 
the model's behavior. This analysis is valuable 
for understanding the relative importance of 
different parameters and their influence on the 
model's predictions. Sensitivity analysis 
contributes to refining the model and improving 
its accuracy by highlighting the parameters that 
have the most substantial impact on the modeled 
system. 
 

3.8 SPI (Standardized Precipitation Index) 
 

Seasonal and annual Standardized Precipitation 
Index (SPI) values for the period between 2004 
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Table 2. Parameter description of Standardized Precipitation Index (SPI) 
 

Categories Wet Year Normal Year Dry Year 

Standardized Precipitation Index (SPI) >0.5 -0.5 to 0.5 <-0.5 

 
and 2020 were calculated for 5 stations situated 
in Ravishankar Sagar Catchment, based on 
various threshold values outlined in Table 2 
Shiau and Wu [26,27]. The results are illustrated 
in Fig. 4. Over the 18-year study period, the area 
has encountered prolonged spells of either dry or 
wet conditions annually, spanning at least 18 
years. On an individual basis, these areas have 
undergone 8 years of drought and 7 years of 
heightened precipitation, with some instances 
being particularly severe. Significantly, nearly all 
stations have witnessed both extreme wet and 
dry conditions. 

 
The calculation of the Standardized Precipitation 
Index (SPI) involves normalizing the deviation of 
seasonal-monthly rainfall from the long-term 
mean by its standard deviation. Mathematically, it 
is represented as: 

 

SPI = 
𝑋𝑖𝑗 − 𝑋𝑖𝑚

𝜎
                                              (3) 

 
Here, Xij represents the seasonal-monthly rainfall 
at the i-th station and j-th observation, Xim 
signifies the long-term rainfall mean, and σ is the 
standard deviation. To effectively capture climatic 
variability signals, the determination of SPI 
requires a minimum of 30 years of long-term 
rainfall data. This duration is considered 
necessary as shorter periods may not provide a 
robust representation of the climatic patterns 
[27,28]. 

 
4. RESULTS  
 
The MIKE 11 NAM model was developed 
utilizing the daily rainfall data from the five rain 
gauge stations Mahod, Khajurawan, Birgudi, 
Murumsilli and Gangrel to perform rainfall-runoff 
modeling at Ravishankar Sagar with a catchment 
area of 2509 Km2. Fig. 3 displays the study 
area's Thiessen polygon map. Khajurawan and 
Birgudi are the two raingauge stations that have 
the greatest influence and cover the largest 
ground out of the five. Table 2 presents the 
weights of rain gauge stations relative to their 
corresponding representative areas. Additionally, 
Fig. 4 illustrates the distribution of monthly 
rainfall, and Table 3 presents a statistical 
analysis of yearly and seasonal rainfall. 
 

From the analysis of the monthly rainfall 
distribution illustrated in Fig. 4 indicates that the 
southwest monsoon significantly influences the 
region's total annual precipitation, contributing 
approximately 97% of the annual rainfall. This 
underscores the significant impact of the 
monsoon season on the overall precipitation in 
the research area. 
 

According to the statistical analysis provided in 
Table 3, the average annual rainfall in the 
research area is reported to be 1229 mm. 
Additionally, the average seasonal rainfall is 
recorded at 1154 mm. These figures contribute 
to a comprehensive understanding of the 
region's precipitation patterns, emphasizing the 
dominance of the southwest monsoon in shaping 
the annual and seasonal rainfall characteristics. 
The seasonal rainfall in the research region 
varied from 14.27 to 27.93, indicating a moderate 
fluctuation in rainfall. The coefficient of variance 
for the annual rainfall varied from 13.34 to 25.41 
in Khajurawan to Murumsilli, with an almost 
similar pattern as seasonal Rainfall. The 
standard deviation range of the annual rainfall 
between 151 and 305 mm was found to be the 
for all five stations. 
 

4.1 Relation Between Rainfall and Runoff 
 

The correlation between rainfall and runoff 
represents a widely adopted approach in 
hydrology. Different researchers have developed 
various methods for simulating the rainfall-runoff 
process. Researchers established a runoff-
rainfall relationship, subsequently validating it 
using a statistical mode [28]. While this 
phenomenon bears similarities to those observed 
in rural settings, its manifestation in urban areas 
typically occurs on a smaller temporal and spatial 
scale compared to rural environments. [29].  
 

In another study titled "On the Influence of the 
Spatial Distribution of Rainfall on Storm Runoff," 
the aim is to assess the importance of 
precipitation accuracy in the rainfall-runoff 
modeling of a small catchment. [30]. The extent 
of interflow depends on the geological 
characteristics of a given catchment, as 
interpreted by Subramanya [32], providing 
fundamental insight into runoff generation with 
regard to climate conditions, particularly rainfall 
and infiltration [31].  
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Fig. 3. Thiessen weights for raingauge stations 
 

Table 3. Thiessen weights for raingauge stations 
 

Station Raingauge Station Weights 

1 Mahod 0.134 
2 Khajurawan 0.229 
3 Birgudi 0.288 
4 Murumsilli 0.213 
5 Gangrel 0.136 

 
Table 4. Statistical analysis of annual and seasonal rainfall 

 

Station Annual rainfall Seasonal rainfall 

Mean 
(mm) 

Standard 
deviation 
(mm) 

Coefficient 
of variance 

Mean 
(mm) 

Standard 
deviation 
(mm) 

Coefficient 
of variance 

Mahod 1309 282 21.58 1221 234 19.13 
Khajurawan 1257 215 17.14 1162 205 17.66 
Birgudi 1240 214 17.31 1159 182 15.73 
Murumsilli 1136 151 13.34 1072 153 14.27 
Gangrel 1201 305 25.41 1156 323 27.93 
Average 1229 234 18.96 1154 219 18.94 
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Fig. 4. Mean monthly rainfall of study area 
 

 
 

Fig. 5. Annual Rainfall of the study area in different years 
 

 
 

Fig. 6. Annual Runoff of Study Area in different years 
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The findings of this research lead to the 
inference that SPI serves as a crucial indicator 
for assessing the changes over time and the 
spatial distribution of dry and wet conditions 
across a region. Using annual rainfall data from 5 
stations spanning the years 2004 to 2020, this 
investigation examined the annual variations in 
dry and wet conditions in the central region of 
Chhattisgarh. Fig. 5 shows the variation in 
annual rainfall from 2004 to 2020. During the 
study period from 2004 to 2007 and 2013, 2014 
years are comes under wet years, while 2015 to 
2020 were dry years and 2009 and 2011 were 

Normal years based on the SPI index Shiau and 
Wu [26,27]. 

 
Fig. 6 shows the variation of Runoff from years 
2004 to 2020 it was found that maximum Runoff 
occurred in the year 2006 i.e. 3720.09 MCM 
while minimum Runoff was 808.07 MCM in year 
2019. 
 
From this Fig. 7 the values of Rainfall and runoff 
for the Wet year is clearly shown. In year 2006, 
the runoff is equal to rainfall which shows that as 
the runoff increases with increase in rainfall. 

 

 
 

Fig. 7. Annual Runoff of Study Area in during wet year 

 

 
 

Fig. 8. Annual runoff of study area in during dry year 
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Fig. 9. Linear relation between rainfall and runoff in wet years 
 

 
 

Fig. 10. Linear relation between rainfall and runoff in dry years 
 
The relationship between precipitation and runoff 
offers a comprehensive understanding of how 
annual runoff varies with changes in rainfall 
across the Ravishankar Sagar Catchment in 
Chhattisgarh. Furthermore, the study establishes 
an association between annual Rainfall and 
runoff. These relationships were visually 
represented through graphs and tables. The 
graph analysis reveals a robust correlation in the 
annual rainfall-runoff value for wet year with a 
correlation coefficient (R2) equal to 0.99, It 
implies that both variables move in the same 
direction because of the positive correlation. This 
signifies a perfect positive relationship, indicating 
a strong association between the two. The study 
also reveals a significant correlation between 

rainfall and runoff. But in dry year, rainfall and 
runoff are linearly correlated with low values 0.79 
due to variation in rainfall and effect of another 
climatological parameter.  
 

4.2 Model Calibration 
 
Before initiating the model development, the 
accuracy of the rainfall data was assessed by 
comparing annual rainfall against annual runoff, 
as depicted in Figs. 7 and 8. The correlation 
coefficient of both wet and dry year indicates a 
strong and positive relationship between rainfall 
and actual runoff. The resulting linear 
relationship, demonstrated by the straightline 
graph, suggests that rainfall data can be 
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considered reliable for further rainfall-runoff 
modeling. To further evaluate the relationship, 
runoff coefficients were determined by comparing 
measured annual runoff to annual rainfall, as 
presented in Table 5. Runoff coefficients, 
representing the ratio of runoff to rainfall, ranged 
from 0.28 to 0.68. These coefficients provide 
insights into how much of the rainfall contributes 
to runoff in different years. 
 
The predicted yearly total of potential 
evapotranspiration (ETo) was reported as 2210.1 
mm, with peak ETo values occurring in May 
(357.686 mm) and April (275.387 mm), and 
troughs in December (86.893 mm). This 
information adds valuable context to the water 
balance in the research area and contributes to 
the understanding of potential evapotranspiration 
patterns throughout the year. 

The MIKE11 NAM model was                          
configured for the Ravishankar Sagar reservoir, 
incorporating all the necessary input data, and 
underwent calibration for a sixteen-                        
year period from 2004 to 2015. The goal of this 
calibration process was to determine the best-fit 
model parameters that could simulate runoff with 
a high degree of agreement with the observed 
runoff data. As indicated in Table 6, the 
calibrated model parameters were                     
found to fall within their predetermined range, 
demonstrating that the model was successfully 
fine-tuned to represent the hydrological 
behaviour of the Ravishankar Sagar                
catchment during the specified period. This 
alignment with the predetermined range adds 
confidence to the model's reliability                       
and its ability to accurately simulate runoff 
conditions. 

 
Table 5. Representing runoff coefficient 

 

Year RF Q-obs R Coeff 

2004 1217 629.9 0.518 
2005 1185 566.4 0.478 
2006 1474 858.6 0.582 
2007 1278 734.1 0.575 
2008 997 509.3 0.511 
2009 1137 717.7 0.631 
2010 1302 786.4 0.604 
2011 1106 679.8 0.615 
2012 1076 585.5 0.544 
2013 1334 916.3 0.687 
2014 1271 833.4 0.656 
2015 594 196.1 0.33 
2016 792 254.6 0.321 
2017 611 171.1 0.28 
2018 822 342.4 0.417 
2019 887 290.8 0.328 
2020 863 286.3 0.332 

 
Table 6. Model parameter values of model calibration and their range 

 

S. No. Parameters Unit Selected Values for Model 
Parameter 

Range for 
Parameter 

1 Umax mm 11.000 5.76 – 20 
2 Lmax mm 135.000 100 – 300 
3 CQOF  0.515 0.1- 1 
4 CKIF hrs 287.300 200 – 1000 
5 CK1K2 hrs 23.200 10 – 50 
6 TOF  0.0701 0 - 0.99 
7 TIF  0.419 0 - 0.99 
8 TG  0.0266 0 - 0.99 
9 CKBF hrs 1154.000 500 – 1000 
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Table 7. Model calibration result (all values are in mm) 
 

S. No. Year Q-obs  Q-Sim % Diff RF PET AET GWR OF IF BF 

1 2004 629.9 528.3 16.1 1217 2210.1 670.1 285.7 227 28.5 272.8 
2 2005 566.4 535.2 5.5 1185 2164.6 645.5 289 221.4 26.6 287.1 
3 2006 858.6 795.4 7.4 1474 2133.1 672.4 410.3 356.7 34.1 404.6 
4 2007 734.1 676.5 7.8 1278 2154.8 603.8 342.1 289 41.5 346 
5 2008 509.3 455.3 10.6 997 1912.6 538.2 234.3 190.5 29.3 235.5 
6 2009 717.7 592.3 17.5 1137 1987.1 507.8 319.4 255.9 27.3 309.1 
7 2010 786.4 714.8 9.1 1302 1882.8 579.1 356.9 314.2 46.8 353.8 
8 2011 679.8 621.6 8.6 1106 1627.6 521.6 309.6 276.8 29.3 315.4 
9 2012 585.5 505.1 13.7 1076 1688.3 570.8 244.7 206 43.4 255.8 
10 2013 916.3 730.7 20.2 1334 1600.3 596.4 371 317.7 48.9 364.1 
11 2014 833.4 821.6 1.4 1271 1691.7 449.1 417.5 374.8 34.4 412.4 
12 2015 196.1 165.3 15.7 594 1632.8 458.2 87.7 54.9 4.5 105.9 
  Total 8013.5 7142.1 133.6 13970.15 22685.8 6813 3668.2 3084.9 394.6 3662.5 

Coefficient of Determination = 0.730 
(Q=Runoff, RF=Rainfall, PET=Potential Evapotranspiration, AET=Actual Evapotranspiration, GWR=Ground Water Recharge, OF=Overland Flow, IF=Inter Flow and BF=Base 

Flow)
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Fig. 11. Observed and simulated runoff hydrograph during model calibration 
 

Table 7 displays the statistical information 
pertaining to different facets of the hydrological 
cycle, encompassing metrics such as runoff, 
actual evapotranspiration, groundwater recharge, 
overland flow, interflow, and base flow. The data 
presented corresponds to simulations conducted 
during the model calibration, and these values 
are structured to represent a water balance. 
 

The observed coefficient of determination (R²) for 
the model calibration was found to be 0.730. This 
value indicates good agreement in terms of time, 
rate, and volume between the observed and 
simulated runoff. The modest 10% differences 
between the total observed and simulated flows 
suggest an acceptable match between the 
simulated and observed runoff, enhancing the 
reliability of the model. Based on the analysis of 
the simulation results over the sixteen-year 
calibration period, out of the total rainfall of 
13,970 mm, the simulated discharge was 10,810 
mm. During this period, 3,085 mm of overland 
flow was formed, 395 mm of water was 
contributed as interflow, and 3,663 mm as base 
flow. The remaining 3,668 mm of water was 
contributed to groundwater recharge. These 
details provide a comprehensive overview of the 
water balance components and their interactions 
within the Ravishankar Sagar catchment during 
the specified calibration period. 
 

Fig. 11 presents a comparison between 
observed and simulated yearly runoff volumes. 
The visual representation in the Fig. 12 indicates 
a close match between the simulated and 

observed runoff volumes, suggesting that the 
model accurately captures the variations in runoff 
over different months. In Fig. 11, which illustrates 
runoff hydrographs of various events over the 
calibration period, it is observed that there is 
generally good agreement between the shapes 
of the hydrographs for both observed and 
simulated runoff. This indicates that the model is 
capable of reproducing the temporal patterns of 
runoff events throughout the calibration period. 
The comparison shows that the simulated and 
observed runoff closely match each other, 
suggesting the model's capability to accurately 
simulate hydrograph shapes and runoff volumes. 
While there may be some differences in the 
amplification of peak values of runoff events, the 
times of the beginning and ending of observed 
and simulated runoff events are reported to 
match well. Overall, these visual analyses 
provide confidence in the model's ability to 
replicate the observed runoff dynamics during 
the calibration period. 

 
4.3 Model Validation 
 
The MIKE 11 NAM model was then validated 
using the same set of model parameters that had 
been found during the model calibration process 
for the four years, from 2016 to 2020.the model. 
Table 8 furnishes data on the simulated 
hydrological components during the model 
validation for the four years from 2016 to 2020, 
using the same set of model parameters 
identified during the calibration process. 
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Fig. 12. Observed and simulated monthly runoff volume during model calibration 
 

 
 

Fig. 13. Observed and simulated runoff hydrograph during model Validation 
 

Table 8. Model validation result (all values are in mm) 
 

S. No.  Year Q-
obs  

Q-Sim % 
Diff 

RF PET AET GWR OF IF BF 

1 2016 295.9 212.5 28.2 792 1801.6 543.9 188.3 9.6 29.8 173.1 

2 2017 186.3 148.3 20.4 611 1802.3 474.1 126.3 6.4 10.2 131.7 

3 2018 338 309.2 8.5 822 1645.3 489.3 280.1 14.6 22.8 271.8 

4 2019 319.7 260.8 18.4 887 1698.5 629.6 221.8 11.4 28.1 221.3 

5 2020 292.1 259 11.3 863 1504.8 627.7 219.5 11.2 18.7 229.1  
Total 1432 1189.8 36.8 3975 8452.5 2764.6 1036 53.2 109.6 1027 

Coefficient of Determination = 0.704 
(Q=Runoff, RF=Rainfall, PET=Potential Evapotranspiration, AET=actual evapotranspiration, GWR=Ground 

Water Recharge, OF=Overland Flow, IF=Inter Flow and BF=Base Flow) 
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Throughout the validation period, the model's 
coefficient of determination was 0.704. This 
value suggests that the MIKE 11 NAM model 
performed well in simulating runoff, exhibiting 
good agreement with observations in terms of 
timing, rate, and volume. The modest 11.3% 
difference between the total observed and 
simulated runoff further indicates an acceptable 
match between the model's predictions and the 
actual observed runoff during the validation 
period. These results affirm the model's 
robustness and reliability in reproducing the 
hydrological dynamics of the Ravishankar Sagar 
catchment not only during the calibration period 
but also during the subsequent validation period 
from 2016 to 2020. The consistency between 
observed and simulated values further supports 
the credibility of the MIKE 11 NAM model for 
runoff prediction in this specific context. 
 
Based on the analysis of Fig. 14, which shows a 
strong correlation between the monthly runoff 
volume observed and the simulated data during 
the validation phase, it can be inferred that the 
model that was created in this way continued to 
perform effectively throughout the longer time 
period. Fig. 13 illustrates a close match between 
the hydrographs of various events in both 
simulated and observed runoff during the 
validation period. This suggests that the model 
parameters established during calibration were 
successful in accurately predicting runoff. The 
results from the model validation investigation 
indicate that the developed NAM model 
performed well, demonstrating its ability to 
generate or forecast runoff time series for an 
extended period in Ravishankar Sagar with a 
commendable level of precision. The calibration 

process resulted in an Efficiency Index (EI) 
indicating the effectiveness of the NAM model in 
accurately predicting runoff. Additionally, it can 
be inferred that the NAM model, developed 
specifically for Ravishankar Sagar in the 
Mahanadi basin, holds promise for simulating 
runoff in other sub-basins with similar 
characteristics. 
 

4.4 Sensitivity Analysis 
 
To identify the most sensitive model parameters, 
the MIKE11 NAM model underwent individual 
runs, with each parameter treated as a variable 
while maintaining the constancy of other 
parameter values. Equations 2 were employed to 
calculate the Efficiency Index (EI) for each 
simulated runoff time series. By plotting EI 
against the respective model parameters, a 
comprehensive analysis of the output results was 
conducted. Fig. 16 reveals that the parameters 
CQOF, Lmax, and CK1K2 emerged as the most 
sensitive and influential, while the remaining 
parameters were observed to be non-sensitive, 
as illustrated in Fig. 15. 
 

4.5 Effect of Model Parameters on Runoff 
 
Through sequential runs of the model with 
adjustments to individual parameter values, the 
impact of these parameters on simulated peak 
and low flows was assessed. The analysis 
highlighted that the parameters CQOF, Lmax, 
and CK1K2 significantly influenced both peak 
and low flows. In contrast, parameters such as 
Umax, CKIF, TIF, and CKBF exhibited no 
discernible effect on either peak or low flows. 

 

 
 

Fig. 14. Observed and simulated runoff hydrograph during model Validation 
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Fig. 15. Graph between EI against the non-sensitive model parameters 
 

 
 

Fig. 16. Graph between EI against the sensitive model parameter 
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5. DISCUSSION AND CONCLUSION 
 

The study revealed that the Ravishankar Sagar 
within the Mahanadi basin could proficiently 
replicate the hydrological response to rainfall and 
accurately forecast daily runoff. This success 
was achieved through the application of the 
MIKE11 NAM rainfall runoff model. 
Understanding the interconnection between 
precipitation and runoff is crucial for gaining 
insights into how annual runoff experiences 
fluctuations in response to varying rainfall 
patterns within the Ravishankar Sagar 
Catchment in Chhattisgarh. Additionally, the 
study establishes significant relationship between 
annual rainfall and runoff. Observations indicated 
that the model successfully predicted and 
simulated runoff in terms of time, rate, volume, 
and hydrograph shape, demonstrating its 
effectiveness in replicating the observed runoff. 
The model's calibration and validation produced 
R2 values of 0.730 and 0.704, respectively. The 
model proved its effectiveness and capacity to 
predict runoff for Ravishankar Sagar Reservoir 
over a long period of time, with an Efficiency 
Index of 81%. The model was substantiated as 
effective in generating runoff using rainfall data, 
suggesting its potential as a crucial tool for water 
resources management and the development of 
the Ravishankar Sagar. It was determined that 
the MIKE 11 NAM model made sense for 
characteristics like CQOF, Lmax, and CK1K2. It 
was found that these parameters were shown to 
have significant effects on both low and high 
flows, was an important modeling component. 
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