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ABSTRACT 
 
New and emerging cases of oil spill incidents are reported almost on a weekly basis in the Niger 
Delta region of Nigeria with accusations and counter-accusations as to the claims made by 
interested parties on perceived impacts of the spills on the environment and its associated 
constituents. This study applied the capabilities offered by the Google Earth Engine (GEE) platform 
to monitor long-term vegetation dynamics as a result of exposure to pollution emanating from crude 
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oil spills in the Niger Delta region of Nigeria. The capabilities offered by GEE provide a platform for 
rapid access to big data for the assessment of environmental change, especially in the Niger Delta 
with its difficult terrain and security concerns. This study considered oil spill incidents in vegetated 
terrestrial locations in the Niger Delta across ten years. Fifteen locations spread across the region 
with oil spill incidents identified as large incidents being selected (>50 <5000bbl). Results of the 
statistical analysis performed on the vegetation indices data generated from GEE suggest that the 
analysis of long-term vegetation indices using GEE can provide a broad view of the impact of oil 
spills on vegetation over time if the spills are relatively large or the spills are repetitive. However, 
when the spills were relatively small, there was no statistically significant variation in the spectral 
signatures of the vegetation over time. This suggests that for large spills, GEE-derived vegetation 
indices can be a very useful synoptic tool in monitoring oil spill occurrence and impact on vegetated 
terrestrial environments in the Niger Delta and elsewhere where environmental accessibility is a 
challenge. 
 

 
Keywords: GEEP; environmental monitoring; NDVI; oil spill pollution; vegetation indices. 
 

1. INTRODUCTION 
 

Oil spills describe the inadvertent or deliberate 
introduction or discharge of petroleum 
hydrocarbon products and their byproducts into 
any environment [1,2,3,4,5,6]. These 
environments comprise the air, water, or land. 
The occurrence of oil spills has generally 
increased in frequency in the last decades, due 
to increased international transportation of cargo 
and consumption, energy generation and 
industrial usage [7]. For the Niger Delta Region 
of Nigeria, the case is worse as incidences of oil 
spills are reported almost every week [8,9,10,11].  
 
Oil spills can emanate from a combination of 
several factors, which can be human-induced or 
naturally occurring. The due to human-induced 
factors that lead to oil spills include, but are not 
limited to activities such as willful theft or 
interdiction, terrorism, accidents, and operational 
expulsions of petroleum hydrocarbon into the 
environment [8,10,12,13,14].  
 
Accusations and counter-accusations are very 
rampant in the reportage of oil spill incidents in 
the Niger Delta. These accusations range from 
under-reporting to over-reporting of spill incidents 
which are often dependent on the specific bias of 
people involved in the reporting efforts. The oil-
producing communities would always insist that 
the spill volume and number are underreported, 
while the multinational oil companies would 
argue that the values reported by the 
communities and NGOs are significantly over-
bloated [15,16,17]. This lack of trust in the spill 
data reported has continually bred mistrust 
amongst stakeholders in the oil spill control and 
management quarters in Nigeria. This mutual 
distrust effectively sabotages and negates 

meaningful progress as valuable time is spent 
first trying to validate and harmonize the 
available oil spill information [18]; this mistrust  
stems from the people of the Niger Delta being 
quite suspicious of outsiders and their intentions 
[19]. These suspicions can be attributed to the 
years of deliberate neglect and marginalization of 
the people and environment of the Niger Delta 
[20,21,22]. 
 
An increasingly alarming quantity of spills in the 
Niger Delta is being attributed to activities of 
kpofire (artisanal and illegal refineries), with 
significant losses of crude oil to the environment 
[8,9,23,24,25,26]. These significant losses of 
crude to the natural environment given the right 
conditions can significantly impair the functioning 
and viability of various ecological systems [27]. 
Petroleum based pollutants resulting from oil 
spills are a serious threat to human health and 
the environment due to their toxicity, 
mutagenicity, and carcinogenicity related 
properties [28]. 
 

2. MATERIALS AND METHODS 
 

2.1 Study Area Description 
 
The Niger Delta Region (NDR) describes an area 
in the South of Nigeria where the main river 
channel of the River Niger attains base level and 
bifurcates into multiple distributaries, disposing of 
discharge and sediment load into the Atlantic 
Ocean [29]. The Niger Delta of Nigeria hosts the 
oil industry of the country as well as serves as a 
home to the largest mangrove forest in Africa, 
the third largest in the world, and occupies about 
10,000 square kilometers [30]. The NDR covers 
an area of about 70,000 km2 [31,32,33,34,35]. 
The NDR has been described as mostly a flat 
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swampy basin, crisscrossed by an intricate and 
dense network of rivers, creeks and streams. It is 
home to diverse species of mangroves forests, 
rainforests and freshwater swamps [36,37,38]. Its 
topography, geology and soil properties, 
hydrodynamics and heavy rainfalls make the 
region highly vulnerable to incidences of annual 
flooding and erosion; throw in a mix of people of 
who are deeply suspicious of outsiders and any 
attempt to research the region becomes quite 
challenging [9,19]. 
 
It is estimated that worldwide, for a period 
covering the last 35 years; energy use has 
doubled, contributing to a 7-fold increase in gross 
domestic product (GDP) in that time. During this 
period, crude oil dominated the world’s energy 
supply, constituting 34 percent of total primary 
energy supply in 2017 [39]. The implication of 
this assertion by Byrne [39], is that the 
foundations and maintenance of modern 
economies are significantly dependent on the 
continued production of fossil fuels of which 
crude oil is the most sought-after [40,41]. Even 
as attempts are continuously made by the 
advanced economies to shift their energy uses 
away from fossil fuels to renewable sources of 
energy [42], the developing economies of the 
world are far behind in this regard and will 
depend on the energy sources supplied by fossil 
fuels for the foreseeable future to meet up with 
their energy demands. This can be seen in the 
continuous prospecting for new and more 
productive offshore and onshore oil blocks [41]. 
In addition to the energy importance of crude oil, 
it is also important because a lot of industries 
(existing and emerging) depend on the base 
material from crude for the production of 
cosmetics, synthetic fabrics, plastics, lubricants, 
fertilizers and medical drugs [43,44]. 
 

2.2 Google Earth Engine Platform (GEEP) 
 

Conventional methods of collecting information 
about vegetation changes can be very difficult, 
costly, and time-consuming. Remote sensing 
applications, however, are very useful in proving 
a synoptic, reliable, and efficient view of a large 
area [45,46]. The GEEP is described as an 
online web portal that can provide global time 
series satellite imagery and vector data 
[47,48,49]. Google Earth Engine is a planetary-
scale cloud-based geospatial analysis platform; 
the platform aids in the rapid processing of large-

scale satellite-derived datasets and visualization 
of processed results [50].  

 
The GEE portal provides increased opportunities 
and capabilities for undertaking Earth 
observation studies using large-scale planetary 
data that is freely available. The platform/portal 
was created towards the end of 2010 as a cloud 
(web) based platform that provides free access 
to over 500 types of satellite and other ancillary 
data (demography and temperature) and 
contains algorithms that can process large 
amounts of data with relative ease [48,49,51]. 
The GEE platform has introduced a 
contemporary paradigm for big data that involves 
the storage and analysis of remotely sensed data 
at a scale that is otherwise not possible using 
desktop conventional processing machines 
[48,49,51]. 

 
2.3 Vegetation Indices for Oil Spill 

Detection and Monitoring 
 
Satellite-derived vegetation indices (VIs) are 
generally employed and adapted in ecological 
based research, ecosystem modeling, and land 
surface monitoring [52,53,54,55,56,57,58]. 
Vegetation indices (VIs), are defined as “the 
arithmetic combination of two or more bands 
related to the spectral characteristics of 
vegetation” [59,60]. Vegetation indices are used 
to describe vegetation structure and functioning 
[50,59,60]. they are affected by illumination 
conditions [59].  

 
The index utilizes the optical properties of the 
cellular structure of leaves; as well as the 
photosynthetic pigments which include; 
chlorophyll and the other associated light-
harvesting pigments, and accessory pigments. 
These efficiently absorb radiation in the visible 
range of the spectrum (to power photosynthesis) 
and reflect radiation in the near-infrared (NIR) 
range [50].  

 
VIs can be calculated or estimated from airborne 
or satellite imagery and have been successfully 
adopted to assess a variety of plant 
characteristics [61,62]. For example, the widely 
adopted and frequently utilized normalized 
difference vegetation index (NDVI) captures and 
responds to actively photosynthesizing plant 
tissues [62]. 
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Fig. 1. The Niger Delta Region showing oil spill locations and pipeline network 

 
2.3.1 Application of NDVI in oil spill incidents 

validation using GEE (time series 
analysis) 

 
It has been observed that vegetation reflects light 
in the near-infrared (NIR) part of the 
electromagnetic spectrum and absorbs light in 
the red part. It is this simple but effective 
observation that NDVI uses to create a single 
value roughly reflecting and estimating the 
photosynthetic activity occurring at a pixel point. 
This results in a number between 1 and -1, 
where pixels with high photosynthetic activity 
have a high NDVI value (close to +1) and pixels 
associated with low photosynthetic activity have 
a lower value closer to -1 [63,64]. For this study, 
the Google Earth Engine Platform (GEEP) is 
adopted for use in creating the NDVI statistics. 
GEEP is an online web platform that can provide 
incredibly massive global time series satellite 
imagery and vector data [47,48,49].  

 
Several studies have adopted the use of GEE in 
in vegetation mapping and monitoring [50,65,66, 
67,68]. Campos-Taberner et al., [65], carried out 
a global estimation of key biodiversity variables 
such as “Leaf Area Index (LAI), Fraction of 
Absorbed Photosynthetically Active Radiation 
(FAPAR), Fraction Vegetation Cover (FVC), and 
Canopy water content (CWC) using MODIS 
historical data”.  
 
A planetary-scale vegetation mapping project 
using MODIS-derived EVI products and the GEE 
web-based application was carried out in 
Vietnam by Poortinga et al. [66]. A relatively 
more refined and accurate thirty-meter (30m) 
NDVI composite, covering a period of 30 years, 
was developed for the United States using the 
Google Engine cloud-based planetary processing 
platform [50]. Satellite images contain several 
layers known as bands that are stacked on top of 
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each other. Each of these bands or layers 
captures different wavelength of electromagnetic 
energy. Due to the spectral signature of different 
types of land cover, some features are easier to 
detect using certain bands or layers than others. 
A typical example is green vegetation, which 
tends to reflect more light in the green, red and 
near-infrared (NIR) sections of the 
electromagnetic spectrum [62], (Fig. 2). This 
makes it easier to detect vegetation using bands 
2 (green), 3 (red) and 4 (NIR) of the Landsat 
satellite imagery. Dutsenwai et al. [54], applied 
the use of NDVI in spatial and temporal analysis 
of vegetation and oil spill intensity in Ogoniland in 
the southern part of Nigeria.  
 
Healthy vegetation tends to absorb most of the 
incoming visible light, and reflects a large portion 
(about 25%) of the near infra-red (NIR) light [63]. 
However, a lower portion of light is reflected in 
the red band (RED) (Fig 4.). Unhealthy or sparse 
vegetation reflects more visible light and less NIR 
light [55, 63]. It is this contrasting nature in the 

ability of both healthy and unhealthy (stressed) 
vegetation, that makes it particularly useful in 
detecting areas of stress in a continuously 
vegetated area. The NDVI is calculated by a 
simple but effective formula given by equation 1. 
 
NDVI = (NIR – RED) / (NIR + RED) equation   (1) 
 
NDVI analysis typically generates a new            
image based on the vegetation cover 
characteristics and reflectance values from an 
original input image. Calculations for a given 
pixel always result in a value that ranges 
between minus one (-1) to plus one (+1) 
[63,64,69]. An NDVI is a proxy for vegetation 
greenness. As such, it is expected that it 
possesses a relatively smooth and continuous 
temporal profile except if there are outside 
perturbations or land cover change events. An 
unanticipated drop in NDVI values can then be 
attributed to atmospheric contamination or a 
quality issue not identified in the image 
reflectance product [50,69].  

 

 
 

Fig. 2. Spectral response curve of vegetation Adapted after: Ahmad et al. [63] 
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2.4 Data Analysis 
 
This study leveraged the inherent advantages 
available on the Google Earth Engine platform. 
The portal offers petabytes of archived satellite 
imagery which can be retrieved and manipulated 
with the appropriate computer language script. A 
mosaic of sixty (60) MODIS and Sentinel images 
was compiled and manipulated to generate the 
vegetation index (NDVI) for specific locations 
within the study area. These specific locations 
represent major oil spill points captured at 
different times. The NDVI values were generated 
for two time periods. These periods captured 
periods before the spills occurred and periods 
after the spill occurred in order to distinguish if 
significant variations exist in NDVI values across 
the spill locations in the study area. The 
justification for this is to see the trend of 
vegetation health changes within the period 
under consideration.  
 
The data derived from vegetation indices (NDVI) 
analysis generated from the GEE platform was 
subjected to further statistical analysis using the 
analysis of variance technique to identify if there 
was any statistical variation in the spectral 
signatures of the vegetation pre and post-the oil 
spill incident. 
 

3. RESULTS AND DISCUSSION 
 
The data was generated by running the 
appropriate Java Scripts in the code editor 
environment of the GEE platform. 
 

In this section, we present the results of the data 
generated from the cloud computing enabled on 

the GEE platform. An ample demonstration is put 
forward to show the capability of the GEE 
platform to generate long-term data to monitor 
the impacts of oil spills using vegetative indices 
as a proxy for environmental quality. 
 

3.1 Variance Significant at 0.05 Alpha 
Level 

 

Table 1 shows the results summary of the 
analysis of variance (ANOVA) performed for the 
GEE-derived NDVI for locations (Table 1) 
locations and one control site across the study 
area. From the table, it shows that four locations, 
(spill point 190331, 36961, 4499 and 51754) 
present statistically significant variations in the 
average monthly NDVI values across the months 
for a ten (10) year period (2012 – 2021). These 
locations have relatively large spill volumes with 
the exception of spill point 4499, which had a 
spill volume of 400bbl, while 300bbl was 
successfully recovered from the environment. 
The remaining three locations had spill volumes 
of 1403.6bbl, 17,386bbl and 16,720bbl 
respectively. The significant variation in the NDVI 
values for spill point 4499 even though it is a 
relatively small spill is explained by the area 
being described as a stressed region. The area 
has previously experienced oil spill and had been 
cleaned up previously by the responsible oil 
company. However, with the reintroduction of 
400bbl of crude oil into the environment the 
tolerance threshold of the vegetation was 
exceeded hence the significant variation in the 
NDVI values for the region. This accounts for 
why the relatively small spill of 400bbls could 
result in significant variation in NDVI values for 
that particular spill location. 

 

Table 1. Summary table showing statistical significance in variation in NDVI values at various 
spill points across the study Area 

 

S/N Spill Point Spill Volume Recovered Statistical variation in NDVI 

1 128418 1000 0 Not significant 
2 51642 417 187 Not significant 
3 19520 1370 1300 Not significant 
4 190331 1403.6 1387.6 Significant 

 

5 25709 5000 0 Not significant 
6 98146 2026 0 Not significant 
7 36961 17,386 0 Significant 

 

8 7405 4688.12 3675 Not significant 
9 74427 1127 600 Not significant 
10 7596 1070 187 Not significant 
11 4499 400 300 Significant 

 

12 115668 1669 825 Not significant 
13 51754 16,720 7,391 Significant 

 

14 198555 390 0 Not significant 
15 4037 529 0 Not significant 
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The statistically significant variation in average 
monthly NDVI values in those locations suggest 
that vegetation is affected by relatively large oil 
spills [55], while the relatively smaller spills do 
not have such a profound physiological impact 
on the vegetative health. 

 
3.2 Validation of Oil Spill Data in the Niger 

Delta Using GEE Derived Vegetation 
Indices and Statistics 

 
A major point of contention in oil spill 
management discourse is the verification of the 
occurrence of a spill [14,15,17]. There is usually 
a battle of wits, arguments and counter 
arguments between multinational oil companies 
(MOCs), and in recent times indigenous oil 
companies (IOCs) who mostly operate in the 
marginal terrestrial oil fields about the veracity of 
claims about oil spill incidents within the Niger 
Delta. This study has proposed and tested the 
possibility of using google earth engine derived 
vegetation indices (NDVI) as proxy for validating 
oil spill events within the vegetated zones of the 
Niger Delta coastal areas. Fig. 3 (A to N) and 
Table 1 shows the results of the analysis of the 
NDVI data generated from the GEE platform. 
The data and subsequent results cover fifteen 
(15) oil spill locations located in vegetated areas 
over a ten-year period (January 2012- December 
2021). 

 
3.3 Impact of Oil Spills on Vegetation in 

the Niger Delta 
 
Hydrocarbon or crude oil contamination of soils 
affects plants by impeding the physiological 
processes that occur in plants owing                          
to their interaction with soil and soil nutrients  
[70]. These physiological constrains experienced 
by the plants are engendered by the              
interference of hydrocarbons with the chemical 
and ecological balance of the soil and soil 
nutrients. This often results in stressed                 
plants which manifests through the alteration of 
the spectral signatures of impacted vegetation 
[5,64]. 

 
Several studies such as [5,64,70], have 
suggested with evidence that crude oils in soils 
bring on alterations in several soil parameters 
such as available nutrients, temperature, 
microorganism activity, soil pH and soil 
temperature. These changes in soil chemistry 
and physiology induce stress in vegetation 

growing on soils polluted by crude oil by 
changing their suboptimal adaptation capabilities 
to a unique environment. This interference and 
associated plant stress are manifested by the 
alteration of chlorophyll production and                  
other related photosynthetic pigments that 
absorb solar radiation, thereby affecting the 
normal reflectance values of vegetation [56, 
57,71]. 
 

In this study, there is a significant alteration in the 
reflectance values proxied by NDVI values 
extracted from oil-impacted vegetation locations 
within the study area when the spills are 
relatively large or reoccurring. Table 1 presents 
the statistically significant variations in vegetation 
reflectance (vegetative health) with volume of oil 
spilled into the soil, vegetation interface.  From 
the significance of associations presented in 
Table 1, a marked difference in vegetation 
reflectance is significant with an increase in the 
quantity of crude oil introduced into the 
environment. The relatively smaller spills did not 
induce statistically significant stress in the 
vegetation as there was no statistically significant 
difference between the average monthly NDVI 
values before and after the spill. 
 

However, with increasing volume in the quantity 
of oil spilled or repeat pollution, a statistically 
significant difference was observed in average 
monthly NDVI values before and after a spill 
event, suggesting that significantly large spills or 
repeat spill events in the same location induce 
stress in vegetation within the study area. This 
finding agrees with the results of [71], who 
reported changes in reflectance values of 
vegetation subjected to crude oil pollution-
induced stress. The implication is the marked 
reduction in the available chlorophyll content of 
polluted vegetation since these pigments usually 
absorb light for photosynthetic purposes in the 
visible wavelength regions of the spectrum 
[55,72]. 
 
The scientific relevance of the findings in this 
study lies in the application of the Google               
Earth Engine (GEE) platform to monitor long-
term vegetation dynamics in response to               
crude oil spills in the Niger Delta region of 
Nigeria. With the region experiencing frequent   
oil spill incidents and ongoing debates           
regarding their environmental impacts, the 
utilization of GEE provides a valuable approach 
for assessing these impacts efficiently and 
comprehensively. 
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Fig. 3. This figure shows split figures A to O corresponding to the GEE-generated NDVI spectral signatures for 15 oil spill locations in the Niger 
Delta between January 2012 and December 2021 
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Fig. 4. Google earth engine generated NDVI Map with the points identifying oil spill locations 
 
By analyzing vegetation indices data generated 
from GEE over ten years in fifteen selected 
locations affected by oil spills, this study 
identifies significant patterns in vegetation 
dynamics associated with the magnitude and 
frequency of spills. The results of the               
statistical analysis indicate that GEE-                
derived vegetation indices offer a robust             
means of monitoring the impact of large or 
repetitive oil spills on vegetated terrestrial 
environments over time. This finding  
underscores the utility of GEE as a synoptic tool 
for assessing oil spill occurrence and its 
subsequent effects on vegetation [73,74], 
particularly in regions with challenging 
environmental accessibility such as the Niger 
Delta [5].  
 
Moreover, the comparison with studies of 
environmental factors in tropical agricultural 
areas in Latin America adds scientific depth to 
the findings by highlighting the broader 
applicability of the GEE approach. By 
demonstrating its effectiveness in addressing 
challenges related to terrain and accessibility in 
both the Niger Delta and similar regions in Latin 
America, this study underscores the versatility 
and relevance of GEE as a platform for 
monitoring environmental change in complex 
landscapes affected by anthropogenic activities 
[75,76,77].  

4. CONCLUSION 
 
This study contributes to filling the knowledge 
gap that exists in the monitoring of crude oil 
impacted vegetation in the Niger Delta, through 
its contribution to the understanding of long-term 
vegetation dynamics in response to oil spill 
incidents within the region. facilitated by the 
innovative use of GEE. The findings               
emphasize the importance of considering the 
magnitude and frequency of spills in assessing 
their impact on vegetated terrestrial 
environments and highlight the potential of GEE-
derived vegetation indices as a valuable tool for 
environmental monitoring in regions facing 
similar challenges globally. 
 
This research has amply demonstrated that 
GEE-derived vegetation statistics can be              
used to monitor long-term changes in vegetation 
induced by large or repeat oil spill events. 
However, the effectiveness of the NDVI in 
detecting subtle changes is not very explicit. 
Arising from this deficiency, it is recommended 
that other more sensitive indices should be used 
in conjunction with the NDVI as well as the use of 
drones to capture high-resolution images of 
areas that are suspected to be negatively 
impacted by oil spills. This study investigated the 
use of GEE-derived vegetation indices in 
validating oil spill data reported in the NDR of 
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Nigeria, in order to improve the confidence of 
stakeholders in the oil spill data reported for the 
region. This study has been able to             
demonstrate that the GEE derived vegetation 
indices can indeed be a useful tool in            
monitoring the long-term changes in the 
vegetation impacted by oil spills. Key findings 
show that for relatively large oil spills in the Niger 
Delta, GEE derived NDVI statistics can help in 
putting to bed some uncertainty about the 
verification of oil spill incidents across the Niger 
Delta especially as it relates to relatively large oil 
spills. It has also been successfully 
demonstrated that GEE derived vegetation 
indices can be used to identify, detect and 
monitor vegetation impacted by oil spills within 
the study area as it can be used to detect cases 
of spill, especially the relatively large or repetitive 
spills.  This method proposed in this study can 
provide an easy to use technique to provide rapid 
assessment of oil spill incidents within the study 
area. 
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