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Abstract: This paper delves into the asymptotic and oscillatory behavior of all classes of solutions of
fourth-order nonlinear neutral delay differential equations in the noncanonical form with damping
terms. This research aims to improve the relationships between the solutions of these equations and
their corresponding functions and derivatives. By refining these relationships, we unveil new insights
into the asymptotic properties governing these solutions. These insights lead to the establishment of
improved conditions that ensure the nonexistence of any positive solutions to the studied equation,
thus obtaining improved oscillation criteria. In light of the broader context, our findings extend and
build upon the existing literature in the field of neutral differential equations. To emphasize the
importance of the results and their applicability, this paper concludes with some examples.
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1. Introduction

Neutral differential equations (NDDEs) are one of the most apparent subclasses of
differential equations for application and modeling. These equations possess a distinct char-
acteristic from ordinary differential equations, where the rate of change of the dependent
variable at a given time depends not only on the current value but also on its past values,
introducing a temporal delay argument into the equations. The delay arguments reflect
real-world scenarios where systems exhibit memory effects, making NDDEs a critical tool
in modeling and analyzing systems with such characteristics [1,2].

Oscillation theory is a significant branch of mathematics concerned with studying
the behavior of oscillatory and nonoscillatory systems. Fundamentally, this theory studies
systems that repeatedly and arbitrarily oscillate around a central value or between two or
more states. This behavior is common in nature and technology, manifesting in mechan-
ical, electrical, and biological systems. For example, in mechanical systems, oscillation
theory appears in the stability of electrical circuits; in ecological models, it appears in the
population dynamics of species [3,4].

In recent decades, studying the oscillation of solutions of different classifications of
differential equations has seen significant development and growth. Among these different
classifications, differential equations with delay arguments have received considerable
interest from researchers, as shown in [5–7]. Likewise, the study of NDDEs has been a
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focal point in a range of publications [8–10]. Additionally, the research community has
demonstrated notable evolution in the investigation of odd-order differential equations,
exemplified biny [11–13]. In contrast, the oscillation behavior of even-order equations
has been examined, as documented in [14–16]. Furthermore, the dynamics of damping
equations have been explored, as indicated in [17,18].

In addition, the complexity of fourth-order differential equations often requires re-
sorting to studying the behavior of the solutions, regardless of finding them in a closed
form. So, in this study, we focused on studying the behavior of the positive and oscillatory
solutions of the following nonlinear fourth-order neutral delay differential equations with
damped term(

a(t)
∣∣z′′′(t)∣∣p−1z′′′(t)

)′
+ ρ(t)

∣∣z′′′(t)∣∣p−1z′′′(t) + q(t)|x(κ(t))|β−1x(κ(t)) = 0, (1)

for all t ≥ t0, p > 0, β > 0, and the corresponding function z(t) defined as

z(t) = x(t) + c(t)x(h(t)).

We based our studies on the following assumptions:

(H1) a ∈ C1([t0, ∞), (0, ∞)), a′(t) ≥ 0, c ∈ C([t0, ∞),R), and 0 ≤ c < 1;
(H2) h ∈ C([t0, ∞),R), κ ∈ C1([t0, ∞),R), h(t) ≤ t, κ(t) ≤ t, κ′(t) > 0, and limt→∞ h(t) =

limt→∞ κ(t) = ∞;
(H3) ρ, q ∈ C([t0, ∞), (0, ∞)), q(t) is not eventually zero on [t∗, ∞) for t∗ ≥ t0.

Let tx = min{h(t), κ(t)}. A function x(t) ∈ C4([tx, ∞),R), tx ⩾ t0, is called a solution
of (1) if it has the property a(t)|z′′′(t)|p−1z′′′(t) ∈ C1[tx, ∞) and satisfies (1) on [tx, ∞). We
only consider the nontrivial solutions of (1), which ensure

sup{|x(t)| : t ≥ tx} > 0.

A solution of (1) is said to be oscillatory if it has an arbitrarily large zero point on
[tx, ∞). Otherwise, it is called nonoscillatory. Equation (1) is said to be oscillatory if all of
its solutions are oscillatory.

Even-order differential equations have received great attention from researchers in the
field of studying oscillatory behavior and the asymptotic properties of positive solutions.
Chatzarakis et al. [19], Li et al. [20], and Bohner et al. [21] were interested in second-order
differential equations, whether in canonical or noncanonical cases, and improvements
continued to include sharp oscillation criteria, better than which could not be achieved for
delayed and neutral delayed equations by Essam et al. [22] and Jadlovska [23], respectively.
As for fourth-order equations, Grace et al. were interested in studying and improving the
oscillation criteria and the asymptotic properties of positive solutions, relying on different
techniques and methods [6,24]. For more information, please see [25–32].

Below, we provide a simple summary of the most important previous works that
have played a fundamental role in developing the theory of oscillation of even-order
differential equations.

In 1989, Philos [33] studied the second-order differential equation

x′′(t) + q(t)x(t) = 0,

where they improved on Yan’s work [34,35], extending Kamenev’s criterion and giving
one of the most famous oscillation criteria, which have inspired many works to date. One
of these works is the work of Wang in 2001 [36], who relied on the generalized Riccati
substitution and the integral averaging technique to give some improved oscillation criteria
and study the asymptotic properties of the second-order differential equation(

a(t)
∣∣x′(t)∣∣p−1x′(t)

)′
+ q(t)|x(t)|p−1x(t) = 0. (2)
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On the other hand, Baculikova and Dzurina [37] introduced delay neutral arguments
to (2) and used another approach based on the comparison theorem for the studied equation(

a(t)[x(t) + c(t)x(h(t))](n−1)
)′

+ q(t)x(κ(t)) = 0 (3)

with known oscillatory equations of the first order to conclude that (3) is oscillatory if
the condition

lim inf
t→∞

∫ t

κ(t)
Qi(s)ds >

h0 + c0

h0e

is met, where Q(s) = min{q(t), q(h(t))}, i = 2, 4, 6, ..., n − 1. The results obtained during
this study relax some of the conditions imposed on coefficients compared to those in
previous works. In 2011, Zhang et al. [38] used the generalized Riccati substitution and the
integral averaging technique to derive some improved oscillation criteria for a class of the
even-order half-linear delay differential equations with damping term(

a(t)
∣∣∣x(n−1)(t)

∣∣∣p−1
x(n−1)(t)

)′
+ ρ(t)

(
|x(t)|p−1x(t)

)(n−1)
+ q(t)|x(κ(t))|x(κ(t)) = 0, (4)

where they provided that for the nonpositive continuous partial derivative with respect
to the second variable H(t, t0), there exists functions h(t, t0) ∈ C([t0, ∞),R), δ(s), ϖ(s) ∈
C1([t0, ∞),R+), θ ∈ (0, 1), M ∈ (0, ∞), and

G(s) = θMκn−2(t)κ′(t).

Then, the above equation oscillates if

lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)δ(s)ϖ(s)q(s)ds = ∞,

and

lim sup
t→∞

1
H(t, t0)

∫ t

t0

ϖ(s)r(s)|h(t, s)|p

(H(t, s)δ(s)G(s))
H(t, s)δ(s)ϖ(s)q(s)ds = ∞.

After that, the same authors improved their previous results and obtained that (4) is
oscillatory if

lim inf
t→∞

∫ t

κ(t)

q(s)
a(κ(s))

(
κn−1(s)

)p−1
exp

(∫ s

κ(t)

ρ(u)
a(u)

du
)

ds >
((n − 1)!)p−1

e
.

In 2023, Barakah et al. [39] studied the no ncanonical case for (3), where they found
a new relationship between the solution and its corresponding function and used these
relations to find that (3) oscillates or tends to zero if

lim inf
t→∞

∫ t

κ(t)
qn−3(s)

(∫ s

t1

q(u)c1(κ(u); n)du
)

ds >
h0 + c0

h0e
,

where n states for any non-negative integer and

c1(t; n) =
n

∑
i=0

(
2i

∏
k=0

c
(

h[k](t)
)) 1

c
(
h[2i](t)

) − ϕ2

(
h[2i+1](t)

)
ϕ2
(
h[2i](t)

)
.

The primary aim of this study was to extend the scope of research on the oscillation of
solutions of fourth-order differential equations to ensure the presence of damping terms
and to obtain oscillation criteria that improve upon their predecessors when applied to
mathematical models. The idea in our research was based on improving the relationships
between positive solutions and their corresponding function and derivatives and using
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these relationships to derive criteria that guarantee the absence of any positive solution
to (1), whether through the comparison theorems or the Riccati technique. After obtaining
these criteria, we easily applied them and derived improved oscillation criteria that require
fewer restrictions compared to the previous ones.

The inequalities presented herein are functions of the variable t, and we assume that
these inequalities remain valid for sufficiently large values of t unless otherwise specified.

2. Preliminary Notations and Lemmas

In this section, we define some of the auxiliary functions and lemmas that we call
while proving our main results.

Relying on the property of symmetry between positive and negative solutions, we
only consider the positive solution for (1) when proving our results. So, let us define:

F[j](t) = F
(

F[j−1](t)
)

for j = 1, 2, ..., n and F[0](t) := F(t), and

R(t) = a(t)E(t),

where

E(t) = exp
(∫ t

t0

ρ(ϱ)

a(ϱ)
dϱ

)
.

Furthermore, we define the following iterative function

ϕ0(t) :=
∫ ∞

t
R−1/p(ϱ)dϱ

ϕi(t) :=
∫ l

t
ϕi−1(ϱ)dϱ, i = 1, 2,

c1(t; n) =
n

∑
i=0

(
2i

∏
k=0

c
(

h[k](t)
)) 1

c
(
h[2i](t)

) − ϕ2

(
h[2i+1](t)

)
ϕ2
(
h[2i](t)

)
,

c2(t; n) :=
n

∑
i=0

(
2i

∏
k=0

c
(

h[k](t)
))[ 1

c
(
h[2i](t)

) − 1

](
h[2i](t)

t

)2/ϵ0

,

Q(t) := E(t)q(t)cβ
1 (κ(t); n),

Q1(t) := E(t)q(t)(1 − c(κ(t)))β,

and
Q2(t) := E(t)q(t)cβ

2 (κ(t); n).

During our work, we studied (1) in the noncanonical form, that is, in the case that

ϕ0(t) < ∞. (5)

Lemma 1 ([40]). Suppose that x ∈ Cn([t0, ∞),R+), x(n)(t) is of fixed sign and not identically
zero on [t0, ∞); then, there exists t1 ≥ t0 such that x(n−1)(t)x(n)(t) ≤ 0 for all t1 ≥ t0. If
limt→∞ x(t) ̸= 0, then, for every δ ∈ (0, 1), there exists tϵ ∈ [t1, ∞) such that

x(t) ≥ ϵ

(n − 1)!
tn−1

∣∣∣x(n−1)(t)
∣∣∣,

for t ∈ [tϵ, ∞).
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Lemma 2 ([41]). Let the function h̄ satisfy h̄(i)(t) > 0, i = 0, 1, ..., n and h̄(n+1)(t) ≤ 0 eventually.
Then, for every l ∈ (0, 1)

h̄(t)
h̄′(t)

≥ lt
2

eventually.

Lemma 3 ([42]). Let p be a ratio of two odd positive integers; A > 0 and B are constants. Then

Bu − Au(p+1)/p ≤ pp

(p + 1)p+1
Bp+1

Ap , A > 0. (6)

Lemma 4 ([40]). Assume that x is an eventually positive solution of (1); then x satisfies eventually
the following cases:

C1 : z(i)(t) > 0 for i = 0, 1, 3, and z(4)(t) < 0;

C2 : z(i)(t) > 0 for i = 0, 1, 2, and z′′′(t) < 0;

C3 : (−1)iz(i)(t) > 0 for i = 0, 1, 2, 3;

for t ⩾ t1 ⩾ t0.

Lemma 5 (see [43], Lemma 1). Assume that x is an eventually positive solution of (1). Then,

x(t) >
n

∑
i=0

(
2i

∏
k=0

c
(

h[k](t)
)) z

(
h[2i](ϱ)

)
c
(
h[2i](ϱ)

) − z
(

h[2i+1](ϱ)
), (7)

holds eventually.

Notation 1. The notation Ωi (Category Ωi) denotes the set comprising all solutions that
eventually become positive and satisfy condition (Ci) for i = 1, 2, 3.

3. Nonexistence of Positive Solutions

In this section, we present some improved relationships between the solution and its
corresponding function and derivatives, and we then use these improved relationships
and the Riccati technique and comparison theorems to provide criteria that guarantee the
absence of positive solutions for all the aforementioned cases (C1, C2, C3). We consistently
assume the validity of all functional inequalities for sufficiently large values. Furthermore,
it is worth emphasizing that our focus on the ultimate positive solutions of Equation (1)
suffices to ensure the integrity and soundness of our proofs.

3.1. Nonexistence of C1-Type Solutions

In this subsection, we present some lemmas relevant to the asymptotic behavior of the
positive solutions belonging to class (C1).

Lemma 6. Let x ∈ Ω1, and (5) holds. Then,(
R(t)

(
z′′′(t)

)p
)′

+ Q1(t)zβ(κ(t)) ≤ 0. (8)

Proof. Let x ∈ Ω1; then, there exists t1 ≥ t0 such that x(h(t)) > 0 and x(κ(t)) > 0 for
t ≥ t1. Multiplying both sides of (1) by E(t), we have the following equation without a
damped term: (

R(t)
∣∣z′′′(t)∣∣p−1z′′′(t)

)′
= −E(t)q(t)xβ(κ(t)), t ≥ t0.
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Since z′′′(t) > 0, this inequality simplifies to(
R(t)

(
z′′′(t)

)p
)′

≤ −E(t)q(t)xβ(κ(t)), (9)

which implies that R(t)(z′′′(t))p is nonincreasing function. By using the definition of z, we
can deduce that

x(t) = z(t)− c(t)x(h(t)) ≥ z(t)− c(t)z(h(t)).

Since z′(t) > 0, and h(t) ≤ t, we can infer that z(t) ≥ z(h(t)). Combining this with the
previous inequality, we have

x(t) ≥ (1 − c(t))z(t)

and
x(κ(t)) ≥ (1 − c(κ(t)))z(κ(t)). (10)

Using (10) with (9), we have(
R(t)

(
z′′′(t)

)p
)′

= −E(t)q(t)xβ(κ(t))

≤ −E(t)q(t)(1 − c(κ(t)))βzβ(κ(t))
= −Q1(t)zβ(κ(t)),

and this completes the proof.

Lemma 7. Assume that p ≥ 1, and the differential equation

ω′(t) +
(

λ0κ3(t)
6R1/p(t)

)β

Q1(t)ωβ/p(t) = 0 (11)

is oscillatory for some λ0 ∈ (0, 1). Then, Ω1 = ∅.

Proof. Suppose the contrary that x ∈ Ω1. In other words, there exists a t1 ≥ t0 such that
x(h(t)) > 0 and x(κ(t)) for all t ≥ t1. Using Lemma 1, we have

z(t) ≥ λ0

6
t3z′′′(t), (12)

for all λ0 ∈ (0, 1) and sufficiently large t. Using (12) in (8), we find that

(
R(t)

(
z′′′(t)

)p
)′

+

(
λ0κ3(t)

6R1/p(t)

)β

Q1(t)
(

R1/p(t)z′′′(κ(t))
)β

≤ 0.

Let ω(t) = R(t)(z′′′(t))p in the last inequality. We obtain that ω(t) is a positive
solution for the delay differential inequality

ω′(t) +
(

λ0κ3(t)
6R1/p(t)

)β

Q1(t)ωβ/p(κ(t)) ≤ 0.

However, according to Corollary 1 in [44], there exists a positive solution of (11), a
contradiction. And this completes the proof.

Lemma 8. Assume that (5) holds. If there exists a positive nondecreasing function ξ ∈ C1([t0, ∞),
(0, ∞)) such that

lim sup
t→∞

∫ t

t3

(
ξ(ϱ)Q1(ϱ)−

2v

(v + 1)v+1
R(θ(ϱ))(ξ ′(ϱ))v+1

(Kλ1ξ(ϱ)κ′(ϱ)κ2(ϱ))
v

)
dϱ = ∞, (13)
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then, Ω1 = ∅.

Proof. Suppose on the contrary that x ∈ Ω1. In other words, there exists a t1 ≥ t0 such that
x(h(t)) > 0 and x(κ(t)) for all t ≥ t1. Define a function w(t) by

w(t) := ξ(t)
R(t)(z′′′(t))p

zβ(κ(t))
, t ≥ t1. (14)

Then, w(t) > 0 and

w′(t) = ξ ′(t)
R(t)(z′′′(t))p

zβ(κ(t))
+ ξ(t)

(
R(t)(z′′′(t))p)′

zβ(κ(t))

−βκ′(t)ξ(t)
R(t)(z′′′(t))p

zβ+1(κ(t))
z′(κ(t)). (15)

By using Lemma 1, we obtain

z′(t) ≥ λ1

2
t2z′′′(t),

or, equivalently,

z′(κ(t)) ≥ λ1

2
κ2(t)z′′′(κ(t)). (16)

By using (8), (14), and (16) in (15), we have

w′(t) ≤ −ξ(t)Q1(t) +
ξ ′(t)
ξ(t)

w(t)

−λ1

2
βκ′(t)κ2(t)ξ(t)

R(t)(z′′′(t))p

zβ+1(κ(t))
z′′′(κ(t)). (17)

For this inequality, we first consider the case p < β. But, R(t)(z′′′(t))p is a positive
nonincreasing function, so

R1/p(t)z′′′(t) ≤ R1/p(κ(t))z′′′(κ(t)).

In view of (17), we have

w′(t) ≤ −ξ(t)Q1(t) +
ξ ′(t)
ξ(t)

w(t)

−λ1

2
β

κ′(t)κ2(t)z(β−p)/p(κ(t))

(ξ(t)R(κ(t)))1/p w(p+1)/p(t).

Since z(κ(t)) is an increasing function, there exist constants K1 > 0 and t2 ≥ t1
such that

z(β−p)/p(κ(t)) ≥ K1, t ≥ t2. (18)

Hence, we obtain

w′(t) ≤ −ξ(t)Q1(t) +
ξ ′(t)
ξ(t)

w(t)− λ1 p
2

K1
κ′(t)κ2(t)

(ξ(t)R(κ(t)))1/p w(p+1)/p(t). (19)

If p = β, then K1 = 1; thus, (19) still holds.
Now, if p > β, r′(t) ≥ 0 implies that R′(t) ≥ 0. Recall that

(
R(t)(z′′′(t))p)′ ≤ 0, hence

y(4)(t) ≤ 0, which implies that(
z′′′(t)

)(β−p)/β ≥ K2, t ≥ t3. (20)
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By combining (17) and (20), we then have

w′(t) ≤ −ξ(t)Q1(t) +
ξ ′(t)
ξ(t)

w(t)− λ1β

2
κ′(t)κ2(t)

(ξ(t)R(t))1/β

(
z′′′(κ(t))

)(β−p)/βw(β+1)/β(t)

≤ −ξ(t)Q1(t) +
ξ ′(t)
ξ(t)

w(t)− λ1β

2
K2

κ′(t)κ2(t)

(ξ(t)R(t))1/β
w(β+1)/β(t),

which, tohaveher with (19), implies that

w′(t) ≤ −ξ(t)Q1(t) +
ξ ′(t)
ξ(t)

w(t)− λ1ν

2
K

κ′(t)κ2(t)

(ξ(t)R(θ(t)))1/ν
w(ν+1)/ν(t), t ≥ t3, (21)

where ν = min{p, β}, K = min{K1, K2}, and

θ(t) =
{

t, p > β,
κ(t), p ≤ β.

Using Lemma 3 where B = ξ ′(t)/ξ(t), A = λ1νKκ′(t)κ2(t)/2(ξ(t)R(θ(t)))1/v, and
u = w(t), we have

ξ ′(t)
ξ(t)

w(t)− λ0ν

2
K

κ′(t)κ2(t)

(ξ(t)R(θ(t)))1/v w(v+1)/v(t) ≤ 2ν

(v + 1)v+1
R(θ(t))(ξ ′(t))v+1

(Kλ1ξ(t)κ′(t)κ2(t))v ,

which, with (21), gives

w′(t) ≤ −ξ(t)Q1(t) +
2v

(v + 1)v+1
R(θ(t))(ξ ′(t))v+1

(Kλ1ξ(t)κ′(t)κ2(t))v .

Integrating this inequality from t3 to t, we obtain

w(t) ≤ w(t3)−
∫ t

t3

(
ξ(ϱ)Q1(ϱ)−

2v

(v + 1)v+1
R(θ(ϱ))(ξ ′(ϱ))v+1

(Kλ1ξ(ϱ)κ′(ϱ)κ2(ϱ))
v

)
dϱ.

By taking t → ∞ in the above inequality, we then obtain a contradiction with (13). The
proof is complete.

Lemma 9. Assume that (5) hold. If there exists a positive nondecreasing function ξ ∈ C1([t0, ∞),
(0, ∞)), such that

lim sup
t→∞

∫ t

t3

Q1(t)dϱ = ∞, (22)

then Ω1 = ∅.

Proof. Condition (22) follows by substituting ξ(t) = 1 into (13). And this completes
the proof.

3.2. Nonexistence of C2-Type Solutions

In this subsection, we present some lemmas relevant to the asymptotic behavior of the
positive solutions belonging to the class (C2).

Lemma 10. Let x ∈ Ω2, and (5) holds. Then, eventually,
(N4,1) z(t) ≥ ϵ0tz′(t);
(N4,2) z′′(t) ≥ −R1/p(t)ϕ0(t)z′′′(t);
(N4,3) z′′(t)/ϕ0(t) is increasing.
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Proof. Assume that x ∈ Ω2.
(N4,1) Using Lemma 2 with n = 2 and x = z, we have

z(t) ≥ ϵ0tz′(t).

(N4,2) Since R1/p(t)z′′′(t) is a decreasing function, we have

z′′(t) ≥ −
∫ ∞

t
z′′′(ϱ)dϱ ≥ −R1/p(t)ϕ0(t)z′′′(t).

(N4,3) From (N4,2), we obtain(
z′′(t)
ϕ0(t)

)′
=

R1/p(t)ϕ0(ϱ)z′′′(t) + z′′(t)
R1/p(t)ϕ2

0(ϱ)
≥ 0,

The proof is complete.

Lemma 11. Let x ∈ Ω2, and (5) holds. Then, eventually,
(N5,1) x(t) ≥ c2(t; n)z(t);
(N5,2)

(
R(ϱ)(−z′′′(t))p)′ − Q2(t)zp(κ(ϱ)) ≥ 0.

Proof. Assume that x ∈ Ω2.
(N5,1) From Lemma 5 , we find that (7) holds. Based on the properties of solutions in the

class Ω2, we conclude that z
(

h[2i](t)
)
≥ z
(

h[2i+1](t)
)

for i = 1, 2, ..., n. Thus, (7) becomes

x(t) >
n

∑
i=0

(
2i

∏
k=0

c
(

h[k](t)
))[ 1

c
(
h[2i](t)

) − 1

]
z
(

h[2i](t)
)

. (23)

Using (N4,1), we obtain

z
(

h[2i](t)
)
≥
(

h[2i](t)
t

)2/ϵ0

z(t),

with (23), this gives

x(t) >
n

∑
i=0

(
2i

∏
k=0

c
(

h[k](t)
))[ 1

c
(
h[2i](t)

) − 1

](
h[2i](t)

t

)2/ϵ0

z(t)

= c2(t; n)z(t).

(N5,2) Since z′′′(t) < 0, from (41), we obtain(
R(t)

(
−z′′′(t)

)p
)′

= E(t)q(t)xβ(κ(t)) ≥ 0. (24)

By using (N5,1), we can deduce(
R(t)

(
−z′′′(t)

)p
)′

= E(t)q(t)xβ(κ(t))

≥ E(t)q(t)cβ
2 (κ(t); n)zβ(κ(t))

= Q2(t)zβ(κ(t)),

The proof is complete.
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Lemma 12. Assume that p ≥ 1. If there exists a positive function ξ̃(t) ∈ C1([t0, ∞), (0, ∞))
such that

lim sup
t→∞

∫ t

t1

Ψ(ϱ)− R(ϱ)ξ̃(ϱ)

(p + 1)p+1

(
ξ̃ ′(ϱ)

ξ̃(ϱ)
+

(1 + p)
R1/p(ϱ)ϕ0(ϱ)

)p+1
dϱ = ∞, (25)

holds for some λ2 ∈ (0, 1) and any positive constants M1 and M2, where

Ψ(t) := ξ̃(t)Q2(t)ζ(t)
(

λ2

2
κ2(t)

)β

− (p − 1)ξ̃(t)

R1/p(t)ϕp+1
0 (t)

,

then Ω2 = ∅.

Proof. Suppose on the contrary that x ∈ Ω2. In other words, there exists a t1 ≥ t0 such that
x(h(t)) > 0 and x(κ(t)) for all t ≥ t1. Since z′′′(t) < 0, (41) becomes(

R(t)
(
−z′′′(t)

)p
)′

= E(t)q(t)xp(κ(t)) ≥ 0.

From (10), we deduce that(
R(t)

(
−z′′′(t)

)p
)′

≥ Q2(t)zp(κ(t)). (26)

Since R(t)(−z′′′(t))p is increasing, R(t)(z′′′(t))p is decreasing. Therefore

z′′(l)− z′′(t) =
∫ l

t

1
R1/p(ϱ)

(
R(ϱ)

(
z′′′(ϱ)

)p
)1/p

dϱ

≤ R1/p(t)z′′′(t)
∫ l

t

1
R1/p(ϱ)

dϱ,

by taking l → ∞, we have

−z′′(t) ≤ R1/p(t)z′′′(t)ϕ0(t). (27)

Now, let us define the function G(t) as

G(t) := ξ̃(t)

(
−R(t)(−z′′′(t))p

(z′′(t))p +
1

ϕ
p
0 (t)

)
. (28)

From (28), we have G(t) > 0, for t ≥ t1. Therefore, we have

G′(t) ≤ ξ̃ ′(t)
ξ̃(t)

G(t)− ξ̃(t)Q2(t)
zβ(κ(t))
(z′′(t))p

−p
ξ̃(t)R(t)(−z′′′(t))p+1

(z′′(t))p+1 +
pξ̃(t)

ϕ
p+1
0 (t)R1/p(t)

.
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Using (28), we deduce that

G′(t) ≤ ξ̃ ′(t)
ξ̃(t)

G(t)− ξ̃(t)Q2(t)
zβ(κ(t))
(z′′(t))p

−p
ξ̃(t)

R1/p(t)

(
G(t)
ξ̃(t)

− 1
ϕ

p
0 (t)

)(p+1)/p

+
pξ̃(t)

ϕ
p+1
0 (t)R1/p(t)

=
ξ̃ ′(t)
ξ̃(t)

G(t)− ξ̃(t)Q2(t)
zβ(κ(t))

(z′′(κ(t)))β

(z′′(κ(t)))p

(z′′(t))p
(
z′′(κ(t))

)β−p

−p
ξ̃(t)

R1/p(t)

(
G(t)
ξ̃(t)

− 1
ϕ

p
0 (t)

)(p+1)/p

+
pξ̃(t)

ϕ
p+1
0 (t)R1/p(t)

. (29)

From Lemma 1, we obtain

z(t) ≥ λ2

2
t2z′′(t), (30)

i.e.,
z′′(κ(t))

z′′(t)
≥ 1. (31)

By using (30) and (31) in (29), it becomes clear that

G′(t) ≤ ξ̃ ′(t)
ξ̃(t)

G(t)− ξ̃(t)Q2(t)
(

λ2

2
κ2(t)

)β(
z′′(κ(t))

)β−p

− pξ̃(t)
R1/p(t)

(
G(t)
ξ̃(t)

− 1
ϕ

p
0 (t)

)(p+1)/p

+
pξ̃(t)

ϕ
p+1
0 (t)R1/p(t)

. (32)

In the case that p < β, by using the increasing property of R(t)(−z′′′(t))p for t ≥ t1 ,
we obtain

R(t)
(
−z′′′(t)

)p ≥ R(t1)
(
−z′′′(t1)

)p
= M1.

That is
R1/p(t)z′′′(t) ≤ R1/p(t1)z′′′(t1) = −M1/p

1 < 0,

then
R1/p(t)z′′′(t) ≤ −M1/p

1 .

If we divide this inequality by R1/p(t) and integrate the resulting inequality from t to
l, we obtain

z′′(u) ≤ z′′(t)− M1/p
2

∫ u

t

1
R1/p(t)

dϱ.

Letting u → ∞ and using (5), we have

0 ≤ z′′(t)− M1/p
1 ϕ0(t),

which yields
z′′(t) ≥ M1/p

1 ϕ0(t).

Thus, we conclude that (
z′′(t)

)β−p ≥ M(β−p)/p
1 ϕ

β−p
0 (t). (33)
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Using (33) in (32), we obtain

G′(t) ≤ ξ̃ ′(t)
ξ̃(t)

G(t)− ξ̃(t)Q2(t)
(

λ2

2
κ2(t)

)β

M(β−p)/p
1 ϕ

β−p
0 (t)

− pξ̃(t)
R1/p(t)

(
G(t)
ξ̃(t)

− 1
ϕ

p
0 (t)

)(p+1)/p

+
pξ̃(t)

ϕ
p+1
0 (t)R1/p(t)

. (34)

In the case that p = β, it is easy to see that (z′′(t))β−p = 1, thus, (34) still holds.
In the case that p > β, since x is a nonincreasing positive function, there exists a

M2 > 0 such that z′′(t) ≤ M2 , which implies that(
z′′(t)

)β−p ≥ Mβ−p
2 . (35)

By using (35) in (32), we have

G′(t) ≤ ξ̃ ′(t)
ξ̃(t)

G(t)− ξ̃(t)Q2(t)
(

λ2

2
κ2(t)

)β

Mβ−p
2

− pξ̃(t)
R1/p(t)

(
G(t)
ξ̃(t)

− 1
ϕ

p
0 (t)

)(p+1)/p

+
pξ̃(t)

ϕ
p+1
0 (t)R1/p(t)

, (36)

which, tohaveher with (34), implies that

G′(t) ≤ ξ̃ ′(t)
ξ̃(t)

G(t)− ξ̃(t)Q2(t)
(

λ2

2
κ2(t)

)β

ζ(t)

− pξ̃(t)
R1/p(t)

(
G(t)
ξ̃(t)

− 1
ϕ

p
0 (t)

)(p+1)/p

+
pξ̃(t)

ϕ
p+1
0 (t)R1/p(t)

, (37)

where

ζ(t) =


1 if p = β,
c1 if p > β,
c2ϕ

β−p
0 (t) if p < β.

By using the inequality

A(p+1)/p − (A − B)(p+1)/p ≤ B1/p

p
[(1 + p)A − B], AB > 0,

with A = G(t)/ξ̃(t) and B = 1/ϕ
p
0 (t), we have

G′(t) ≤ ξ̃ ′(t)
ξ̃(t)

G(t)− ξ̃(t)Q2(t)
(

λ2

2
κ2(t)

)β

ζ(t) +
pξ̃(t)

ϕ
p+1
0 (t)R1/p(t)

− pξ̃(t)
R1/p(t)

(G(t)
ξ̃(t)

)(p+1)/p

− 1
ϕ0(t)p

[
(1 + p)

G(t)
ξ̃(t)

− 1
ϕ

p
0 (t)

],

which is

G′(t) ≤
(

ξ̃ ′(t)
ξ̃(t)

+
(1 + p)

R1/p(t)ϕ0(t)

)
G(t)− ξ̃(t)Q2(t)

(
λ2

2
κ2(t)

)β

ζ(t)

− pG(p+1)/p(t)
R1/p(t)ξ̃1/p(t)

− ξ̃(t)

R1/p(t)ϕp+1
0 (t)

+
pξ̃(t)

R1/p(t)ϕp+1
0 (t)

. (38)
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Using Lemma 3 where B = ξ ′(t)/ξ(t) + (1 + p)/R1/p(t)ϕ0(t), A = p/R1/p(t)ξ̃1/p(t)
and u = G(t), we have

G′(t) ≤ −ξ̃(t)Q2(t)ζ(t)
(

λ2

2
κ2(t)

)β

+
(p − 1)ξ̃(t)

R1/p(t)ϕp+1
0 (t)

+
R(t)ξ̃(t)

(p + 1)p+1

(
ξ̃ ′(t)
ξ̃(t)

+
(1 + p)

R1/p(t)ϕ0(t)

)p+1

. (39)

Integrating (39) from t1 to t, we have

∫ t

t1

Ψ(ϱ)− R(ϱ)ξ̃(ϱ)

(p + 1)p+1

(
ξ̃ ′(ϱ)

ξ̃(ϱ)
+

(1 + p)
R1/p(ϱ)ϕ0(ϱ)

)p+1
dϱ ≤ G(t1),

which contradicts (25). This completes the proof.

Lemma 13. Assume that p ≥ 1. If

lim sup
t→∞

∫ t

t1

(
Q2(ϱ)ζ(ϱ)

(
λ2

2
κ2(ϱ)

)β

− p

R1/p(ϱ)ϕ
p+1
0 (ϱ)

)
dϱ = ∞, (40)

holds for some λ2 ∈ (0, 1) and any positive constants M1 and M2; then, Ω2 = ∅.

Proof. Condition (40) follows by substituting ξ̃(t) = 1 into (25). And this completes
the proof.

3.3. Nonexistence of C3-Type Solutions

In this subsection, we present some lemmas relevant to the asymptotic behavior of the
positive solutions belonging to the class (C3).

Lemma 14. Let x ∈ Ω3 and (5) holds. Then,
(N1,1) z(t)/ϕ2(t) is increasing;
(N1,2) (−1)i+1z(2−i)(t) ≤ R1/p(t)z′′′(t)ϕi(t), for i = 0, 1, 2.

Proof. Let x ∈ Ω3, then there exists a t1 ≥ t0 such that x(h(t)) > 0 and x(κ(t)) > 0 for
t ≥ t1. Multiplying both sides of (1) by E(t), we have the following equation without a
damped term: (

R(t)
∣∣z′′′(t)∣∣p−1z′′′(t)

)′
+ E(t)q(t)xβ(κ(t)) = 0, t ≥ t0. (41)

But, as z′′′(t) < 0, then (
R(t)

(
−z′′′(t)

)p
)′

≥ E(t)q(t)xβ(κ(t)). (42)

(N1,1) It follows from (42) that

R1/p(ϱ)z′′′(ϱ) ≤ R1/p(t)z′′′(t), ϱ ≥ t ≥ t1

Dividing the above inequality by R1/p(ϱ), we obtain

z′′′(ϱ) ≤ R1/p(t)z′′′(t)
R1/p(ϱ)

.
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Integrating the above inequality from t to ∞, we have

−z′′(t) ≤ R1/p(t)z′′′(t)
∫ ∞

t
R−1/p(ϱ)dϱ = R1/p(t)z′′′(t)ϕ0(t).

That is,
z′′(t) ≥ −R1/p(t)z′′′(t)ϕ0(t). (43)

Hence, (
z′′(t)
ϕ0(t)

)′
=

R1/p(t)ϕ0(t)z′′′(t) + z′′(t)
R1/p(t)ϕ2

0(t)
≥ 0.

Since z′′(t)/ϕ0(t) is increasing, then

−z′(t) ≥
∫ ∞

t

z′′(ϱ)
ϕ0(ϱ)

ϕ0(ϱ)dϱ ≥ z′′(t)
ϕ0(t)

∫ ∞

t
ϕ0(ϱ)dϱ =

z′′(t)
ϕ0(t)

ϕ1(ϱ).

That is,

z′(t) ≤ − z′′(t)
ϕ0(t)

ϕ1(ϱ), (44)

which implies (
z′(t)
ϕ1(t)

)′
=

ϕ1(t)z′′(t) + ϕ0(t)z′(t)
ϕ2

1(t)
≤ 0.

By repeating the same steps for the decreasing function z′(t)/ϕ1(t), we have(
z(t)

ϕ2(t)

)′
=

ϕ2(t)z′(t) + ϕ1(t)z(t)
ϕ2

2(t)
≥ 0.

(N1,2) From the monotonicity of R1/p(ϱ)z′′′(ϱ), we obtain that

R1/p(t)z′′′(t)ϕ0(t) ≥
∫ ∞

t

R1/p(ϱ)z′′′(ϱ)
R1/p(ϱ)

dϱ ≥ −z′′(t),

or, equivalently,
z′′(t) ≥ −R1/p(t)z′′′(t)ϕ0(t).

Integrating the last inequality from t to ∞, we have

−z′(t) ≥ −
∫ ∞

t
R1/p(ϱ)z′′′(ϱ)ϕ0(ϱ)dϱ

≥ −R1/p(t)z′′′(t)
∫ ∞

t
ϕ0(ϱ)dϱ

≥ −R1/p(t)z′′′(t)ϕ1(t),

i.e.,
z′(t) ≤ R1/p(t)z′′′(t)ϕ1(t).

Again integrating the last inequality from t to ∞ implies that

z(t) ≥ −R1/p(t)z′(t)ϕ2(t),

and this completes the proof.

Lemma 15. Let x ∈ Ω3 and (5) holds. Then,
(N2,1) x(t) > c1(t, n)z(t);
(N2,2)

(
R(t)(−z′′′(t))p)′ − Q(t)zβ(t) ≥ 0.
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Proof. Let x ∈ Ω3; then, there exists a t1 ≥ t0 such that x(h(t)) > 0 and x(κ(t)) > 0 for
t ≥ t1.
(N2,1) In view of the (7) and the increasing monotonicity of z(t)/ϕ2(t), we have

z
(

h[2i+1](t)
)
≤

ϕ2

(
h[2i+1](t)

)
ϕ2
(
h[2i](t)

) z
(

h[2i](t)
)

,

for h[2i](t) ≥ h[2i+1](t). Substituting the previous inequality into (7), we have

x(t) >
n

∑
i=0

(
2i

∏
k=0

c
(

h[k](t)
)) 1

c
(
h[2i](t)

) − ϕ2

(
h[2i+1](t)

)
ϕ2
(
h[2i](t)

)
z
(

h[2i](t)
)

.

Since z′(t) < 0, and h[2i](t) ≤ t, the previous inequality becomes

x(t) ≥
n

∑
i=0

(
2i

∏
k=0

c
(

h[k](t)
)) 1

c
(
h[2i](t)

) − ϕ2

(
h[2i+1](t)

)
ϕ2
(
h[2i](t)

)
z(t)

= c1(t; n)z(t). (45)

(N2,2) By combining (45) and (42), with z′′′(t) < 0, we thus deduce that(
R(t)

(
−z′′′(t)

)p
)′

= E(t)q(t)xβ(κ(t))

≥ E(t)q(t)cβ
1 (κ(t); n)zβ(κ(t))

= Q(t)zβ(κ(t)) ≥ Q(t)zβ(t),

and this completes the proof.

Now, let us define another auxiliary function v(t) by

v(t) :=
R(t)(−z′′′(t))p

(z′′(t))β
, t ≥ t1, (46)

then we can have the following improved lemma:

Lemma 16. Let x ∈ Ω3 and (5) holds. Then
(N3,1) v(t)ϕµ

0 (t) is bounded;
(N3,2) v′(t) ≥ Q(t)ϕβ

2 (t)/ϕ
β
0 (t) + βmR−1/p(t)v(µ+1)/µ(t),

where m is a positive constant and µ = max{p, β}.

Proof. Let x ∈ Ω3; then, there exists a t1 ≥ t0 such that x(h(t)) > 0 and x(κ(t)) > 0 for
t ≥ t1.

(N3,1) By Lemma 14, we have
(

R(t)(−z′′′(t))p)′ ≥ 0, which implies that R(t)(−z′′′(t))p

is nondecreasing. From (43), we have(
z′′(t)

)p ≥ R(t)
(
−z′′′(t)

)p
ϕ

p
0 (t) =

(
z′′(t)

)βv(t)ϕp
0 (t), (47)

i.e., (
z′′(t)

)p−β ≥ v(t)ϕp
0 (t), t ≥ t1. (48)

If p > β, using z′′′ < 0 in (48), we then find that the positive function v(t)ϕp
2 (t) is

bounded.
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Now, if β ≥ p, and once again using (43), we obtain

(
z′′(t)

)β ≥
(

R1/p(t)
(
−z′′′(t)

))β−p+p
ϕ

β
0 (t), (49)

which implies that

[
R1/p(t)

(
−z′′′(t)

)]p−β
≥ R(t)(−z′′′(t))p

(z′′(t))β
ϕ

β
0 (t) = v(t)ϕβ

0 (t).

Since
[

R1/p(t)(−z′′′(t))
]p−β

is decreasing, then v(t)ϕβ
0 (t) is bounded. Therefore, the

function v(t)ϕµ
0 (t) is bounded, where µ = max{p, β}.

(N3,2) In view of the definitions of v(t) and (N1,2), we have

v′(t) =

(
R(t)(−z′′′(t))p)′

(z′′(t))β
+ β

R(t)(−z′′′(t))p+1

(z′′(t))β+1

≥ Q(t)
zβ(t)

(z′′(t))β
+

β

R1/p(t)
v(p+1)/p(t)

(
z′′(t)

)(β−1)/p. (50)

Using (44), we obtain
z(t)

z′′(t)
≥ ϕ2(t)

ϕ1(t)
. (51)

Substituting (51) into (50), then

v′(t) ≥ Q(t)
(

ϕ2(t)
ϕ0(t)

)β

+
β

R1/p(t)
v(p+1)/p(t)

(
z′′(t)

)(β−p)/p.

If p > β, and taking into account that z′′′(t) < 0 for t ≥ t, then (z′′(t))(β−p)/p is
increasing. By letting m1 = (z′′(t))(β−p)/p (if p = β, then m1 = 1), and the above inequality
becomes

v′(t) ≥ Q(t)
(

ϕ2(t)
ϕ0(t)

)β

+ βm1R−1/p(t)v1/p+1(t), t ≥ t1. (52)

Now, if β ≥ p, we have

v′(t) ≥ Q(t)
(

ϕ2(t)
ϕ0(t)

)β

+ βR−1/β(t)
(
−z′′′(t)

)(β−p)/βv(β+1)/β(t). (53)

Since
(

R1/p(t)(−z′′′(t))
)(β−p)/β

is an increasing function, then, from (53), we obtain

v′(t) ≥ Q(t)
(

ϕ2(t)
ϕ0(t)

)β

+ βR−1/p(t)
(

R1/p(t)
(
−z′′′(t)

))(β−p)/β
v(β+1)/β(t)

≥ Q(t)
(

ϕ2(t)
ϕ0(t)

)β

+ βm2R−1/p(t)v(β+1)/β(t), t ≥ t1 ≥ t0, (54)

where m2 =
(

R1/p(t1)(−z′′′(t1))
)1−p/β

(if p = β, then m2 = 1).
Combining (52) and (54) yields

v′(t) ≥ Q(t)
(

ϕ2(t)
ϕ0(t)

)β

+ βmR−1/p(t)v(µ+1)/µ(t), t ≥ t1, (55)
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where µ = max{p, β}, and

m =

{
1, p = β
const > 0, p ̸= β.

And this completes the proof.

Lemma 17. Assume that (5) and c(t) < ϕ2(t)/ϕ2(h(t)) hold. If

lim sup
t→∞

∫ t

t3

(
ϕ

µ
0 (ϱ)Q(ϱ)

(
ϕ2(ϱ)

ϕ0(ϱ)

)β

− L
ϕ0(ϱ)R1/p(ϱ)

)
dϱ = ∞, (56)

then Ω3 = ∅.

Proof. Suppose the contrary that x ∈ Ω3, i.e., there exists a t1 ≥ t0 such that x(h(t)) > 0
and x(κ(t)) for all t ≥ t1. Considering the fact that z(t) ≥ x(t) > 0 for t ≥ t1 and (41),
we have (

R(t)
∣∣z′′′(t)∣∣p−1z′′′(t)

)′
= −E(t)q(t)xβ(κ(t)) ≤ 0,

which implies that R(t)|z′′′(t)|p−1z′′′(t) is nonincreasing. Since z′′′(t) < 0, by Lemma 15,
we obtain (

R(t)
(
−z′′′(t)

)p
)′

− Q(t)zβ(t) ≥ 0, t ≥ t1.

Let v(t) be defined by (46) for t ≥ t2 ≥ t1. It then follows that v(t) > 0 for all t ≥ t2.
From Lemma 16, we have

v′(t) ≥ Q(t)ϕβ
2 (t)/ϕ

β
0 (t) + βmR−1/p(t)v(µ+1)/µ(t), t ≥ t2. (57)

Multiplying (57) by ϕ
µ
0 (t) and integrating the resulting inequality from t3 ≥ t2 to t,

we have ∫ t

t3

ϕ
µ
0 (ϱ)Q(ϱ)

(
ϕ2(ϱ)

ϕ0(ϱ)

)β

dϱ

≤
∫ t

t3

ϕ
µ−1
0 (ϱ)R−1/p(ϱ)

[
µv(ϱ)− βmϕ0(ϱ)v(µ+1)/µ(ϱ)

]
dϱ

+ϕ
µ
2 (t)v(t). (58)

Using Lemma 3, where B = µ, A = βm1ϕ0(t) and u = v(t), we have

µv(t)− βmϕ0(t)v(µ+1)/µ(t) ≤ µµ

(µ + 1)µ+1
µµ+1

βµmµϕ
µ
2 (t)

=

(
µ

µ + 1

)µ+1( µ

βm

)µ 1
ϕ

µ
0 (t)

= L
1

ϕ
µ
0 (t)

,

which, with (58), gives

∫ t

t3

(
ϕ

µ
0 (ϱ)Q(ϱ)

(
ϕ2(ϱ)

ϕ0(ϱ)

)β

− L
ϕ0(ϱ)R1/p(ϱ)

)
dϱ ≤ ϕ

µ
0 (t)v(t),
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where

L =


(

µ
µ+1

)µ+1( µ
βm

)µ
, p ̸= β,(

p
p+1

)p+1
, p = β.

From Lemma 16, we see that ϕ
µ
0 (t)v(t) is bounded. Letting t → ∞ in the above

inequality, we obtain a contradiction with (56). And this completes the proof.

Lemma 18. Assume that (5) and c(t) < ϕ2(t)/ϕ2(h(t)) hold. If

lim inf
t→∞

ϕ
µ+1
0 (t)R1/p(t)Q(t)

(
ϕ2(t)
ϕ0(t)

)β

> L, (59)

then Ω3 = ∅.

Proof. Suppose that (59) holds; then, for any ε > 0, there exists a sufficiently large t ≥ t0
such that

ϕ
µ+1
0 (t)Q(t)

(
ϕ2(ϱ)

ϕ0(ϱ)

)β

>
L − ε

ϕ0(t)R1/p(t)
.

Integrating this inequality from t to t, we then obtain

∫ t

t3

(
ϕ

µ
0 (ϱ)Q(ϱ)

(
ϕ2(ϱ)

ϕ0(ϱ)

)β

− L
ϕ0(ϱ)R1/p(ϱ)

)
dϱ > −ε

∫ t

t3

1
ϕ0(t)R1/p(t)

dϱ

= ε

(
ln

1
ϕ0(t)

− ln
1

ϕ0(t)

)
.

Letting t → ∞ in the above inequality, we find that (56) holds. The proof is complete.

4. Applications on Oscillation Theorems

This section extends the insights from the previous section to develop novel criteria
for examining the oscillation of all solutions within (1). By combining the conditions
established earlier that exclude the positive solutions in all cases (C1) (C2) and (C3), we can
formulate the following oscillation criteria for (1):

Theorem 1. Let p ≥ 1. Assume that (56), (13), and (25) hold. Then, (1) is oscillatory.

Proof. Suppose that x is a solution to (1) that eventually becomes positive. According
to Lemma 4, there exist three possible cases for the behavior of z and its derivatives. By
applying Lemmas 17, 8, and 12, it becomes clear that under conditions (56), (13), and (25),
there are no positive solutions to (1) that satisfy the cases (C1), (C2), and (C3). Consequently,
we can confidently assert that our proof is now complete

Theorem 2. Let p ≥ 1. Assume that (59), (22) and (40) hold. Then (1) is oscillatory.

Proof. The proof of this theorem follows the same method as the proof of the Theorem (1),
and as such, it was omitted.

Example 1. Consider the nonlinear NDDE:(
tp∣∣z′′′(t)∣∣p−1z′′′(t)

)′
+

3p
t1−p

∣∣z′′′(t)∣∣p−1z′′′(t) +
q0

t2p+1 |x(κ0t)|p−1x(κ(t) = 0, (60)

where
z(t) = x(t) + c0x(h0t),
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t ≥ 1, p ≥ 1, 0 ≤ c0 < 1, h0, κ0 ∈ (0, 1), and q0 > 0. By comparing this equation with (1), we
observe that β = p ≥ 1, a(t) = tp, q(t) = q0/t2p+1, c(t) = c0, κ(t) = κ0t,, and h(t) = h0t. It is
easy to find that

E(t) = t3p, R(t) = t4p,

ϕ0(t) =
1

3t3 , ϕ1(t) =
1

6t2 , ϕ2(t) =
1
6t

,

c1(t; n) = (h0 − c0)
n

∑
i=0

c2i
0 ,

c2(t; n) := (1 − c0)
n

∑
i=0

c2i
0 h4i/ϵ0

0 ,

Q(t) := E(t)q(t)cp
1 = q0tp−1cp

1 ,

Q1(t) := q0tp−1(1 − c0)
p,

and
Q2(t) := q0tp−1cp

2 .

Condition (56) yields

lim sup
t→∞

∫ t

t3

(
ϕ

µ
0 (ϱ)Q(ϱ)

(
ϕ2(ϱ)

ϕ0(ϱ)

)β

− L
ϕ0(ϱ)R1/p(ϱ)

)
dϱ

= lim sup
t→∞

∫ t

t3

(
1

3pϱ3p q0ϱp−1cp
1

3pϱ3p

6pϱp − 3ϱ3L
ϱ4

)
dϱ

= lim sup
t→∞

∫ t

t3

( q0

6p cp
1 − 3L

)1
ϱ

dϱ

=
( q0

6p cp
1 − 3L

)
lim sup

t→∞
ln

t
t3

= ∞,

which holds true when

q0 > 3
(

6
c1

)p
L. (61)

Condition (13) with ξ(t) = tp results in

lim sup
t→∞

∫ t

t3

(
ξ(ϱ)Q1(ϱ)−

2v

(v + 1)v+1
R(θ(ϱ))(ξ ′(ϱ))v+1

(Kλ1ξ(ϱ)κ′(ϱ)κ2(ϱ))
v

)
dϱ

= lim sup
t→∞

∫ t

t3

(
ϱpq0ϱp−1(1 − c0)

p − 1

(p + 1)p+1
1

(Kλ1)
p

κ
4p
0 ϱ4p pp+1ϱp2−1

κ
3p
0 ϱ2pϱp2

)
dϱ

= lim sup
t→∞

∫ t

t3

(
q0(1 − c0)

p − 1

(p + 1)p+1

(
2κ0

Kλ1

)p
)

ϱ2p−1dϱ

=
1

2p

(
q0(1 − c0)

p − 1

(p + 1)p+1

(
2κ0

Kλ1

)p
)

lim sup
t→∞

t2p = ∞,

which is satisfied when:

q0 >
1

(p + 1)p+1

(
2κ0

Kλ1(1 − c0)

)p
. (62)
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Condition (25) with ξ̃(t) = tp gives

Ψ(t) = ξ̃(t)Q2(t)ζ(t)
(

λ2

2
κ2(t)

)β

− (p − 1)ξ̃(t)

R1/p(t)ϕp+1
0 (t)

= tpq0tp−1cp
2

(
λ2

2

)p
κ

2p
0 t2p − (p − 1)3p+1t3p+3tp

t4

=

(
q0cp

2

(
λ2

2

)p
κ

2p
0 − (p − 1)3p+1

)
t4p−1,

and

lim sup
t→∞

∫ t

t1

Ψ(ϱ)− R(ϱ)ξ̃(ϱ)

(p + 1)p+1

(
ξ̃ ′(ϱ)

ξ̃(ϱ)
+

(1 + p)
R1/p(ϱ)ϕ0(ϱ)

)p+1
dϱ

= lim sup
t→∞

∫ t

t1

((
q0cp

2

(
λ2

2

)p
κ

2p
0 − (p − 1)3p+1

)
−
(

p + 3(1 + p)
p + 1

)p+1
)

ϱ4p−1dϱ

=
1

4p

((
q0cp

2

(
λ2

2

)p
κ

2p
0 − (p − 1)3p+1

)
−
(

p + 3(1 + p)
p + 1

)p+1
)

lim sup
t→∞

t4p = ∞,

which holds when

q0 >

(
2

λ2c2κ2
0

)p[(
p + 3(1 + p)

p + 1

)p+1
+ (p − 1)3p+1

]
. (63)

By using Theorem 1, we have that (60) is oscillatory if the conditions (61), (62), and (63) hold.
This can be verified by assigning specific values to Equation (60).

Remark 1. By taking p = 1, c0 = 0.5, h0 = 0.8, κ0 = 0.7, and q0 = 255, (60) becomes(
t(x(t) + 0.5x(0.8t))′′′

)′
+ 3(x(t) + 0.5x(0.8t))′′′ +

255
t3 x(0.7t) = 0. (64)

By comparing this equation with (1), we find that p = β = 1, a(t) = t, q(t) = q0/t3, c(t) =
1/2, κ(t) = t/3 and h(t) = t/4. Consequently, we can easily deduce:

E(t) = t3, R(t) = t4,

ϕ0(t) =
1

3t3 , ϕ1(t) =
1

6t2 , ϕ2(t) =
1
6t

,

c1(t; 10) = (0.8 − 0.5)
5

∑
i=0

(0.8)2i ∼= 0.78,

c2(t; 10) =
10

∑
i=0

(
(0.5)2i+1(0.8)4i/ϵ0

)
= 0.55, where ϵ0 = 0.9,

Q(t) = 157.5, Q1(t) = 112.5, and Q2(t) = 123.8.

Condition (59) becomes

lim inf
t→∞

ϕ
µ+1
0 (t)R1/p(t)Q(t)

(
ϕ2(ϱ)

ϕ0(ϱ)

)β

= lim inf
t→∞

1
32t6 t4(157.5)

3t3

6t

= 8.75 >
1
4

.
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Condition (22) leads to

lim sup
t→∞

∫ t

t3

Q1(t)dϱ = lim sup
t→∞

∫ t

t3

112.5dϱ = ∞.

And, condition (40) with λ2 = 0.5 becomes

lim sup
t→∞

∫ t

t1

(
Q2(ϱ)ζ(ϱ)

(
λ2

2
κ2(ϱ)

)β

− p

R1/p(ϱ)ϕ
p+1
0 (ϱ)

)
dϱ

= lim sup
t→∞

∫ t

t1

(
123.8

(
0.5
2
(0.7)2ϱ2

)
− 9ϱ6

ϱ4

)
dϱ

= lim sup
t→∞

∫ t

t1

6.2ϱ2dϱ = ∞.

Hence, conditions (59), (22), and (40) are satisfied, and by using Theorem 2, we see that (64) is
oscillatory

5. Conclusions

This paper conducted an extensive inquiry into the asymptotic and oscillatory be-
havior of a specific subclass of fourth-order nonlinear neutral differential equations. Our
investigation was particularly centered on their noncanonical form, which was augmented
with the introduction of damping terms. The primary goal of this research was to elevate
our understanding of the intricate relationships between the solutions of these equations
and their corresponding functions. By refining these relationships, we unearthed novel
insights into the monotonic properties that govern these solutions. These insights, in
turn, enabled us to derive improved conditions and parameters for the analyzed equation.
Employing Riccati’s technique and the comparison method, this study furnished robust
criteria that ensure the presence of oscillatory behavior in the solutions.
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