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Abstract: Skin aging is a complex biological process influenced by a variety of factors, including
UV radiation. UV radiation accelerates collagen degradation via the production of reactive oxygen
species (ROS) and cytokines, including TNF-α. In a prior investigation, the inhibitory properties of
flavonol and flavone glucuronides derived from Potentilla chinensis on TNF-α-induced ROS and MMP-
1 production were explored. Consequently, we verified the skin-protective effects of these flavonol
and flavone glucuronides, including potentilloside A, from P. chinensis, and conducted a structure–
activity relationship analysis as part of our ongoing research. We investigated the protective effects
of the extract and its 11 isolates on TNF-α-stimulated normal human dermal fibroblasts (NHDFs).
Ten flavonol and flavone glucuronides significantly inhibited ROS generation (except for 7) and
suppressed MMP-1 secretion, except for 2. In contrast, six isolates (1, 5, 6, 11, 9, 10, and 11) showed
a significant reverse effect on COLIA1 secretion. Comparing the three experimental results of each
isolate, potentilloside A (1) showed the most potent skin cell-protective effect among the isolates.
Evaluation of the signaling pathway of potentilloside A in TNF-α-stimulated NHDF revealed that
potentilloside A inhibits the phosphorylation of ERK, JNK, and c-Jun. Taken together, these results
suggest that compounds isolated from P. chinensis, especially potentilloside A, can be used to inhibit
skin damage, including aging.

Keywords: flavonol glucuronide; flavone glucuronide; potentilloside A; ROS; MMP-1; COLIA1

1. Introduction

Skin aging is a complex biological process that is influenced by several factors. Aging
is divided into two types: intrinsic and extrinsic aging. Intrinsic aging is programmed aging
caused by interior factors in the human body. Extrinsic aging is caused by environmental
factors, such as smoking, pollution, and UV radiation [1]. UV radiation, a common extrinsic
factor, accelerates the breakdown of collagen in the skin, a critical component of the
extracellular matrix (ECM). Collagen degradation contributes to visible signs of aging,
including wrinkles and sagging [2].

UV radiation exposure triggers the release of tumor necrosis factor-α (TNF-α), a
cytokine involved in the inflammatory response of the skin. TNF-α exacerbates skin in-
flammation and plays a role in the aging process. UV radiation induces the production
of reactive oxygen species (ROS) in skin cells. ROS are highly reactive molecules that
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contribute to oxidative stress and are significant factors in skin aging [3,4]. A positive feed-
back loop exists between TNF-α and ROS production. TNF-α stimulates ROS generation,
which can activate signaling pathways that promote TNF-α production and intensify the
inflammatory response [5,6].

Both ROS and TNF-α activate matrix metalloproteinases (MMPs). MMPs, particularly
MMP-1, are enzymes responsible for collagen degradation within the ECM. Collagen
breakdown leads to visible skin-aging effects. Consequently, MMP-1 and proinflammatory
cytokines also play a role in age-related skin conditions, such as psoriasis, acne vulgaris,
and atopic dermatitis [7–9]. ROS upregulate various signaling pathways, such as MAPKs,
AP-1, and NF-κB, which are associated with MMP-1 production and proinflammatory
cytokines, contributing to skin aging [10].

Hence, the inhibition of oxidative stress and TNF-α activity holds significant potential
as a promising approach for the creation of novel therapeutic agents aimed at enhancing
skin aging or managing inflammatory skin conditions.

The genus Potentilla contains approximately 500 known species, some of which are
associated with the Latin word “potens”, which means “strong”. Potentilla chinensis is
widespread throughout East Asia, particularly in China and Korea [11]. Previous studies
have highlighted the antioxidant and anti-inflammatory properties of this plant [12].

In a previous study, we isolated and identified 11 compounds, including the new com-
pound potentilloside A, from P. chinensis leaves and discovered their potential biological
activity. All isolates were tested for the inhibition of TNF-α-induced ROS at each concentra-
tion, with no effect on cell proliferation or inhibition, and the isolates showed a significant
inhibitory effect. Among the isolates, four flavonol-bis-glucuronides, which are rare in
nature and whose pharmacological activity is not well known, were tested for their MMP-1
inhibitory effect, and potentilloside A and quercetin-bis-3,7-O-β-D-glucuronide showed
significant inhibition [13]. Thus, the possibility of new activities of the two structurally rare
compounds was suggested.

In this study, as part of ongoing research, we aimed to determine the skin-protective
effects of flavonol and flavone glucuronides from P. chinensis and to analyze the structure–
activity relationship. In addition, we will identify the compounds with the strongest effects
and propose them as representative active ingredients through mechanistic studies.

2. Materials and Methods
2.1. Cell Culture

Normal human dermal fibroblasts (NHDFs) were acquired from PromoCell GmbH
(Heidelberg, Germany). NHDFs were cultured in DMEM (Corning, Manassas, VA, USA)
containing FBS (10%, v/v) (Atlas, Fort Collins, CO, USA) and 100 U/mL of antibiotics
(penicillin–streptomycin, Gibco, Grand Island, NY, USA) at 37 ◦C and incubated in a
5% CO2 atmosphere; the cells within passage numbers 6–10 were used for subsequent
experiments.

2.2. Cell Viability

NHDFs were plated in 96-well flat-bottomed microplates (5 × 103 cells/well). The
indicated concentrations of the extract and all the isolates were treated for 24 h. A cell
viability assay was conducted using the Ez-Cytox solution. Briefly, 10% Ez-Cytox solution
was added into each well and reacted at 37 ◦C for 1 h. Viability was measured using a
microplate reader at 450 nm.

2.3. Intracellular ROS Generation Assay

NHDFs were plated in 48-well flat-bottomed microplates (1 × 104 cells/well). NHDFs
were pre-treated with the indicated concentrations of isolates for 1 h. Next, the cells were
treated with 20 ng/mL TNF-α and 10 µM DCF-DA (2,7-dichlorofluorescein diacetate) for
15 min in 48-well plates. Next, the medium was removed, and the cells were washed with
DPBS (Welgene, Gyeongsan, Republic of Korea). Cells were stained with DCFDA and
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visualized under a fluorescence microscope (Olympus, Tokyo, Japan). To quantify intracel-
lular ROS generation levels, cells were seeded on a 96-well black plate (5 × 103 cells/well)
and treated with the concentrations mentioned above. Relative fluorescence intensities
were measured using a microplate reader (SPARK 10M; Tecan, Männedorf, Switzerland) at
excitation and emission wavelengths of 485/535 nm. The levels of intracellular ROS were
expressed as fold changes.

2.4. Enzyme-Linked Immunosorbent Assay (ELISA)

NHDFs were cultured in 48-well plates (2× 104 cells/well) for 24 h in DMEM. After 24
h, the cells were starved overnight in serum-free DMEM. Eleven isolates and extract were
added at the indicated concentrations (1, 3, 10, 30, and 100 µM or µg/mL) and incubated for
1 h. TNF-α was then added for 24 h to measure MMP-1 and COLIA1 secretion. Commercial
ELISA kits (R&D Systems, Minneapolis, MN, USA) were used to quantify MMP-1 and
COLIA1 concentrations, according to the manufacturer’s protocol. The absorbance at
450 nm was measured using a microplate reader.

2.5. Western Blotting

NHDFs were incubated in 6-well microplates (1.53 × 105 cells/well) in complete
DMEM and incubated for 24 h (37 ◦C, 5% CO2). After incubation, cells were treated with
1 at concentrations of 10, 30, and 100 µM for 1 h. After 1 h, the cells were treated with
20 ng/mL of TNF- for 24 h. After 24 h, the cells were lysed by scraping with RIPA buffer to
collect the proteins. The mixture was sonicated and centrifuged at 14,000 rpm for 10 min
at 4 ◦C. The protein concentration was determined using BCA protein method. Proteins
were separated using a 4–20% premade protein gel (SDS-PAGE) and transferred to PVDF
membranes (Bio-Rad, Hercules, CA, USA). Membranes were blocked with 5% nonfat milk
in Tris-buffered Tween20 for 1 h and incubated with primary antibodies (ERK 1/1000, JNK
1/1000, p38 1/1000, p65 1/1000, c-jun 1/1000, c-fos, and GAPDH cell signaling) overnight
at 4 ◦C. Membranes were re-incubated with HRP-conjugated secondary antibody (Anti-
rabbit 1/5000, Cell signaling, Danvers, MA, USA) for 1 h. Membranes were developed
using an enhanced chemiluminescence (ECL) plus reagent (Bio-Rad, Hercules, CA, USA).

2.6. Statistical Analysis

Data are expressed as means ± standard deviation (SD). Statistical significance was
determined via one-way analysis of variance (ANOVA) using GraphPad Prism version 9.
Tukey’s multiple comparison test was used to assess the differences between groups, with
statistical significance set at p < 0.05.

2.7. Sample Preparation

The leaves of P. chinensis were collected in August at Evada Botanical Garden (GPS
coordinates: X: 126.926768 and Y: 37.2482236) and dried for extraction. Four flavonol-di-
glucuronides (1 and 3–5), five flavonol-mono-glucuronides (2 and 8–11), and two flavone-
mono-glucuronides (6 and 7) were isolated from the 30% ethanol extract of P. chinensis
leaves (Figure 1) [13].

The chemical structures were determined by comparing their spectral data with
those reported in the literature as quercetin-di-3,3′-O-β-D-glucuronide (potentilloside A, 1),
quercetin-3′-O-β-D-glucuronide (2), quercetin-di-3,7-O-β-D-glucuronide (3), isorhamnetin-
di-3,7-O-β-D-glucuronide (4), kaempferol-di-3,7-O-β-D-glucuronide (5), luteolin-7-O-β-
D-glucuronide (6), apigenin-7-O-β-D-glucuronide (7), quercetin-3-O-β-D-glucuronide (8),
isorhamnetin-3-O-β-D-glucuronide (9), kaempferol-3-O-β-D-glucuronide (10), and quercetin-
3-O-β-D-glucuronide-6′′-methyl ester (11).
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Figure 1. Chemical structures of isolates 1–11 from the leaves of P. chinensis.

3. Results
3.1. Effects of the Extract and Isolates on NHDF Viability

To evaluate the protective effects of the extract and isolates on TNF-α-induced NHDFs
in the non-cytotoxic range, a viability assay was conducted. In the concentration range of
1–100 µM, the extract and isolates did not show remarkable cytotoxicity toward NHDFs
(Figure 2).

3.2. Effects of the Extract and Isolates on Intracellular ROS Generation in
TNF-α-Stimulated NHDFs

Next, we determined the inhibitory effect of the extract and isolates on ROS generation
in TNF-α-induced NHDFs at the same concentrations (1, 3, 10, 30, and 100 µM) in Figure 3.
All isolates inhibited ROS generation in TNF-α-treated NHDFs; particularly, compound
1 significantly inhibited the ROS generation at all tested concentrations (1–100 µM) to
1.32 ± 0.02-fold (p < 0.001), 1.27 ± 0.08-fold (p < 0.001), 1.25 ± 0.15-fold (p < 0.001),
1.06 ± 0.29-fold (p < 0.001), and 0.88 ± 0.16-fold (p < 0.001) compared to the TNF-α-treated
group (2.1 ± 0.04-fold, p < 0.001). Additionally, compound 8 significantly decreased ROS
generation at all treatment dosages compared with that of the TNF-α-treated group. In
addition, compound 2 diminished ROS generation to 0.96 ± 0.23-fold (p < 0.001) and
0.82 ± 0.08-fold (p < 0.001) at 30 and 100 µM, respectively. Compound 10 decreased ROS
generation to 0.93 ± 0.04-fold (p < 0.001) and 0.80 ± 0.11-fold (p < 0.001) at 30 and 100 µM,
respectively.

3.3. Effects of the Extract and Isolates on MMP-1 Secretion in TNF-α-Stimulated NHDFs

ELISA was conducted to determine the inhibitory effects of the extract and isolates on
MMP-1 secretion in TNF-α-treated NHDFs. As shown in Figure 4, the extract and all the
isolates inhibited MMP-1 secretion in TNF-α-induced NHDFs. Ten flavonol and flavone
glucuronides, except for compound 2, significantly inhibited the MMP-1 secretion at 100 µM.
The extract caused significant concentration-dependent suppression at all concentrations.
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Treatment with 30 and 100 µM of compound 1 dramatically (potentilloside A) decreased
MMP-1 secretion by 1.96± 0.14-fold (p < 0.001) and 0.56± 0.05-fold (p < 0.001), respectively,
compared to the TNF-α group (3.72 ± 0.17-fold, p < 0.001). Additionally, compounds
5 and 9 significantly decreased MMP-1 secretion at all tested treatment concentrations.
Furthermore, compounds 7 and 10 significantly inhibited MMP-1 secretion at 100 µM to
0.45 ± 0.08-fold (p < 0.001) and 1.09 ± 0.06-fold (p < 0.001), respectively.
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Figure 3. Inhibitory effect of the extract and isolates on intracellular ROS generation in TNF-α-
induced NHDFs. NHDFs were seeded in a black 96-well plate at a density of 1 × 104 cells per
well and allowed to incubate for 24 h. The medium was replaced with serum-free DMEM under
serum-free conditions to arrest the cell cycle. Subsequently, the indicated concentrations of P. chinensis
extract and isolates were treated for 1 h, followed by continuous co-treatment with 20 ng/mL TNF-α
and 10 µM dichlorofluorescin diacetate (DCFDA) for 15 min. Data are presented as mean ± SD
(n = 3). ### p < 0.001 versus the non-treated group; *** p < 0.001, ** p < 0.01 and * p < 0.05 versus the
TNF-α-treated group.
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Figure 4. Effects of the extract and isolates on MMP-1 protein expression in TNF-α-stimulated NHDFs.
NHDFs were seeded in a 48-well plate at a density of 2 × 104 cells per well and allowed to incubate
for 24 h. The medium was replaced with serum-free DMEM for serum-starved conditions to arrest
the cell cycle. Subsequently, the extract and isolates were treated with the specified concentrations
for 1 h, followed by continuous treatment with 20 ng/mL TNF-α for 24. h. MMP-1 secretion was
quantified using an ELISA kit. Data are presented as mean ± SD (n = 2). ### p < 0.001 versus the
untreated group; *** p < 0.001, ** p < 0.01, and * p < 0.05, versus the TNF-α-treated group.

3.4. Effects of the Extract and Isolates on COLIA1 Secretion in TNF-α-Stimulated NHDFs

Next, we evaluated COLIA1 secretion in the TNF-α-treated condition. As shown
in Figure 5, several compounds (1, 4, 5, 6, 9, 10, and 11) significantly increased CO-
LIA1 secretion at different concentrations. However, the extract did not show an in-
crease compared to that in the TNF-α-treated group. Compound 1 at 3, 10, and 30 µM
potently increased COLIA1 secretion to 0.94 ± 0.02-fold (p < 0.001), 0.86 ± 0.09-fold
(p < 0.001), and 0.77 ± 0.04-fold (p < 0.01), respectively, compared to the TNF-α-treated
group (0.50 ± 0.00-fold, p < 0.001). In particular, 100 µM of compound 5 almost recovered
the COLIA1 secretion by 0.96 ± 0.05-fold (p < 0.001).
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Figure 5. Effect of the extract and isolates on COLIA1 (pro-collagen 1) protein expression in TNF-α-
stimulated NHDFs. NHDFs were seeded in a 48-well plate at a density of 2 × 104 cells per well and
allowed to incubate for 24 h. The medium was replaced with serum-free DMEM for serum-starved
conditions to arrest the cell cycle. Subsequently, the extract and isolates were treated with the specified
concentrations for 1 h, followed by continuous treatment with 20 ng/mL TNF-α for 24. h. COLIA1
secretion was quantified using an ELISA kit. Data are presented as mean ± SD (n = 2). ### p < 0.001
versus the untreated group; *** p < 0.001, ** p < 0.01, and * p < 0.05, versus the TNF-α-treated group.

3.5. Spider Chart for Efficiency Comparison of the Extract and Isolates in
TNF-α-Stimulated NHDFs

A spider chart was used to evaluate the following three factors: inhibition of MMP-1
secretion, inhibition of ROS generation, and stimulation of COLIA1 expression. The rates
of inhibition or increase at each concentration were calculated by converting the difference
between the TNF-α-treated group and the untreated group to 100%. These were then as-
signed as follows: 0 (x < 20%), 1 (20 ≤ x < 40%), 2 (40 ≤ x < 60%), 3 (60 ≤ x < 80%), and
4 (80 ≤ x < 100%). The scores for the three experiments were then summed up. The total
scores were divided into three ranges: 0 (y ≤ 4), 1 (5 ≤ y ≤ 9), 2 (10 ≤ y ≤ 14), and 3 (15 ≤ y).

As shown in Figure 6, compound 1 had the highest overall score, followed by com-
pounds 5, 9, and 10, respectively. Notably, compounds 1, 5, 7, 9, 10, and 11 exhibited MMP-1
suppression. Among the flavonols with a glucuronide moiety at position 3, compounds
1 and 5 obtained the highest scores for stimulating COLIA1, followed by 9, 10, and 11.
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All compounds, except compound 7, demonstrated substantial ROS-inhibiting activity.
Consequently, according to the spider chart evaluation, potentilloside A (1) was identified
as the most effective compound.
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Figure 6. Spider chart for efficiency comparison of the isolates and extract on three markers associated
with TNF-α-induced NHDF damage. The three markers included inhibition of MMP-1 secretion,
inhibition of ROS generation, and stimulation of COLIA1 secretion. The scores assigned to the 12
tested samples ranged from three, representing the strongest effect, to one, indicating the lowest
effect, for each factor. Additionally, a score of zero was assigned when no effect was observed for a
particular factor.

3.6. Effects of Potentilloside A (1) on Intracellular ROS Generation in TNF-α-Stimulated NHDFs

To clarify the inhibitory effect of potentilloside A (1) on intracellular ROS generation
in TNF-α-induced NHDFs, the cells were visualized using a DCFDA staining assay. As
shown in Figure 7, potentilloside A (1) conspicuously inhibited fluorescence, indicating
ROS generation, compared to that of the TNF-α-treated group.
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concentrations of 1 for 1 h. Subsequently, 20 ng/mL TNF-α and 10 µM DCFDA were added to each
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3.7. Effect of Potentilloside A (1) on MAPK Phosphorylation in TNF-α-Stimulated NHDFs

Western blotting was performed to ascertain whether potentilloside A (1) plays a
critical role in TNF-α-induced MAPK phosphorylation in NHDFs to analyze the MAPK
biomarkers. As shown in Figure 8, an increase in ERK phosphorylation was observed in
NHDFs exposed to TNF-α (1.43 ± 0.04-fold, p < 0.001). In contrast, treatments of 10, 30,
and 100 µM potentilloside A (1) significantly decreased the phosphorylation of ERK to
1.21 ± 0.08-fold (p < 0.01), 1.02 ± 0.05-fold (p < 0.001), and 0.62 ± 0.03-fold (p < 0.001), re-
spectively. TNF-α treatment increased JNK phosphorylation by 1.46 ± 0.04-fold (p < 0.001),
and 30 and 100 µM potentilloside A (1) markedly decreased it by 1.12± 0.03-fold (p < 0.001)
and 0.37 ± 0.01-fold (p < 0.001), respectively. However, potentilloside A (1) failed to inhibit
p38 phosphorylation.
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(A) NHDFs were treated with 10, 30, and 100 µM potentilloside A (1) for 1 h and then with 20 ng/mL
TNF-α for 15 min. Immunoreactive bands were analyzed by immunoblotting for p-JNK, JNK, p-ERK,
ERK, p-p38, p38, and GAPDH. (B) The levels of p-p38, p-JNK, and p-ERK are expressed as the ratio
of phosphorylated proteins to the corresponding total proteins. Data are presented as mean ± SD
(n = 3). ### p < 0.001 vs. control. ** p < 0.01 and *** p < 0.001 vs. TNF-α-exposed group.
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3.8. Effect of Potentilloside A (1) on NF-κB and c-Jun Phosphorylation in
TNF-α-Stimulated NHDFs

To explore the possible protective mechanism of potentilloside A (1) in TNF-α-treated
NHDF, we examined the expression levels of proteins in TNFα-stimulated intracellular
pathways, NF-κB and c-Jun. As shown in Figure 9, increased NF-κB phosphorylation was
observed in the NHDFs exposed to TNF-α. Compound 1 did not decrease NF-κB phospho-
rylation compared with that of the TNF-α-treated group. TNF-α treatment increased c-Jun
phosphorylation by 4.12 ± 0.13-fold (p < 0.001), and treatment with 100 µM potentilloside
A (1) significantly decreased it by 3.28 ± 0.08-fold (p < 0.001).
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Figure 9. Effects of potentilloside A (1) on TNF-α-induced phosphorylation of NF-κB and c-Jun in
NHDF. (A) Phosphorylation of NF-κB and c-Jun in NHDFs after TNF-α stimulation. The NHDFs
were treated with 1 (3, 10, and 100 µM) for 1 h. The protein bands were analyzed by immunoblotting
for p-p65, p65, p-c-Jun, c-Jun, and GAPDH. (B) The levels of p-p65 and p-c-Jun were expressed as
the ratio of phosphorylated proteins to the corresponding total proteins. Data are presented as the
mean ± SD (n = 3). Densitometric analysis. ### p < 0.001versus non-treated group. *** p < 0.001 versus
TNF-α-exposed group.

4. Discussion

The skin is the outermost and largest organ that amounts to 12–16% of total body
weight. The skin protects internal organs against harmful external factors as a barrier. The
skin has three functional layers: epidermal, dermal, and subcutaneous [14,15]. The dermis
is the main layer that supplies nutrients and moisture to the epidermis [16]. The dermis
consists of the ECM, which is mainly composed of collagen, elastin, and fibronectin [17].
Among the collagen types, type 1 collagen is the most important and abundant, accounting
for 80–90% of the total collagen content in the ECM [18]. Type 1 collagen is destroyed by
aging-related proteins, such as MMPs. MMPs destroy the skin layer by dividing gelatinase,
collagenase, and stromelysin [19]. MMP-1 is collagenase-1 that destroys collagen, such
as collagen types 1 and 3 [20]. Therefore, the inhibition of MMP-1 and increased type
1 collagen prevents skin aging.
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Skin aging is divided into intrinsic and extrinsic aging. Intrinsic aging are caused by
endogenous factors, such as gene mutations, cellular metabolism, and hormone environ-
ment. These aging factors makes the skin to be thin, smooth, dry, and unblemished, with
some loss of elasticity [21]. Extrinsic aging is promoted by exogenous factors, such as chem-
icals, toxins, pollutants, UV, and ionizing radiation [22]. These factors damage the skin and
accelerate aging. Continuous damage to the skin causes visible symptoms (pigmentation,
ptosis, and wrinkles) and cutaneous diseases (skin cancer and melanoma) [23,24]. UV
radiation causes cutaneous tissue damage that promotes cytokine release, such as TNF-α
and interleukins, via the activation of TNF-α receptors on the cutaneous cell surface [25].
TNF-α is an inflammatory cytokine that is a major mediator of inflammatory reactions in
the skin. TNF-α upregulates MMP-1 and downregulates collagen in dermal fibroblasts [26].
TNF-α triggers ROS production and the release of proinflammatory cytokines [27]. TRAF4,
a component of TNF signaling, binds to the NADPH oxidase complex. This leads to ROS
generation and triggers downstream pathways [28]. ROS play an important role in aging
diseases, including psoriasis, rheumatoid arthritis, and Parkinson’s disease [29]. ROS
activate MMP-1 secretion through age-related signaling pathways, such as MAPKs, NF-κB,
and AP-1 [30]. Thus, the inhibition of TNF-α and ROS is the key to preventing skin aging.

Previously, we found that flavonol or flavone glucuronides derived from P. chinensis
effectively inhibited MMP-1 generation. Therefore, we examined the structure–activity
relationship of these flavonoid glucuronides at various concentrations (Figure 4). The
involvement of the functional group at position 3′ was observed at 100 µM MMP-1 secretion
inhibitory activity. When comparing 3, which is quercetin-3,7-di-glucuronide, with 5, which
is kaempferol instead of quercetin, it was observed that 5, which lacks a hydroxyl group at
position 3′, exhibited a stronger effect. This trend was similarly observed for flavonone-7-
O-glucuronide structures, specifically between 6 and 7.

In addition, when the backbone consisted of isorhamnetin (methoxy at position 3′) and
quercetin (hydroxy at position 3′), quercetin was found to be more active than isorhamnetin
in the 3,7-di-glucuronide (3 and 4) and 3-O-glucuronide structures (8 and 9). Furthermore,
through a comparison of the di-glucuronide and mono-glucuronide structures, it was
demonstrated that the inhibitory effect increased when the glucuronide was attached to
the C-3 only, rather than when it was attached to both the C-3 and C-7. As a result, it was
confirmed that the inhibitory effect increased when the functional group was not attached
to position 3′ (Figure 10). It was also confirmed that the lack of a functional group at
position 3′ and the attachment of only one glucuronide (attached C-3) increased the MMP-1
secretion inhibitory effect.
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However, there was an exception to this trend for quercetin-3,3′-O-di-glucuronide,
known as potentilloside A (1), which exhibited a higher inhibitory effect on MMP-1 secre-
tion than quercetin-3-O-glucuronide (8).

In the evaluation of increased COLIA1 secretion, compounds 1, 5, and 11 exhibited
significant effects at concentrations of 1, 3, 10, and 30 µM, with compound 1 showing
the highest efficacy among them. Additionally, compounds 5, 6, and 9 induced a notable
increase in COLIA1 secretion at a concentration of 100 µM. Although no specific structural
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requirements were observed for the increased secretion of COLIA1, compound 1 was
confirmed to be an effective agent. Therefore, potentilloside A (1) exhibited the most
effective reduction in MMP-1 secretion and simultaneous increase in COLIA1 secretion.
However, further investigations with a larger number of samples are needed to provide
evidence of the structure–activity relationship.

Potentilloside A was found to be the most effective isolate among the others. Previous
studies were conducted to identify the signaling pathways involved. Similar to our results,
flavonoid compounds were also shown to suppress ROS generation and MMP-1 expression.
Additionally, flavonoid compounds have been shown to increase COLIA1 expression in
human skin cells. Hesperidin and hesperetin were shown to inhibit MMP-1 production in
physiologically aged NHDFs [31]. In addition, tectorigenin was shown to suppress ROS
generation and MMP-1 secretion in UVB-damaged HaCaT cells. In addition, tectorigenin
was shown to increase type 1 collagen expression in UVB-damaged HaCaT cells [32].
Quercetin 3-O-α-L-rhamnopyranosyl-(1′′ ′ → 6′′)-β-D-galactopyranoside, hyperin, afzelin,
and cryptochlorogenic acid methyl ester were shown to inhibit MMP-1 expression in UVB-
irradiated human dermal fibroblasts (WS-1 cells). These three compounds were found to
increase the secretion of pro-collagen type 1. Among these, hyperin was shown to reduce
ROS generation [33]. These previous studies support the hypothesis that P. chinensis isolates
can prevent aging by inhibiting MMP-1, ROS generation, and collagen degradation.

TNF-α-induced ROS generation downregulates several signaling pathways, including
MAPKs and NF-κB [34]. MAPKs regulate the transcriptional factor AP-1 complex, which
is a heterodimer of c-Fos and c-Jun proteins. The activation of c-Fos and c-Jun by MAPK
phosphorylation upregulates the ECM-degrading enzymes, such as MMP-1, MMP-3, and
MMP-9 [20]. Figure 8 demonstrates that 1 inhibited ERK and JNK phosphorylation in TNF-
α-treated NHDFs. ROS upregulate NF-κB phosphorylation in human dermal fibroblasts
and keratinocytes [35,36]. In the cytoplasm, NF-κB is a heterodimeric complex composed
of p65 and p50. In the nucleus, p65 phosphorylation regulates the expression of proinflam-
matory cytokine genes, such as COX-2, iNOS, and interleukins [37]. Figure 9 shows that
potentilloside A (1) did not inhibit NF-κB phosphorylation in the TNF-α-treated NHDFs.
These results demonstrate that potentilloside A (1) inhibits MMP-1 expression and secretion
by inhibiting c-Jun phosphorylation via decreasing ERK and JNK phosphorylation.

Similar to our results, flavonoids were shown to inhibit ROS generation, MMP-1, and
increase COLIA1 via MAPK/AP-1 or NF-κB in human skin cells. Quercetin-3-glucuronide
(8) was reported to have skin-protective properties through the NF-κB and AP-1 pathways
in human keratinocytes and melanoma cells [38].

Alpinumisoflavone inhibits ROS generation and MMP-1 secretion and expression via
MAPK/AP-1 and NF-κB in TNF-α-induced NHDFs [39]. Epigallocatechin gallate (EGCG)
inhibited ROS generation and MMP-1 expression via the MAPK/AP-1 pathway in UVB-
irradiated NHDFs. In addition, EGCG increases COLIA1 expression via MAPK/AP-1.
Eriodictyol inhibits ROS generation and MMP-1 expression in UVB-treated HaCaT cells. In
addition, eriodictyol upregulates the expression of collagen type 1 genes [40].

Consequently, potentilloside A has a potential protective activity against NHDF cell
damage by decreasing MMP-1 and ROS generation and increasing COLIA1 by inhibiting
the phosphorylation of MAPK/AP-1. In particular, potentilloside A (1) exhibited stronger
inhibitory effects on MMP-1 secretion and increased collagen secretion in comparison to
quercetin-3-glucuronide (8). Additional in vivo studies are required to fully understand the
activity of P. chinensis leaf extracts and potentilloside A as an active ingredient. Neverthe-
less, our study demonstrates that potentilloside A is a representative active ingredient in
P. chinensis leaves that inhibits skin damage, including aging. Furthermore, potentilloside A
not only holds potential as a candidate for addressing skin aging but also shows potential
applications in other inflammatory skin diseases such as atopic dermatitis.
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5. Conclusions

The protective effects of flavonol and flavone glucuronides from P. chinensis leaves
against TNF-α-stimulated NHDF were investigated and compared with the results of three
markers (ROS, MMP-1, and COLIA1). Comparing the three experimental results of each iso-
late, potentilloside A (1) showed the strongest skin cell protection effect among the isolates.
Furthermore, potentilloside A suppressed the phosphorylation of MAPKs (ERK and JNK)
and c-Jun. Thus, potentilloside A suppressed NHDF damage by regulating oxidative stress
and collagenase MMP-1 activity under TNF-α-stimulated conditions. Although further
investigations are required to understand the impact of potentilloside A, it nevertheless
represents a candidate compound with the potential to mitigate skin damage.
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