
Citation: Dong, X.; Lin, Y.; Suo, X.;

Wang, X.; Sun, W. The Adaptive

Optimal Output Feedback Tracking

Control of Unknown Discrete-Time

Linear Systems Using a Multistep

Q-Learning Approach. Mathematics

2024, 12, 509. https://doi.org/

10.3390/math12040509

Academic Editor: Juan Ramón

Torregrosa Sánchez

Received: 2 January 2024

Revised: 23 January 2024

Accepted: 31 January 2024

Published: 6 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

The Adaptive Optimal Output Feedback Tracking Control of
Unknown Discrete-Time Linear Systems Using a Multistep
Q-Learning Approach
Xunde Dong 1 , Yuxin Lin 1 , Xudong Suo 2, Xihao Wang 1 and Weijie Sun 3,*

1 School of Automation Science and Engineering, South China University of Technology,
Guangzhou 510641, China; audxd@scut.edu.cn (X.D.); 202130462486@mail.scut.edu.cn (Y.L.);
202321017516@mail.scut.edu.cn (X.W.)

2 Intelligent Mobile Robot Research Institute (Zhongshan), Zhongshan 528478, China;
suoxudong@imrobotri.com

3 School of Automation Science and Engineering, Key Laboratory of Autonomous Systems and Networked
Control, Ministry of Education, Guangdong Engineering Technology Research Center of Unmanned Aerial
Vehicle System, South China University of Technology, Guangzhou 510641, China

* Correspondence: auwjsun@scut.edu.cn

Abstract: This paper investigates the output feedback (OPFB) tracking control problem for discrete-
time linear (DTL) systems with unknown dynamics. To solve this problem, we use an augmented
system approach, which first transforms the tracking control problem into a regulation problem with
a discounted performance function. The solution to this problem is derived using a Bellman equation,
based on the Q-function. In order to overcome the challenges of unmeasurable system state variables,
we employ a multistep Q-learning algorithm that surpasses the advantages of the policy iteration (PI)
and value iteration (VI) techniques and state reconstruction methods for output feedback control. As
such, the requirement for an initial stabilizing control policy for the PI method is removed and the
convergence speed of the learning algorithm is improved. Finally, we demonstrate the effectiveness
of the proposed scheme using a simulation example.

Keywords: tracking; Q-learning; optimal control; output feedback; UPS
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1. Introduction

The optimization of performance costs has always been a crucial concern in controller
design problems as it can lead to energy savings and, subsequently, have a positive im-
pact on the environment. The development of practical requirements has significantly
contributed to the advancement of optimal control [1–4]. The key challenge in optimal
control lies in solving the Riccati equation for linear systems. In the case of linear systems,
computationally efficient iterative algorithms [5,6] can be employed to obtain the solution
to the Riccati equation. However, this method is only applicable when a comprehensive
understanding of the system dynamics is available. In control engineering, online learning
controllers have commonly been designed without complete knowledge of the system
dynamics [7–11]. Notably, a data-based approach was proposed in [12] for analyzing the
controllability and observability of discrete-time linear (DTL) systems without the precise
knowledge of system parameters.

Reinforcement learning (RL) is a powerful method for optimizing rewards via in-
teractions with the environment [13]. Utilizing RL techniques, controller performance
can be enhanced based on reward signals [14] and controller parameters can be updated
to achieve optimal design criteria for adaptive control. Consequently, RL has provided
valuable insights into the field of control systems [14,15], augmented by the introduction of
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the adaptive dynamic programming (ADP) approach, which aims to achieve optimal per-
formance indices for (partially) model-free scenarios [15–19]. Extensive research has been
conducted on developing optimal control schemes based on the ADP concept, particularly
for applications in linear quadratic regulator (LQR) and linear quadratic tracking (LQT)
problems, which was outlined comprehensively in [2,20–23] and other related references.
It is worth noting that learning schemes in reinforcement learning generally involve two
iterative steps: policy evaluation and policy update (with the latter focusing on policy
improvement). However, it is essential to acknowledge that reinforcement learning based
on value function approximation (VFA) introduces deliberate exploration noise to fully
investigate systems, thereby undermining the algorithm’s convergence [23–25]. Further-
more, the policy iteration (PI) scheme within the adaptive dynamic programming (ADP)
framework necessitates an initially admissible policy, which demands a priori knowledge
of unknown systems to design robust controllers [22,26]. To overcome this requirement,
recent studies have adopted value iteration (VI) methods [23,27,28] within value function
approximation (VFA) schemes. Recently, event-triggered control approaches have also been
applied to solve the adaptive optimal output regulation problem using PI and VI methods
with one-step learning [29].

Most current studies in the field of control engineering have relied on the ability to
measure the complete state information of systems [23,30], which is often challenging to
achieve in practical engineering applications [31]. As such, the development of output
feedback learning controllers has become essential. In the literature, dynamic output
feedback controllers have been investigated [32], which rely on the Q-learning algorithm
to solve the LQR control problem for discrete-time linear systems. Additionally, a state
parameterization method for reconstructing system states based on filtered input and
output signals has been proposed. In contrast, static output feedback designs are popular
due to their simplicity and have been used to solve the LQR problem for continuous-time
linear systems [33]. However, obtaining static output feedback controllers requires not only
the complete state variable information of systems during the learning phase but also model-
free state estimation techniques based on neural networks [34,35]. An alternative approach,
first proposed in [24], is to use the measurements of past inputs, outputs, and reference
trajectories in a system as substitutes for the unmeasurable system state to learn the
output feedback LQR controller. This approach has also been extended to solve the output
feedback LQT problem by employing the VFA technique [25]. Furthermore, model-free
state reconstruction techniques have recently been applied to solve output feedback Q-
learning PI schemes for H∞ control problems [36,37].

In this paper, we propose a tracking control approach that utilizes a static output feed-
back multistep Q-learning algorithm in conjunction with state reconstruction techniques. A
separate adaptation mechanism was introduced in [38] to estimate unknown feedforward
tracking terms. However, the static OPFB design we propose owes its popularity to its
simplicity in terms of structure.

The key contributions of this work can be summarized as follows:

• Compared to the results reported in [23,39], the proposed approach does not apply an
actor–critic structure, which are dependent on actor and critic NNs, to approximate
control policy or value function. Moreover, the proposed model-free learning approach
removes the requirement for the measurability of system state variables by collecting
past input, output, and reference trajectory data. This is particularly advantageous
in practical scenarios in which obtaining full state information may be challenging
or costly;

• VFA-based learning [23,39] can ruin algorithm convergence due to the exploration
noise that is intentionally added to evaluated policies to sufficiently excite systems.
However, we apply the Q-learning scheme [40], which creates no biases in the esti-
mated parameters of Q-function Bellman equations;

• Using the proposed multistep Q-learning technique [41], which surpasses the ad-
vantages of PI and VI methods, we are able to remove the requirement for an initial
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stabilizing control strategy. Moreover, this combination improves the convergence
speed of the algorithm, leading to more efficient control performance.

The rest of this paper is organized as follows: Section 1 formulates the problem
statement, Section 2 presents the proposed methodology, Section 3 displays the simula-
tion results, and finally, Section 4 concludes the paper with some discussion and future
research directions.

2. Problem Statement

This section will first review the problem of infinite-horizon LQT for DTL systems. Then,
we will present some fundamental results for solving a discrete-time Bellman equation.

Consider a time-invariant DTL system described by the following state and out-
put equations:

xk+1 = Axk + Buk

yk = Cxk
(1)

where xk ∈ Rn, uk ∈ Rm, and yk ∈ Rp represent the state, input, and output, respectively.
The matrices A, B, and C are constant matrices, where the pairs (A, B) and (A, C) are
controllable and observable, respectively.

The reference trajectory is generated by the exogenous system:

rk+1 = Frk (2)

where rk ∈ Rp and F is a constant matrix.
The tracking error is defined as follows:

ek = yk − rk. (3)

The goal is to create an optimal control policy, uk, that allows the output, yk, to track
the reference trajectory, rk, in an optimal way. This is achieved by minimizing the following
discounted performance index:

J(xk, rk) =
1
2

∞

∑
i=k

γi−k(eT
i Qei + uT

i Rui) (4)

where Q and R are positive definite weighting matrices, and 0 < γ ≤ 1 represents the
discount factor.

Remark 1. As stated in [40], the discount factor γ in (4) allows for a more general solution to the
LQT problem compared to the standard setting. Importantly, the matrix F need not be stable, thus
permitting a broader range of permissible reference signals for the tracking control problem with the
quadratic performance index. Additionally, this framework allows for simultaneous optimization
of both feedback and feedforward components of the control input, leading to a causal solution to
the infinite-horizon LQT problem. It is worth noting that the use of the discount factor γ does not
sacrifice generality, as one can set γ = 1 when F is Hurwitz, reducing the LQT problem to an LQR
problem with the specified output trajectory exponentially decaying to zero.

2.1. Offline Solution for LQT

By denoting Xk =
[
xT

k rT
k
]T , we obtain the following augmented system:

Xk+1 = TXk + B1uk

ek = C1Xk
(5)

where T =

[
A 0
0 F

]
, B1 =

[
B
0

]
, and C1 =

[
C −I

]
.
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It can be shown by Lemma 1 of [40] that, with the choice of uk = −KXk, where
K =

[
Kx Kr

]
, the discounted performance index (4) can be expressed in a quadratic form

as follows:
V(xk, rk) = V(Xk) =

1
2

XT
k PXk (6)

where P = PT > 0.
Using Formula (4), the cost function can be expressed as follows:

J(xk, rk) =
1
2
(eT

k Qek + uT
k Ruk) +

1
2

∞

∑
i=k+1

γi−(k+1)(eT
i Qei + uT

i Rui) (7)

Using Equation (6), the cost function J(xk, rk) can be rewritten as V(xk, rk), which can
be expressed as follows: H = r + Cv

V(xk, rk) =
1
2

eT
k Qek +

1
2

uT
k Ruk + γV(xk+1, rk+1) (8)

Substituting Equation (6) into Equation (8) yields the LQT Bellman equation for P:

XT
k PXk = XT

k ΠXk + uT
k Ruk + γXT

k+1PXk+1 (9)

where Π =

[
CTQC −CTQ
−QC Q

]
.

Define the LQT Hamiltonian as

1
2

H(Xk, uk) =
1
2

XT
k ΠXk +

1
2

uT
k Ruk + γV(Xk+1)− V(Xk) (10)

By solving the stationary condition [40,42], i.e.,

∂H(Xk, uk)

∂uk
= 0 (11)

we can find the optimal control input

uk = −KXk = −Kxxk − Krrk (12)

where K = (R + γBT
1 PB1)

−1γBT
1 PT and P satisfies the augmented algebraic Riccati equa-

tion (ARE):

Π − P + γTT PT − γ2TT PB1(R + γBT
1 PB1)

−1BT
1 P = 0 (13)

Remark 2. The augmented ARE (13) has a unique, positive definite solution P if the pair (A,
√

QC)
is observable and γ1/2F is stable [25]. Additionally, a lower bound has been established for the
discount factor to ensure the stability of the augmented system [43].

A direct solution to (13) is challenging due to the nonlinear relationship in the un-
known parameter. Instead, we substitute (12) into (9) to obtain the augmented LQT
Lyapunov equation:

Π − P + KT RK + γ(T − B1K)T P(T − B1K) = 0. (14)

To address this issue, an offline PI algorithm [5] has been proposed as an iterative
approach to compute the solution to (14). However, it requires complete knowledge of the
augmented system dynamics. To overcome this limitation, a Q-learning scheme [40] was
developed to solve the model-free LQT problem.
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2.2. Q-Function Bellman Equation

Let Zk =
[
XT

k uT
k
]T ; then, the discrete-time Q-function can be defined as follows:

Q(Zk) =
1
2

XT
k ΠXk +

1
2

uT
k Ruk + γV(Xk+1) (15)

By substituting the augmented system dynamics (5) into (15), we obtain:

Q(Zk) =
1
2

ZT
k H̃Zk (16)

where

H̃ =

[
Π + γTT PT γTT PB1

γBT
1 PT R + γBT

1 PB1

]
≡

[
H̃XX H̃Xu
H̃uX H̃uu

]
(17)

and H̃ is a kernel matrix and H̃ = H̃T .
By applying ∂Q(Zk)

∂uk
= 0, we can solve for uk as follows:

uk = −(H̃uu)
−1H̃uXXk (18)

Furthermore, noticing that Q(Zk) = V(Xk) leads to the Q-function Bellman equation:

ZT
k H̃Zk = XT

k ΠXk + uT
k Ruk + γZT

k+1H̃Zk+1 (19)

This equation expresses the connection between the Q-function and the kernel ma-
trix H̃.

2.3. PI-Based Q-Learning for LQT

Based on the Q-function Bellman equation (19), the PI-based Q-learning solution
for the LQT problem can be implemented using Algorithm 1, without relying on the
system dynamics [40].

Algorithm 1 PI Q-learning Algorithm for LQT.
Initialization:
Start with an admissible control policy u0

k with H̃0.
Procedure:
1: Policy Evaluation: For j = 0, 1, . . ., collect samples under uj

k to solve H̃ j+1

using the Q-function Bellman equation:
ZT

k H̃ j+1Zk = XT
k ΠXk + (uj

k)
T R(uj

k) + γZT
k+1H̃ j+1Zk+1

2: Policy Improvement: Compute the improved control policy as follows:
uj+1

k = −(H̃ j+1
uu )−1H̃ j+1

uX Xk
3: Stopping Criterion: Stop the iteration if ∥H̃ j+1 − H̃ j∥ < ε for some specified
small positive number ε. Otherwise, let j = j + 1 and go back to iteration.
End Procedure

Algorithm 1 performs repeated iterations between policy evaluation and policy im-
provement until convergence. In contrast to the offline algorithm [40], Algorithm 1 conducts
the policy improvement step using the learned kernel matrix H̃ j+1. This allows finding the
optimal policy even under completely unknown dynamic conditions.
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3. Methods
3.1. Multistep Q-Learning

Lemma 1. [24] When the pair (A, C) of the DTL system (1) is observable, the state Xk of the
augmented system can be reconstructed from the past input, output, and reference signal trajectories:

Xk =
[

Mu My Mr
] ūk−1,k−N

ȳk−1,k−N
rk−N

 (20)

where ūk−1,k−N = [uT
k−1, uT

k−2, · · · , uT
k−N ]

T and ȳk−1,k−N = [yT
k−1, yT

k−2, · · · , yT
k−N ], N ≤ n

are the sequences of input and output signals over the time interval [k − N, k − 1], respectively, and

Mu =

[
UN − ANW+

N DN
0

]
, My =

[
ANW+

N
0

]
, Mr =

[
0

FN

]

UN =
[

B1 AB1 A2B1 · · · AN−1B1
]

WN =
[ (

CAN−1)T (
CAN−2)T · · · CA C

]T

DN =


0 CB CAB · · · CAN−2B
0 0 CB · · · CAN−3B
...

...
...

. . .
...

0 0 0 0 CB
0 0 0 0 0



W+
N =

(
WT

NWN

)−1
WT

N

Lemma 1 states that the Q-function Bellman equation (19) can be transformed by using
the past input, output, and reference trajectory sequences. By substituting Equation (20)
into Equation (16), we obtain

Q(Zk) =
1
2 ZT

k H̃Zk =
1
2


ūk−1,k−N
ȳk−1,k−N

rk−N
uk


T

H


ūk−1,k−N
ȳk−1,k−N

rk−N
uk


∆
= 1

2 zT
k Hzk

(21)

where

zk =


ūk−1,k−N
ȳk−1,k−N

rk−N
uk



H = HT =


Hūū Hūȳ Hūr Hūu
Hȳū Hȳȳ Hȳr Hȳu
Hrū Hrȳ Hrr Hru
Huū Huȳ Hur Huu
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Hūū = MT
u
(
Π + γTT PT

)
Mu = MT

u H̃XX Mu
Hūȳ = MT

u
(
Π + γTT PT

)
My = MT

u H̃XX My
Hūr = MT

u
(
Π + γTT PT

)
Mr = MT

u H̃XX Mr
Hūu = γMT

u TT PB1 = MT
u H̃Xu

Hȳȳ = MT
y
(
Π + γTT PT

)
My = MT

y H̃XX My

Hȳr = MT
y
(
Π + γTT PT

)
Mr = MT

y H̃XX Mr

Hȳu = γMT
y TT PB1 = MT

y H̃Xu
Hrr = MT

r
(
Π + γTT PT

)
Mr = MT

r H̃XX Mr
Hru = γMT

r TT PB1 = MT
r H̃Xu

Huu = R + γBT
1 PB1 = H̃uu

According to the principle of optimality, the optimal control policy should satisfy
∂Q(zk)

∂uk
= 0. Solving for uk from Equation (21) yields the optimal control policy u∗

k as:

u∗
k = −(Huu)

−1(Huūūk−1,k−N + Huȳȳk−1,k−N + Hurrk−N
)

= −(Huu)
−1[ Huū Huȳ Hur

] ūk−1,k−N
ȳk−1,k−N

rk−N


= −K∗

 ūk−1,k−N
ȳk−1,k−N

rk−N


(22)

where K∗ = (Huu)
−1[ Huū Huȳ Hur

]
.

By substituting Equation (21) into Equation (19) with the utility function
r(τk, uk) = τT

k Γτk + uT
k Ruk, we have the Q-function Bellman equation incorporating input,

output, and reference trajectory sequences, which is expressed as follows:

zT
k Hzk = r(τk, uk) + γzT

k+1Hzk+1 (23)

where τk =

 yk

rk

 and Γ =

[
Q −Q
−Q Q

]
.

Define the optimal value function V∗(zk) ≜ Vu∗(zk). According to the optimal control
theory [1], V∗(zk) satisfies the following Bellman equation:

V∗(zk) = min
u(z)

{r(τk, uk) + γV∗(zk+1)} (24)

and the optimal control is

u∗
k = arg min

u(z)
{r(τk, uk) + γV∗(zk+1)} (25)

It is known that the policy evaluation step in the VI scheme is expressed as follows [23]:

zT
k Hj+1zk = r

(
τk, uj

k

)
+ γzT

k+1H jzk+1 (26)
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Transforming Equation (26) yields

zT
k H j+1zk = r

(
τk, uj

k

)
+ γzT

k+1H jzk+1

= r
(

τk, uj
k

)
+ γ

(
r
(

τk+1, uj
k+1

)
+ γzT

k+2H jzk+2

)
= r

(
τk, uj

k

)
+ γr

(
τk+1, uj

k+1

)
+ γ2

(
r
(

τk+2, uj
k+2

)
+ γzT

k+3H jzk+3

)
...

=

k+Nj−1

∑
i=k

γi−kr
(

τi, uj
i

)
+ γNj zT

k+Nj
H jzk+Nj

(27)

Thus, the convergence of the VI method [23] can be accelerated by introducing a
multistep utility function in the policy evaluation. The resulting multistep Q-learning VI
algorithm based on output feedback is described as follows:

• Step 1. Initialization: Set j = 0 and iterate from any initial control policy u0
k , which

does not need to be stable or controllable, and H0.
• Step 2. Multistep policy evaluation: Use the Q-function Bellman equation to solve

H j+1, where

zT
k H j+1zk =

k+Nj−1

∑
i=k

γi−kr
(

τi, uj
i

)
+ γNj zT

k+Nj
H jzk+Nj

(28)

• Step 3. Policy improvement: Update the control policy uj+1
k as follows:

uj+1
k = −

(
H j+1

uu

)−1(
H j+1

uū ūk−1,k−N + H j+1
uȳ ȳk−1,k−N + H j+1

ur rk−N

)
(29)

• Step 4. Termination condition: Check if
∥∥H j+1 − H j

∥∥ ≤ l, where l is a very small
threshold with pre-set algorithmic accuracy. If this condition is satisfied, terminate the
iteration and obtain the optimal control policy uj+1

k . Otherwise, return to Step 2 and
repeat the iteration.

Remark 3. As indicated in Equation (28), it is observed that the resultant value function in each
policy evaluation step is the sum of the one-step utility function and the previous value function.
When Nj = 1, Equation (28) simplifies to the policy evaluation step, which uses the VI framework
for one-step learning [23,28]. The difference in policy evaluation leads to contrasting merits in
value iteration. Unlike the traditional value iteration method, the proposed multistep Q-learning
VI algorithm takes advantage of a finite-sum utility function instead of a one-step calculation as
in value iteration. Consequently, the proposed algorithm leads to an improvement on the learning
convergent speed, as demonstrated in the simulation example.

3.2. Adjustment Rules for Step Size Nj

During each iteration of the multistep policy evaluation (28), the step size is adjusted.
The value iteration algorithm [23] employs a one-step policy evaluation to eliminate the
requirement for an initial stabilizing control policy. On the other hand, the policy iteration
algorithm uses an infinite-step strategy evaluation to speed up convergence [39]. However,
the speed of convergence of the multistep Q-learning algorithm depends on the chosen
step size. Initially, a small step size is used in the iteration to avoid the need for an initial
stabilizing control policy. Then, the step size is gradually increased to speed up convergence.
To adaptively adjust the step length, we use the following rule [41]:

Nj = 1 + [β
√

j] (30)
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where β ≥ 0, [·] means rounding down. When β = 0 and Nj = 1, it is equivalent to the VI
method with one-step policy evaluation [23].

3.3. Implementation

By using the least squares method, the linear parametric expression of zT
k H j+1zk is

given as follows:

zT
k H j+1zk =

(
H̄ j+1

)T
z̄(k) (31)

where

H̄ j+1 = vec
(

H j+1
)
∈ Rl(l+1))/2 ≡

[
H j+1

1l , 2H j+1
12 , · · · , 2H j+1

1l , H j+1
21 , · · · , 2H j+1

2l , · · · , H j+1
ll

]T

Here, H j+1
ik represents the element in the i-th row and k-th column of matrix H j+1,

where i, k = 1, 2, · · · , l, and l = mN + pN + m. The Kronecker product z̄k = zk ⊗ zk is
defined as

[
z2

1, z1z2, · · · , z1zl , z2
2, z2z3, · · · , z2zl , · · · , z2

l
]
∈ Rl(l+1)/2.

Combining Equation (31) with Equation (28), it can be simplified as:

(
H̄ j+1

)T
z̄k =

k+Nj−1

∑
i=k

γi−kr
(

τi, uj
i

)
+ γNj

(
H̄ j

)T
z̄k+Nj

(32)

The symmetric matrix H j+1 has dimensions of l × l, resulting in a total of
l(l + 1)/2 independent elements. Consequently, Equation (32) requires collecting at least
L ≥ l(l + 1)/2 sets of z̄k for solving.

The least squares expression for Equation (28) is

H̄ j+1 =

{{
Φj

}T{
Φj

}}−1{
Φj

}T{
Υj + γNj Ψj H̄ j

}
(33)

where

Φj =


z̄k

z̄k+1
...

z̄k+L−1

 ∈ RL×l(l+1)/2

Υj =


∑

k+Nj−1
i=k γi−kr

(
τi, uj

i

)
∑

k+Nj
i=k γi−kr

(
τi, uj

i

)
...

∑
k+Nj+L−1
i=k γi−kr

(
τi, uj

i

)

 ∈ RL×1

Ψj =


z̄k+Nj

z̄k+Nj+1
...

z̄k+Nj+L−1

 ∈ RL×l(l+1)/2)

Remark 4. When k ≤ N, the input–output data ūk−1,k−N and ȳk−1,k−N will be unavailable.
To address this issue, the internal model principle can be utilized to collect the missing data.
Additionally, the internal model principle allows for asymptotic tracking control in the presence of
small variations in system parameters, resulting in data that contain more intrinsic information for
learning the optimal control solution.
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Remark 5. In Equation (33), the vector H̄ j+1 represents the jth estimated value of H j+1 under
the current control policy. By using the components of H̄ j+1, we can infer the corresponding
components of matrix H j+1 and use them, along with the policy update step (29), to solve for the
next step’s control policy. This updated policy can then be used to gather a new set of data for each
iteration until obtaining an optimal control policy. To ensure uniqueness in solving Equation (33), a
persistent excitation condition is proposed in the literature [20,21], where probing noise wk is added
to the control input, ensuring that Φj is full rank and (Φj)T(Φj) is invertible. However, using
the VFA method may result in bias in finding an optimal solution [23,25]. On the other hand, the
Q-learning approach does not produce bias during the parameter estimation process and, hence, does
not lead to bias in finding an optimal solution.

3.4. Convergence Analysis

In reference [41], a multistep Q-learning algorithm based on state feedback is proposed
for solving the optimal output regulation problem of DTL systems, and the convergence of
the proposed algorithm is derived. This paper investigates a multistep Q-learning algorithm
based on output feedback to solve the optimal output tracking control problem of discrete-
time linear systems. Unlike the optimal output regulation problem studied in reference [41],
this paper introduces a discount factor γ into the performance index function of the
optimal output tracking control problem, resulting in changes to the corresponding Bellman
equation. The system state is reconstructed using input, output, and reference signals.
Therefore, it is necessary to verify the convergence of the output feedback multistep Q-
learning algorithm for solving the optimal output tracking control problem of DTL systems.

The convergence of the algorithm illustrated in Section 2.1 can be proven by first
noticing that Equation (28) can be rewritten as follows:

Qj+1(zk) =
1
2

k+Nj−1

∑
i=k

γi−kr
(

τi, uj
i

)
+ γNj Qj

(
zk+Nj

)
(34)

Here, we are ready to obtain the following theorem, which indicates that the policy
matrix H j+1 converges to the optimal value H∗.

Theorem 1. Let
{

Qj(zk)
}

, whereQj(zk) =
1
2 zT

k H jzk, be the sequence generated by the multistep
Q-learning algorithm. If Nj ≥ 1 and

Q0(zk) ≥ min
u(z)

{
1
2

r(τk, uk) + γQ0(zk+1)

}
(35)

holds, then

(i) For any j,

Qj+1(zk) ≤ min
u(z)

{
1
2

r(τk, uk) + γQj(zk+1)

}
≤ Qj(zk) (36)

holds;
(ii) limj→∞ Qj(zk) = Q∗(zk), where Q∞(zk) is the optimal solution to the Q-function Bellman

equation.

Proof. (i) We will use mathematical induction to prove the result (36). From Equa-
tions (34) and (35), we have
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Q1(zk) =
1
2

k+N0−1

∑
i=k

γi−kr
(

τi, u0
i

)
+ γN0 Q0(zk+N0

)
=

1
2

k+N0−2

∑
i=k

γi−kr
(

τi, u0
i

)
+

1
2

γN0−1r
(

τk+N0−1, u0
k+N0−1

)
+ γN0 Q0(zk+N0

)
=

1
2

k+N0−2

∑
i=k

γi−kr
(

τi, u0
i

)
+ γN0−1 min

u(z)

{
1
2

r
(
τk+N0−1, uk+N0−1

)
+ γQ0(zk+N0

)}

≤ 1
2

k+N0−2

∑
i=k

γi−kr
(

τi, u0
i

)
+ γN0−1Q0(zk+N0−1

)
...

≤ 1
2

r
(

τk, u0
k

)
+ γQ0(zk+1)

= min
u(z)

{
1
2

r(τk, uk) + γQ0(zk+1)

}
≤ Q0(zk)

(37)

which means that Equation (36) holds for j = 0.
Next, assume that Equation (36) is satisfied for j − 1, i.e.,

Qj(zk) ≤ min
u(z)

{
1
2

r(τk, uk) + γQj−1(zk+1)

}
≤ Qj−1(zk)

Then,

Qj(zk) =
1
2

k+Nj−1−1

∑
i=k

γi−kr(τi, uj−1
i ) + γNj−1 Qj−1(zk+Nj−1

)

≥ 1
2

k+Nj−1−1

∑
i=k

γi−kr(τi, uj−1
i ) + γNj−1 min

u(z)

{
1
2

r(τk+Nj−1
, uk+Nj−1

) + γQj−1(zk+Nj−1+1)

}

=
1
2

r(τk, uj−1
k ) +

1
2

k+Nj−1−1

∑
i=k+1

γi−kr(τi, uj−1
i ) + γNj−1 Qj−1(zk+Nj−1+1)

=
1
2

r(τk, uj−1
k ) + γ


k+Nj−1

∑
i=k+1

1
2

γi−(k+1)r(τi, uj−1
i ) + γNj−1 Qj−1(zk+Nj−1+1)


=

1
2

r(τk, uj−1
k ) + γQj(zk+1) ≥ min

u(z)

{
1
2

r(τk, uk) + γQjzk+1

}

(38)

Using Equations (34) and (38), we have
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Qj+1(zk) =

k+Nj−1

∑
i=k

1
2

γi−kr
(

τi, uj
i

)
+ γNj Qj

(
zk+Nj

)

=

k+Nj−2

∑
i=k

1
2

γi−kr
(

τi, uj
i

)
+ γNj−1 min

u(z)

{
1
2

r
(

τk+Nj−1, uk+Nj−1

)
+ γQj

(
zk+Nj

)}

≤
k+Nj−2

∑
i=k

1
2

γi−kr
(

τi, uj
i

)
+ γNj−1Qj

(
zk+Nj−1

)
...

≤ 1
2

r
(

τk, uj
k

)
+ γQj(zk+1)

= min
u(z)

{
1
2

r(τk, uk) + γQj(zk+1)

}

(39)

Thus, Equation (36) holds for all j.
(ii) According to the conclusion (36),

{
Qj(zk)

}
is a monotonically non-increasing sequence

with a lower bound of Qj(zk) ≥ 0. For a bounded monotone sequence, we can always
have a limit denoted by Q∞(zk) ≜ limj→∞ Qj(zk). Take the limit of Equation (36):

Q∞(zk) ≤ min
u(z)

{
1
2

r(τk, uk) + γQ∞(zk+1)

}
≤ Q∞(zk) (40)

Here, we have

Q∞(zk) =
1
2

r(τk, uk) + γQ∞(zk+1) (41)

Notice that Equation (41) is the solution to the Q-function Bellman equation (23). As a
result, Q∞(zk) = Q∗(zk).

Remark 6. It is worth noting the choice of the initial value function Q0 in multistep Q-learning
algorithms. According to Theorem 1, Q0 must satisfy Condition (35). However, (35) is only a
sufficient condition, not a necessary one. Therefore, in practical systems, Q0 can be a positive definite
function over a large range and can be chosen through trial and error.

4. Simulation Experiment
4.1. Controlled Object

To validate the proposed algorithm, a simulation experiment was conducted on a
single-phase voltage source uninterruptible power supply (UPS) inverter, an essential
component of the smart grid. With the development of new energy technologies, it is
important for the control engineer to design a controller that makes UPS provide efficient
and stable sinusoidal output voltages with optimal performance even in the presence of
unknown loads. The circuit diagram of the single-phase voltage source UPS inverter is
illustrated in Figure 1.

The dynamic equations of the inverter can be expressed as follows:

C f
dvo
dt = iL − io

L f
diL
dt + riL = uVs − vo

(42)

where L f represents the filter inductance; C f represents the filter capacitance; r represents
the inductance resistance; iL represents the filter inductance current; v0 represents the
output voltage of the inverter, which is the output voltage of the pulse width modulation
(PWM) inverter bridge represented as uVs; io = vo

Ro
represents the output current; and Ro

represents the resistance value of the power grid.
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Figure 1. Circuit diagram of a single-phase voltage source UPS inverter.

Choosing v0 and iL as the system state variables, uVs as the system input, and v0 as
the system output, we can obtain the state space representation of the single-phase voltage
source UPS inverter as follows:

ẋ = Āx + B̄u =

[
− 1

RoC f
1

C f

− 1
L f

− r
L f

]
x +

[
0
1

L f

]
u

y = C̄x =
[

1 0
]
x

(43)

In the above equations, the inverter model parameters are as follows: L f = 3.56 mH,
C f = 9.92 µF, r = 0.4 Ω, and Ro = 50 Ω. The initial values for the capacitor voltage and
inductor current are set as x0 = [0, 0]T .

By discretizing Equation (43), the state space representation of the discrete-time system
can be obtained as follows:

xk+1 = Axk + Buk
yk = Cxk

(44)

where A = eĀT , B =
∫ T

0 eĀτdτB̄, and C = C̄. The sampling interval is T = 10−4s.
Substituting the inverter model parameters into the equations, we have:

A =

[
0.6969 806545
−0.0241 0.8603

]
, B =

[
0.1290
0.0267

]
, C =

[
1 0

]
(45)

A sinusoidal signal is a typical type of reference signal in power electronics control.
The state space representation of a continuous-time system with a sinusoidal signal of
magnitude 220

√
2V and frequency f = 50Hz is given by:

ẋd =

[
0 2π f

−2π f 0

]
xd =

[
0 100π

−100π 0

]
xd

rd =
[

1 0
]
xd

(46)

where the initial state xd(0) = [0, 1]T . The state space expression for the DTL system
corresponding to Equation (46) can be described in the form shown in Equation (2), where

F =

 0.9995 0.0314

−0.0314 0.9995


4.2. Experiment

We select Q = 0.1, R = 0.001, and γ = 0.009 as the parameter values. For each step,
we set β = 4 for Nj. The detection noise wk is defined as follows:

wk = 0.001
(
7 sin(k) + 5 cos(2k) + 9 sin(8k) + 2 cos(6k)

)
(47)
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The controlled system used in the simulation experiment has 28 independent variables
in H̄ j+1, as shown in Equation (33). Therefore, a minimum of 28 sets of data are required
for each iteration. In this simulation, we collected 30 sets of data. The following are the
simulation results obtained using MATLAB.

The tracking curve of the output feedback multistep Q-learning algorithm is depicted
in Figure 2. In this figure, rd represents the sinusoidal reference signal, and yo represents
the actual output of the controlled system. After a certain number of iterations, the system
output yo successfully tracks the reference signal rd. The corresponding tracking error curve
is illustrated in Figure 3. From this figure, it can be observed that the tracking error reaches
zero at 0.012 s, achieving the tracking goal. Figure 4 illustrates the norm of the difference
between the Q-function matrices after two consecutive iterations in the output feedback
multistep Q-learning algorithm. In the figure, it is shown that

∣∣H j+1 − H j
∣∣ < 10−6 in the

third iteration, indicating that the desired control accuracy has been achieved, and the
algorithm has successfully converged. The simulation for the one-step learning case
when Nj = 1 has also been conducted for clarity. It can be observed from Figure 5
that

∣∣H j+1 − H j
∣∣ ≈ 4.12 × 10−5 for the third iteration, which is larger than the value of

9.01 × 10−7 in Figure 4. Therefore, the proposed multistep Q-learning scheme improves
the learning convergence speed.
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Figure 2. Effects of reference trajectory tracking with the multistep Q-learning algorithm.
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Figure 3. Tracking error curve.
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Figure 4. The norm of the difference between the Q-function matrices using multistep learning.
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Figure 5. The norm of the difference between the Q-function matrices using one-step learning.

Figure 6 shows the variations in each component of the control gain K during each
iteration process of the output feedback multistep Q-learning algorithm. Through iterations,
it converges to

K3 =
[

0.03769 0.02188 0.1879 −0.1472 −0.1163 −0.01107
]

with

H3 =



0.001758 0.001603 0.0056 −0.01079 −0.01316 −0.0008375 3.563e − 5
0.01603 0.001473 0.01897 −0.009919 −0.01215 −0.00077 2.243e − 5
0.02056 0.01897 0.2449 −0.1277 −0.1569 −0.009916 0.0001926
−0.01079 −0.00919 −0.1277 0.06677 0.08181 0.005183 −0.0001508
−0.01316 −0.01215 −0.1569 0.8181 0.1005 0.006352 −0.001192
−0.008375 −0.0077 −0.009916 0.05183 0.006352 0.004024 −1.135e − 5
3.863e − 5 2.243e − 5 0.001926 −0.001508 −0.001192 −1.135e − 5 0.001025


By solving the algebraic Riccati equation (13), the theoretical optimal values for the

control gain K and the matrix H can be obtained as follows:

K∗ =
[

0.0377 0.0219 0.1879 −0.1472 −0.1163 −0.0111
]
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and

H∗ =



0.001758 0.001603 0.02056 −0.01079 −0.01316 −0.0008375 3.828e − 5
0.001603 0.001473 0.01897 −0.009919 −0.01215 −0.00077 2.221e − 5
0.02056 0.01897 0.2449 −0.1277 −0.1569 −0.009916 0.0001909
−0.01079 −0.009919 −0.1277 0.06677 0.08181 0.005183 −0.0001495
−0.01316 −0.01215 −0.1569 0.08181 0.1005 0.006352 −0.0001181
−0.0008375 −0.00077 −0.009916 0.005183 0.006352 0.0004024 −1.125e − 5
3.828e − 5 2.221e − 5 0.0001909 −0.0001495 −0.0001181 −1.125e − 5 0.001016


The Q function matrix H3 obtained using the proposed learning algorithm is observed

to be nearly equal to the theoretical optimal value H∗, indicating the effectiveness of the
proposed output feedback multistep Q-learning algorithm for model-free tracking control.

0 5 10 15 20 25 30

Iteration (j)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 6. Convergence of control gain K with number of iterations.

Figure 7 shows the input signal trajectory of the actual tracking control system, which
is a sinusoidal signal after the first four iterations. Figure 8 depicts the waveform of the
excitation noise signal, which becomes zero at 0.0091 s, indicating the end of the algorithm
learning phase without further noise excitation input. Figure 9 illustrates the tracking error
of the system as the value of the system resistance parameter varies within the range of
40 Ω ≤ Ro ≤ 60 Ω. With the change in resistance values, the system maintains its ability to
achieve asymptotic tracking, demonstrating the adaptive characteristic of the algorithm.
Figure 10 shows the variation in the step size Nj in the multistep Q-learning algorithm. It
can be observed that Nj gradually increases as the iterations increase.
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Figure 7. Input signal of the actual tracking control systems.
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Figure 8. Excitation noise signal.

Figure 9. Tracking error under multistep Q-learning with different resistance values Ro.
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Figure 10. Variation of Nj with number of iterations.

5. Conclusions

In this paper, we investigate a value iteration (VI)-based multistep Q-learning algo-
rithm for model-free optimal tracking controller design of unknown discrete-time linear
(DTL) systems. By utilizing the augmented system approach, we transform this problem
into a regulation problem with a discounted performance function, that depends on the
Q-function Bellman equation. To solve the Bellman equation, we employe the VI learning
mechanism and develop a multistep Q-learning algorithm that eliminates the need for an
initial admissible policy and only requires measurements of past input, output, and refer-
ence trajectory data. As a result, our proposed approach offers a novel solution that does not
require state measurements and has improved convergence learning speed. To validate the
effectiveness of the proposed design, we demonstrate its application through a simulation
example. Future work will involve extending the proposed multistep Q-learning scheme to
unknown discrete-time systems with time delays and/or sampling errors. Additionally, it
would be interesting to explore how to balance the computational demands of the algorithm
with the available arithmetic power in practical experimental platforms.

Author Contributions: Conceptualization, W.S. and X.D.; methodology, W.S.; software, W.S. and
X.S.; validation, X.D.; formal analysis, X.D.; investigation, X.D., Y.L. and X.W.; writing—original draft
preparation, X.D.; writing—review and editing, W.S.; visualization, X.D., Y.L. and X.W.; supervision,
W.S.; project administration, W.S.; funding acquisition, X.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
numbers 62003141 and U20A20224), the Natural Science Foundation of Guangdong Province, China
(grant number 2021A1515011598), and the Fundamental Research Funds for the Central Universities
(grant number 2022ZYGXZR023).

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lewis, F.L.; Vrabie, D.; Syrmos, V.L. Optimal Control, 3rd ed.; Wiley: Hoboken, NJ, USA, 2012.
2. Luo, R.; Peng, Z.; Hu, J. On model identification based optimal control and its applications to multi-agent learning and control.

Mathematics 2023, 11, 906.
3. Chen, Y.H.; Chen, Y.Y. Trajectory tracking design for a swarm of autonomous mobile robots: a nonlinear adaptive optimal

approach. Mathematics 2022, 10, 3901.



Mathematics 2024, 12, 509 19 of 20

4. Banholzer, S.; Herty, M.; Pfenninger, S.; Zügner, S. Multiobjective model predictive control of a parabolic advection-diffusion-
reaction equation. Mathematics 2020, 8, 777.

5. Hewer, G. An Iterative Technique for the Computation of the Steady State Gains for the Discrete Optimal Regulator. IEEE Trans.
Autom. Control 1971, 16, 382–384.

6. Lancaster, P.; Rodman, L. Algebraic Riccati Equations; Oxford University Press: Oxford, UK, 1995.
7. Dai, S.; Wang, C.; Wang, M. Dynamic Learning From Adaptive Neural Network Control of a Class of Nonaffine Nonlinear

Systems. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 111–123.
8. He, W.; Dong, Y.; Sun, C. Adaptive Neural Impedance Control of a Robotic Manipulator With Input Saturation. IEEE Trans. Syst.

Man, Cybern. Syst. 2016, 46, 334–344.
9. Luy, N.T. Robust adaptive dynamic programming based online tracking control algorithm for real wheeled mobile robot with

omni-directional vision system. Trans. Inst. Meas. Control. 2017, 39, 832–847.
10. He, W.; Meng, T.; He, X.; Ge, S.S. Unified iterative learning control for flexible structures with input constraints. Automatica 2018,

96, 326–336.
11. Radac, M.B.; Precup, R.E. Data-Driven model-free tracking reinforcement learning control with VRFT-based adaptive actor-critic.

Appl. Sci. 2019, 9, 1807.
12. Wang, Z.; Liu, D. Data-Based Controllability and Observability Analysis of Linear Discrete-Time Systems. IEEE Trans. Neural

Netw. 2011, 22, 2388–2392.
13. Sutton, R.S.; Barto, A.G. Reinforcement Learning; MIT Press: Cambridge, MA, USA, 1998.
14. Sutton, R.S.; Barto, A.G.; Williams, R.J. Reinforcement learning is direct adaptive optimal control. IEEE Control Syst. Mag. 1992,

12, 19–22.
15. Lewis, F.L.; Vrabie, D. Reinforcement learning and adaptive dynamic programming for feedback control. IEEE Circuits Syst. Mag.

2009, 9, 32–50.
16. Wang, F.; Zhang, H.; Liu, D. Adaptive Dynamic Programming: An Introduction. IEEE Comput. Intell. Mag. 2009, 4, 39–47.
17. Jiang, Z.P.; Jiang, Y. Robust adaptive dynamic programming for linear and nonlinear systems: An overview. Eur. J. Control 2013,

19, 417–425.
18. Zhang, K.; Zhang, H.; Cai, Y.; Su, R. Parallel Optimal Tracking Control Schemes for Mode-Dependent Control of Coupled Markov

Jump Systems via Integral RL Method. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1332–1342.
19. Zhang, K.; Zhang, H.; Mu, Y.; Liu, C. Decentralized Tracking Optimization Control for Partially Unknown Fuzzy Interconnected

Systems via Reinforcement Learning Method. IEEE Trans. Fuzzy Syst. 2020, 29, 917–926.
20. Vrabie, D.; Pastravanu, O.; Abou-Khalaf, M.; Lewis, F.L. Adaptive optimal control for continuous-time linear systems based on

policy iteration. Automatica 2009, 45, 477–484.
21. Jiang, Y.; Jiang, Z.P. Computational adaptive optimal control for continuous-time linear systems with completely unknown

dynamics. Automatica 2012, 48, 2699–2704.
22. Modares, H.; Lewis, F.L. Linear Quadratic Tracking Control of Partially-Unknown Continuous-Time Systems Using Reinforcement

Learning. IEEE Trans. Autom. Control. 2014, 59, 3051–3056.
23. Li, X.; Xue, L.; Sun, C. Linear quadratic tracking control of unknown discrete-time systems using value iteration algorithm.

Neurocomputing 2018, 314, 86–93.
24. Lewis, F.L.; Vamvoudakis, K.G. Reinforcement Learning for Partially Observable Dynamic Processes: Adaptive Dynamic

Programming Using Measured Output Data. IEEE Trans. Syst. Man, Cybern. Part B (Cybern.) 2011, 41, 14–25.
25. Kiumarsi, B.; Lewis, F.L.; Naghibi-Sistani, M.B.; Karimpour, A. Optimal Tracking Control of Unknown Discrete-Time Linear

Systems Using Input-Output Measured Data. IEEE Trans. Cybern. 2015, 45, 2770–2779.
26. Gao, W.; Huang, M.; Jiang, Z.; Chai, T. Sampled-data-based adaptive optimal output-feedback control of a 2-degree-of-freedom

helicopter. IET Control. Theory Appl. 2016, 10, 1440–1447.
27. Xiao, G.; Zhang, H.; Zhang, K.; Wen, Y. Value iteration based integral reinforcement learning approach for H∞ controller design

of continuous-time nonlinear systems. Neurocomputing 2018, 285, 51–59.
28. Chen, C.; Sun, W.; Zhao, G.; Peng, Y. Reinforcement Q-Learning Incorporated With Internal Model Method for Output Feedback

Tracking Control of Unknown Linear Systems. IEEE Access 2020, 8, 134456–134467. https://doi.org/10.1109/ACCESS.2020.3011194.
29. Zhao, F.; Gao, W.; Liu, T.; Jiang, Z.P. Adaptive optimal output regulation of linear discrete-time systems based on event-triggered

output-feedback. Automatica 2022, 137, 110103.
30. Radac, M.B.; Lala, T. Learning Output Reference Model Tracking for Higher-Order Nonlinear Systems with Unknown Dynamics.

Algorithms 2019, 12, 121.
31. Shi, P.; Shen, Q.K. Observer-based leader-following consensus of uncertain nonlinear multi-agent systems. Int. J. Robust Nonlinear

Control. 2017, 27, 3794–3811.
32. Rizvi, S.A.A.; Lin, Z. Output Feedback Q-Learning Control for the Discrete-Time Linear Quadratic Regulator Problem. IEEE

Trans. Neural Netw. Learn. Syst. 2019, 30, 1523–1536.
33. Zhu, L.M.; Modares, H.; Peen, G.O.; Lewis, F.L.; Yue, B. Adaptive suboptimal output-feedback control for linear systems using

integral reinforcement learning. IEEE Trans. Control. Syst. Technol. 2015, 23, 264–273.
34. Moghadam, R.; Lewis, F.L. Output-feedback H∞ quadratic tracking control of linear systems using reinforcement learning. Int. J.

Adapt. Control. Signal Process. 2019, 33, 300–314.

https://doi.org/10.1109/ACCESS.2020.3011194


Mathematics 2024, 12, 509 20 of 20

35. Valadbeigi, A.P.; Sedigh, A.K.; Lewis, F.L. H∞ Static Output-Feedback Control Design for Discrete-Time Systems Using
Reinforcement Learning. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 396–406.

36. Rizvi, S.A.A.; Lin, Z. Output feedback Q-learning for discrete-time linear zero-sum games with application to the H-infinity
control. Automatica 2018, 95, 213–221.

37. Peng, Y.; Chen, Q.; Sun, W. Reinforcement Q-Learning Algorithm for H∞ Tracking Control of Unknown Discrete-Time Linear
Systems. IEEE Trans. Syst. Man Cybern. Syst. 2019, 50, 4109–4122. https://doi.org/10.1109/TSMC.2019.2957000.

38. Rizvi, S.A.A.; Lin, Z. Experience replay-based output feedback Q-learning scheme for optimal output tracking control of
discrete-time linear systems. Int. J. Adapt. Control. Signal Process. 2019, 33, 1825–1842.

39. Luo, B.; Liu, D.; Huang, T.; Liu, J. Output Tracking Control Based on Adaptive Dynamic Programming With Multistep Policy
Evaluation. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2155–2165. https://doi.org/10.1109/TSMC.2017.2771516.

40. Kiumarsi, B.; Lewis, F.L.; Modares, H.; Karimpour, A.; Naghibi-Sistani, M.B. Reinforcement Q-learning for optimal tracking
control of linear discrete-time systems with unknown dynamics. Automatica 2014, 50, 1167–1175.

41. Luo, B.; Wu, H.N.; Huang, T. Optimal output regulation for model-free quanser helicopter with multistep Q-learning. IEEE Trans.
Ind. Electron. 2017, 65, 4953–4961.

42. Lewis, F.L.; Vrabie, D.; Vamvoudakis, K.G. Reinforcement Learning and Feedback Control: Using Natural Decision Methods to
Design Optimal Adaptive Controllers. IEEE Control. Syst. Mag. 2012, 32, 76–105.

43. Kiumarsi, B.; Lewis, F.L. Output synchronization of heterogeneous discrete-time systems: A model-free optimal approach.
Automatica 2017, 84, 86–94.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TSMC.2019.2957000
https://doi.org/10.1109/TSMC.2017.2771516

	Introduction
	Problem Statement
	Offline Solution for LQT 
	Q-Function Bellman Equation
	PI-Based Q-Learning for LQT

	Methods
	Multistep Q-Learning
	Adjustment Rules for Step Size Nj
	Implementation
	Convergence Analysis

	Simulation Experiment
	Controlled Object
	Experiment

	blackConclusions
	References

