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Abstract

The absolute age of a simple stellar population is of fundamental interest for a wide range of applications but is
difficult to measure in practice, as it requires an understanding of the uncertainties in a variety of stellar evolution
processes as well as the uncertainty in the distance, reddening, and composition. As a result, most studies focus
only on the relative age by assuming that stellar evolution calculations are accurate and using age determinations
techniques that are relatively independent of distance and reddening. Here, we construct 20,000 sets of theoretical
isochrones through Monte Carlo simulation using the Dartmouth Stellar Evolution Program to measure the
absolute age of the globular cluster M92. For each model, we vary a range of input physics used in the stellar
evolution models, including opacities, nuclear reaction rates, diffusion coefficients, atmospheric boundary
conditions, helium abundance, and treatment of convection. We also explore variations in the distance and
reddening as well as its overall metallicity and α enhancement. We generate simulated Hess diagrams around the
main-sequence turn-off region from each set of isochrones and use a Voronoi binning method to fit the diagrams to
Hubble Space Telescope Advanced Camera for Surveys data. We find the age of M92 to be 13.80± 0.75 Gyr. The
5.4% error in the absolute age is dominated by the uncertainty in the distance to M92 (∼80% of the error budget);
of the remaining parameters, only the total metallicity, α element abundance, and treatment of helium diffusion
contribute significantly to the total error.

Unified Astronomy Thesaurus concepts: Globular star clusters (656); Stellar physics (1621); Computational
astronomy (293); Stellar evolutionary models (2046)

1. Introduction

Globular clusters (GCs) are stable, tightly bound clusters of
stars. They are often modeled as simple stellar populations, as
stars in a GC are believed to have the same origin and have
similar composition and age. As a result, GCs are an important
observational basis for understanding composite stellar popula-
tions both inside and outside of the Milky Way as they could be
used as building blocks for stellar population synthesis (Bica &
Alloin 1986).

GCs are also the oldest objects in the galaxy whose age may
be accurately determined. Using JWST data, Mowla et al.
(2022) found globular clusters formed at z> 9, only ∼0.5 Gyr
after the Big Bang. Therefore, most GCs are relics of high-
redshift star formation and contain the fossil imprint of earliest
phases of galaxy formation. Moreover, the bimodality of GCs
(each galaxy generally has a metal-poor and a metal-rich
subpopulation) permits the investigation of two distinct phases
of galaxy assembly (stellar halo and bulge) far beyond the
Local Group (Arnold et al. 2011). M92 is one of the oldest and
most metal-poor galactic GCs (e.g., Kraft & Ivans 2003). The
age of M92, therefore, provides a limit to the age of the
universe (Chaboyer 1996) and insights into star formation in
the early universe.

Due to its richness, relative proximity, and low reddening,
M92 often serves as a benchmark for studies of low-metallicity

stellar systems. For example, Brown et al. (2014) studied the
stellar population of six ultrafaint dwarf galaxies (UFDs) using
a combination of high-precision photometry data and pointed
out that all six UFDs they studied showed that the stars of the
smallest galaxies in the universe were formed before reioniza-
tion because the unusual similarity between their stellar
population and that of the M92. As another example of the
benchmark nature of M92, it was among the first objects
observed with JWST as part of the early release science
program 1334 (Weisz et al. 2023).
To first order, stars in a GC can be assumed to form at the

same time with the same composition; as a result, theoretical
isochrone age fitting is the most widely used method to
determine the age of GCs. Theoretical isochrones can be
generated by finding the common phase of stellar evolution
shared by the stellar evolution model with different masses
(Dotter et al. 2008). A variety of methods have been applied to
determine the best-fit isochrones for observational data and,
therefore, constrain the age of GCs.
Several examples exist for M92. Salaris & Weiss (2002)

used the luminosity of the main-sequence (MS) turn-off,
combined with the color difference between the turn-off and
the base of the giant branch, to find the age of M92 to be
12.3± 0.9 Gyr. Using the luminosity of the main-sequence
turn-off (MSTO), but a different distance estimate, Carretta
et al. (2000) found the age of M92 to be 14.8± 2.5 Gyr.
Utilizing the shape of the MSTO region as an age indicator,
along with a new estimate of distance modulus (DM) and
reddening, VandenBerg et al. (2002) estimated the age of M92
to be 13.5± 1.0 Gyr. Cecco et al. (2010) combined data from
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three different photometric systems—Sloan Digital Sky Survey
(SDSS), Johnson-Kron-Cousins, and Advanced Camera for
Surveys (ACS)—and, using the morphology and number
counts of stars in the MSTO, red giant branch, and horizontal
branch, found the age of M92 to be 11± 1.5 Gyr. Marín-
Franch et al. (2009) derived ridge lines in the color–magnitude
diagram (CMD) from the ACS data to perform relative MS
fitting between clusters and found the age of M92 to be
13.18± 0.51. In general, the uncertainty in age determinations
for GCs typically takes into account the uncertainties in the
observed properties of a globular cluster (distance, reddening,
and composition), but do not include the uncertainty associated
with the theoretical stellar models and isochrones which are
used to determine the age.

Modern stellar evolution codes can generate theoretical
stellar models quickly for a wide range of initial conditions.
Theoretical isochrones are sensitive to the input parameters
used to generate these stellar models. Most previous studies
using theoretical isochrones are limited in that they do not take
into consideration the wide range of uncertainty in constructing
stellar models. In this paper, we utilize a Monte Carlo (MC)
approach to generate uncertainties in theoretical isochrones.
We generate isochrones by varying various input physics in the
stellar evolution models. For a given stellar model, we will
prescribe its mass and heavy element composition and then
vary the opacities, nuclear reaction rates, microscopic diffusion
coefficients, atmospheric boundary conditions, helium abun-
dance, and treatment of convection. All those parameters

(shown in Table 1) are varied during the MC simulation based
on their known uncertainties. The resultant isochrones provide
a good estimation of the uncertainty associated with modern
stellar evolution calculations.
A variety of methods have been used to compare theoretical

isochrones to observational data in order to determine the age
of a stellar population. Typically, certain age-sensitive aspects
of the observed CMD are compared to stellar models/
isochrones. The MSTO region is particularly sensitive to age
and is therefore often used to determine the ages of GCs (e.g.,
VandenBerg et al. 2002). However, the morphology of the
horizontal branch has also been used in measuring GC ages
(e.g., Salaris & Weiss 2002; Cecco et al. 2010). VandenBerg
et al. (2016) used both the MSTO region and the horizontal
branch to determine the age of a few globular clusters,
including M92. These previous studies have focused on
comparing the shape/morphology of the observational data to
theoretical isochrones in order to determine their age.
In this paper, we present a new isochrone age fitting method

that uses Voronoi binning and fits the number density of stars
in the MSTO region to determine ages. By utilizing the density
of stars in the CMD (usually referred to as a Hess diagram) to
determine the age of a cluster, we utilize all of the observational
information to constrain the age. This may lead to smaller
uncertainties compared to previous work. This paper is
structured as follows. In Section 2, we introduce the
observational data; Section 3 covers the process of isochrone
construction; Section 4 presents the details of our isochrone age

Table 1
Monte Carlo Input Parameters

Variable Distribution Range Source

[Fe/H] Normal −2.30 ± 0.10 Kraft & Ivans (2003)
Carretta et al. (2009)
Cohen (2011)

Primordial helium abundance Uniform 0.244–0.249 Aver et al. (2015)
[α/Fe] Normal 0.40 ± 0.1 Roederer & Sneden (2011)
Mixing length Uniform 1.0–2.5 N/A
Heavy element diffusion Uniform 0.5–1.3 Thoul et al. (1994)
Helium diffusion Uniform 0.5–1.3 Thoul et al. (1994)
Surface boundary condition Trinary 1/3; 1/3; 1/3 Eddington (1926)

Krishna Swamy (1966)
Hauschildt et al. (1999)

Low-temperature opacities Uniform 0.7–1.3 Ferguson et al. (2005)
High-temperature opacities Normal 1.0 ± 0.03 Iglesias & Rogers (1996)
Plasma neutrino loses Normal 1.0 ± 0.05 Haft et al. (1994)
Conductive opacities Normal 1.0 ± 0.20 Hubbard & Lampe (1969)

Canuto (1970)
Convective envelope overshoot Uniform 0–0.2 N/A
Convective core overshoot Uniform 0–0.2 N/A
p + p → H2 + e + ν Normal 4.07 0.04 10 22( ) ´ - Acharya et al. (2016)

Marcucci et al. (2013)
3He + 3He → 4He + p + p Normal 5150 ± 500 Adelberger et al. (2011)
3He + 4He → 2H + γ Normal 0.54 ± 0.03 deBoer et al. (2014)
12C + p → 13N + γ Normal 1.45 ± 0.50 Xu et al. (2013)
13C + p → 14N + γ Normal 5.50 ± 1.20 Chakraborty et al. (2015)
14N + p → 15O + γ Normal 3.32 ± 0.11 Marta et al. (2011)
16N + p → 17F + γ Normal 9.40 ± 0.80 Adelberger et al. (2011)

Note. We adopt a −3σ lower boundary for all physics-based parameters with normal distribution to prevent nonphysical results (such as a negative nuclear reaction
rate). Units for nuclear reaction rates are keV-barns. Convective parameters are given in units of pressure scale heights. [Fe/H] and [α/Fe] have their standard
logarithmic definition with respect to the solar value. The primordial helium abundance is given as a mass fraction. All other parameters are multiplicative about the
standard value given in the source column.
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fitting method and our best age measurement; and Section 5
includes a discussion of the sources of error and covariance.

2. Observational Data

2.1. Calibration Stars

There are two single, metal-poor main-sequence stars that
have accurate Hubble Space Telescope (HST) ACS photometry
(in the same filters as the M92 ACS data) and virtually the
identical composition as M92: HIP 46120 and HIP 106924.
The HST photometry is presented in Chaboyer et al. (2017) and
the high-resolution spectroscopic abundances in O’Malley et al.
(2017). These two stars have accurate Gaia EDR3 parallaxes of
14.776± 0.014 mas and 15.019± 0.012 mas respectively
(Lindegren et al. 2021a; Gaia Collaboration et al. 2021).

The EDR3 parallaxes are known to suffer from systematic
zero-point errors, and a calibration of this error has been given
by Lindegren et al. (2021b). This correction is −0.012 mas for
HIP 46120 and −0.020 mas for HIP 106924. However, the
zero-point correction is not that well calibrated for bright stars
like these two stars (Lindegren et al. 2021b) and there is
evidence that the zero-point correction may be an over-
correction for bright stars (Riess et al. 2021; Zinn 2021) so we
elected to add in half the zero-point correction to the quoted
EDR3 parallax. The uncertainty in the parallaxes was taken to
be the value of the zero-point correction added in quadrature
with the uncertainty in parallax given in EDR3.

Combining the parallaxes with the HST ACS photometry,
we measure MF606W= 5.7867± 0.0026 mag for HIP 46120
and MF606W= 6.0406± 0.0037 mag for HIP 106294. These
stars have zero reddening (O’Malley et al. 2017) and observed
colors of (F606W-F814W)= 0.566± 0.002 and (F606W-
F814W)= 0.601± 0.005. These accurate colors and absolute
magnitudes will be used to test the isochrones in Section 3.1.

2.2. M92

To estimate the age of M92, we use calibrated data for M92
from the Hubble Space Telescope (HST) Advanced Camera for
Surveys (ACS) globular cluster survey treasury program
(Sarajedini et al. 2007; Anderson et al. 2008). The survey
obtained photometry with a signal-to-noise ratio (S/N) >10 for
main-sequence stars with masses >0.2Me using the ACS
Wide Field Channel. Artificial star tests provide an accurate
estimate of the photometric uncertainties and completeness as a
function of magnitude and cluster position (Anderson et al.
2008). Since this paper focuses on determining the age of M92,
we use a subset of stars around the MSTO to fit isochrones
whose position is most sensitive to variations in age, and
relatively insensitive to the present-day mass function. These
stars have a 15.925< F606W< 19.925, which is ±2 magni-
tudes of the point on the subgiant branch which is 0.05 mag
redder than the MSTO. Additionally, we remove blue straggler
stars and outliers by selecting stars that are within 0.08 mag in
F606W of the median ridgeline in a magnitude–magnitude
diagram of F814W and F606W. With these cuts, our
observational sample contains 18, 077 stars.

We note that previous studies (e.g., Mészáros et al. 2015;
Milone et al. 2017) demonstrate that M92, like other old
globular clusters, hosts multiple stellar populations. These
multiple stellar populations typically have somewhat different
lighter element abundances, the origin of which is not currently
known. These multiple populations are observed in UV filters

such as F275W and F336W from the HST. However, these
populations are indistinct from each other in the F606W and
F814W data used in this paper. As a result, these multiple
populations will not be considered in this study.

3. Isochrone Construction and Testing

We use the Dartmouth Stellar Evolution Program (DSEP;
Dotter et al. 2008) to generate stellar models and isochrones
and generally use literature estimates when adopting uncertain-
ties for each parameter (see Table 1). One area where we
consider a wider range of uncertainties is in the treatment of
convection: even though nearly all models use a solar-
calibrated mixing length, a variety of studies have demon-
strated that this may not be the most appropriate value for other
stars. Joyce & Chaboyer (2018) studied metal-poor stars
including M92 and discovered that the solar-calibrated value of
the mixing length parameter αMLT was ineffective at reprodu-
cing their observed properties. As a result, we adopt a wider
input range for the mixing length parameter αMLT to cover the
range of empirically calibrated mixing length parameter αMLT.
Another source of uncertainty associated with the treatment of
convection in stellar models is the amount of convective
overshoot, which may occur at the formal edge of a convection
zone (which is defined by the buoyancy force being zero).
Various studies have calibrated the amount of convective
overshoot by comparing to observations (e.g., Claret 2004;
Demarque et al. 2004; Pietrinferni et al. 2004; Mowlavi et al.
2012). In general, these studies have found a fairly small value
of 0.0–0.2 pressure scale heights; we therefore adopt this range
for convective overshoot in our analysis.
We generate 20,000 sets of input parameters by doing Monte

Carlo simulations on parameters shown in Table 1 from their
associated probability distribution functions. Each set of input
parameters is used to evolve 21 stellar models with mass from
0.65Me to 1.5Me with an increment of 0.05Me and 12 lower-
mass stellar models with mass from 0.3Me to 0.63Me with an
increment of 0.03Me. The lower-mass models use the
FreeEOS-2.2.1 (Irwin 2012), while the higher-mass models
use an analytical equation of state which includes the Debyre–
Huckel correction (Chaboyer & Kim 1995). These stellar
models are used to generate 41 theoretical isochrones from 8
Gyr to 16 Gyr with an increment of 200Myr. Those 41
isochrones of different ages corresponding to the same set of
MC input parameters are considered a single MC isochrone set.
Each isochrone is constructed with a dense grid of 400 equal
evolutionary points in order to ensure that the output
isochrones have a high density of points to avoid any
interpolation errors when constructing simulated color–magni-
tude diagrams (sCMDs).5 In summary, we generated 20,000
isochrone sets. Each isochrone set consists of 41 isochrones of
different ages, for a total of 20,000 ×41=820,000 individual
isochrones. Figure 1 shows the distribution of all 20,000 13
Gyr isochrones generated for this project. The extensive range
covered by the single age isochrones in the color–magnitude
plane affirms our hypothesis that varying the MC input
parameters can significantly influence the resulting isochrones.
Hence, it is imperative to take into account the uncertainty in

5 The Monte Carlo isochrones created for this project are available at https://
doi.org/10.5281/zenodo.7758605. The file is stored in HDF5 format, and a
sample Python program is provided which gives details on extracting
isochrones from the HDF5 file.
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these parameters when providing an accurate determination of
the age of M92.

3.1. Testing the Isochrones

As HIP 46120 and HIP 106924 have known absolute
magnitude and colors, and nearly identical compositions to
M92, these stars provide an empirical baseline for an isochrone
goodness-of-fit metric. Specifically, we perform a χ2 goodness-
of-fit test between the two calibrating stars and each age of each
MC isochrone set. The lowest χ2 value for a given MC
isochrone set is then used to compute a weighting function for
that entire set of MC isochrones (i.e., for a given MC isochrone
set, we assume the best-fitting isochrone gives an indication of
the age of the calibrating star, which may be different from the
age of M92). Essentially, how well any given MC isochrone set
fits to the observed calibration data will determine the weight
that an MC isochrone from that set is given when fitting to
M92. We use the inverse of the probability that a given MC
isochrone is inconsistent with the calibration data as the
weighting function.

We define the χ2 metric for each isochrone as the quadrature
sum of the differences between that isochrone’s and calibrating
star’s F606W magnitude and F606W-F814W color. In order to
account for uncertainty in the calibrating stars photometry the
differences used are normalized by the magnitude and color
uncertainties. χ2 is found for each age in each of the 20,000
sets of isochrones. The age with the minimum χ2 is then
selected for each set of isochrones. From these minimized χ2

values, we directly compute the weighting function.
The two calibrating stars provide 2° of freedom, n, for the χ2

distribution; in the case where n= 2, the cumulative distribu-
tion function (CDF) for a χ2 distribution is given by

eCDF 1 . 1x 2 ( )= - -

The weighting function used, p, for any given isochrone, is
then

p 1 CDF. 2( )= -

Figure 2 shows the cumulative distribution of minimized χ2

values, and Figure 3 shows the cumulative distribution of the
weight p for 20,000 sets of MC isochrones. Approximately
20% of the isochrone sets have χ2< 2 and so provide a good fit
to the calibration stars. Only about 35% of the isochrone sets
have a CDF <0.95, which corresponds to a weighting
function >0.05%.

3.2. Simulated Color–magnitude Diagram

Each MC set of theoretical isochrones is used to create a set
of sCMDs of M92 which will be used to compare with the
observational CMD of Sarajedini et al. (2007). An sCMD is
constructed by randomly creating a 4 million-point sample for
each isochrone in the following steps:

1. A random distance from the center of the cluster is
selected from the observed distribution (Sarajedini et al.
2007).

2. A random mass is selected using the present-day mass
function determined by Paust et al. (2010), who found a
power-law mass function with a slope of −1.02 using the
same ACS M92 data. The magnitudes (F606W and

Figure 1. An illustration of the 20,000 13 Gyr MC isochrones (gray) generated
for this project. The red curve is the interpolated isochrone which is selected by
taking the median F606W-F814W value of all isochrones at a given F606W
value. The corresponding 68% confidence intervals and 95% confidence
intervals are shown in blue and green curves, respectively.

Figure 2. The cumulative distribution of the minimum χ2 values for all MC
isochrones.

Figure 3. The distribution of the weight p for 20,000 sets of MC isochrones.
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F814W) of this simulated star are then determined from
the isochrone.

3. The simulated star is randomly assigned to be a member
of a binary system, using the observed binary mass
fraction of 0.02 (Milone et al. 2012).

4. If a star is a member of a binary system, then a secondary
star is created, assuming a flat secondary mass distribu-
tion with a mass ratio q= 0.5–1.0. The magnitudes of this
secondary star are determined from the isochrone and
added to the magnitude of the primary to arrive at the
magnitude of the binary star system; which is considered
to be a single star in the photometry.

5. It is determined if the star would be recovered in the
photometric reduction, using the photometric complete-
ness function from (Anderson et al. 2008) for the M92
ACS data. This photometric completeness function
depends on the magnitudes of the star and its distance
from the center of the cluster.

6. If the star is found to be observable in the previous step,
then photometric errors will be randomly selected from
their observed distribution (which is a function of
magnitude and distance from the cluster center). The
observed distribution of photometric errors is determined
from the artificial star tests of Anderson et al. (2008).

7. The photometric errors in F606W and F814W are added
to the magnitude of the simulated star, and these
magnitudes are used in creating the sCMD.

Once the sCMD is created, the same color and magnitude
filters that were applied to the observed M92 data are applied to
the sCMD. After this filtering, the sCMD consists of about 2
million simulated data points for each theoretical isochrone.

We note that after we completed our age determination for
M92, we discovered that Ebrahimi et al. (2020) found a strong
correlation between the distance from the center of the GC and
the present-day mass function (PDMF) slope. Ebrahimi et al.
(2020) found a PDMF slope in the inner region of M92 which
ranged from −1 to +2, while our sCMD assumed −1.02 (Paust
et al. 2010). Since we are only fitting stars that are around the
MSTO, which all have similar masses, the exact PDMF slope
should have little impact on our results. To test this, we created
sCMDs with PDMF slopes ranging from −2.02 to 1.02 and
found the change in PDMF slope indeed had a negligible
impact on the estimated age for M92.

4. Isochrone Fitting

To estimate the age of M92, each sCMD is compared to the
observational CMD, and the fit probability is calculated. In
order to compare CMDs, we divide the 2D CMD into multiple
subsections and estimate the goodness of fit using a χ2 method:

O E

E
, 3

i

i i

i

2
2( ) ( )åc =

-

where Ei is the number of data points in a subset of the CMD in
the observational data and Oi is the number of sampled data
points in the same subset from the sCMD. Since the number of
stars in the sCMD is ∼100 times larger than the number of
stars in the observed CMD, the uncertainty in the number
counts for simulated stars is negligible in comparison to the
uncertainty in the number counts for the observed stars. The

age determination is done in a series of steps, as discussed
below.

4.1. Voronoi Binning

To compare the sCMD with the observational CMD, a
method to partition the 2D CMD was required. The most
intuitive method will be dividing the CMD using a uniform
grid. However, the distribution of stars in the CMD is highly
biased. As a result, if the bins of a 2D CMD were defined by
evenly spaced grids, there would be a wide distribution of
expected data points in each bin, with some bins being empty
(either in the real, or simulated data). Therefore Equation (3)
could not be used for that bin. A better approach of a
nonuniform partition of the 2D CMD results in a roughly equal
number of points per bin is required.
To achieve this requirement, we use the adaptive Voronoi

binning method of Cappellari & Copin (2003). The algorithm
sets up initial bins based on a Voronoi Tessellation formed by
the simulated CMD. It iteratively combines bins nearby and
thus raises the S/N until it reaches the target. It satisfies three
requirements:

1. Topological requirement: there will be no data points that
are not in a bin, and no bins overlap,

2. Morphological requirement: the bin shape will be as
“compact” (or “round”) as possible so that two pixels
from two corners across the CMD will not be put into
one bin,

3. Uniformity requirement: the resulting bins will have a
similar number of data points as targeted. Therefore, all
bins can be considered as having equal statistical
significance.

This Voronoi binning is extremely computationally demand-
ing, and to save CPU time, 180, 000 points from each sCMD
are randomly selected to generate Voronoi bins. Each set of
Voronoi bins contains 800 bins with an average of 225 points
in each bin. Because the Voronoi binning method of Cappellari
& Copin (2003) was designed to deal with images and required
the pixel size to be the same on both axes, we rescaled the
magnitude of F606W-F814W before doing the Voronoi
binning. Because the linear transformation does not change
the topology of the data, the original data can be easily
recovered for further analysis. Different combinations of a
number of data points used and a number of Voronoi bins were
tested and the combination being used in this paper shows a
balance in computational time and accuracy. After the Voronoi
bin is determined, the entire sCMD will be binned and
contribute to the expectation in Equation (3).
Figure 4 shows an example of Voronoi binning (Cappellari

& Copin 2003). The CMD is divided into 800 different subsets
with different sizes. Most bins locate near the isochrone (red
line) and few bins locate outside where the density of simulated
data points (blue dots) is low.
For each set of Voronoi bins, the observational CMD is

shifted by a range of distance modulus and reddening, with the
ranges chosen to encompass the observed uncertainties in these
quantities. The distance to M92 is estimated using main
sequencing fitting using the two calibration stars which are
good HST photometry and parallaxes from Gaia EDR3
(Collaboration et al. 2021). Assuming a reddening of
EF606W−F814W= 0.02, the distance modulus of
(m−M)F606W= 14.80± 0.02 is found. Assuming a reddening
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of EF606W−F814W= 0.01, the main-sequence fitting yields a
distance modulus of (m−M)F606W= 14.75± 0.02. The evi-
dence favors the higher reddening value. An independent
distance estimate to M92 by VandenBerg et al. (2002) is
(m−M)V= 14.62 and EB−V= 0.023 based upon fitting
ground-based data to their isochrones (which assumes no
uncertainty in their isochrones). Cecco et al. (2010) found a

distance modulus of (m−M)V= 14.82 and EB−V= 0.025 from
fitting a different set of isochrones to a different ground-based
data set. Baumgardt & Vasiliev (2021) used a variety of
methods (including EDR3 parallaxes of cluster stars, and main-
sequence fitting) to estimate distance to M92 to be 8.48± 0.17
kpc which is (m−M)o= 14.64± 0.04. Assuming a reddening
of EB−V= 0.01, this corresponds to (m−M)F606W= 14.67.
Based upon the above, the distance modulus used in this paper
range from 14.62 to 14.82 with an increment of 0.01, and the
reddening range from 0.0 to 0.05 with an increment of 0.01.
For each combination of distance modulus and reddening, a χ2

value was calculated using Equation (3) for each of the 41 ages
in each MC isochrone set. The minimum χ2 was then selected
as the best estimate of the age, distance modulus, and
reddening for that particular MC isochrone.

4.2. Empirical χ2 Distribution

Lin et al. (2013) demonstrated that with large data sets, using
the p-value-based hypothesis testing method no longer
provides scientifically reliable results. Therefore, with the
M92 data, it is inappropriate to estimate the goodness of fit
using the standard χ2

fit probability function. To interpret χ2

values calculated in Section 4.1, a statistical method to
determine the empirical χ2 distribution is required. To do so,
we resample the observational data using the photometric error
and completeness from the artificial star test (Anderson et al.
2008). From the observed data, 10, 000 CMDs each with about
2 million data points are generated. Using the same method
described in Section 4.1, for each resampled CMD, a set of
Voronoi bins is determined and a χ2 value is calculated using
Equation (3). As a result, an empirical χ2 distribution is
determined and is used to compare with theoretical values.
Figure 5 shows the empirical χ2 distribution and the χ2

values determined when comparing the MC isochrones to the
observations. From the 20,000 sets of theoretical isochrones

Figure 4. An example of the result of the adaptive Voronoi binning method
(Cappellari & Copin 2003). The CMD is divided into 800 different subsets.
Blue dots are the 180,000 data points used to generate the Voronoi tessellation.
The red curve is the isochrones used to simulate the CMD.

Figure 5. The distribution of χ2 values found using Equation (3) when
comparing the sCMDs to the observed data. The empirical χ2 distribution is
shown in red, and the χ2 values found when fitting the M92 data to the MC
isochrones are shown as a function of age (scale shown on the right vertical
axis). The 1100 isochrones which are within 3σ of the mean of the empirical
distribution are shown as blue dots. The remaining isochrones have χ2 > 4100
and are shown as gray dots. Note that the x-axis is on a logarithmic scale.

Figure 6. The empirical χ2 distribution is shown in red, while the χ2 values
determined from fitting the MC isochrones to M92 are shown in blue (as a
function of age). Only the 1100 isochrones which are within 3σ of the mean of
the empirical distribution are shown in this figure. The x-axis is in linear scale.
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created in this study, 1100 isochrones are within 3σ of the
mean of the empirical distribution. The other 18,900 MC
isochrones yielded a very poor fit to the observed data. Figure 6
is a zoomed-in version of Figure 5 and shows 1100 isochrones
are within 3σ of the mean of the empirical distribution. Most of
these 1100 isochrones also provided a good fit to the calibration
star data. However, 66 of the isochrones provided relatively
poor fits to the calibration stars, leading to a calibration star
weighting value of less than 0.10. The shape of the empirical
χ2 distribution can be fit with a normal distribution
χ2= 3712± 39 and spans a very narrow region in χ2.

Figure 5 shows that the mean of the empirical χ2 distribution
can be several orders of magnitude smaller than the χ2 of
isochrones which poorly fits the data, which shows the
sensitivity of isochrones to MC parameters and the selectivity
of our age determination technique. Figures 7(a) and (b) show
examples of the sCMDs which are generated from those 1100
theoretical isochrones. Figure 7(a) has a χ2 value that is within
1σ of the mean of the empirical distribution and is considered a
“high probability fit” for M92, with a higher weight in the final
age estimation. Figure 7(b) has a χ2 value which is almost 3σ
greater than the mean of the empirical distribution and is

Figure 7. Top left (a): an example of a “high probability fit” for M92. The χ2 value is within 1σ of the mean of the empirical distribution. Blue dots are parts of the
sCMD and red dots are observed data for M92. Top Right (b): an example of “low probability fit” for M92. The χ2 value is almost 3σ greater than the mean of the
empirical distribution. Blue dots are parts of the sCMD and red dots are observed data for M92. Bottom left (c): an example of “high probability fit” for M92. The size
of the blue dots indicates the χ2 value for the Voronoi bin they located at. Bottom Right (d): an example of “low probability fit” for M92. The size of the blue dots
indicates the χ2 value for the Voronoi bin they located at.

7

The Astronomical Journal, 166:18 (12pp), 2023 July Ying et al.



considered a “low probability fit” for M92. Although it is taken
into consideration in the age estimation, it had a much lower
weight.

Figures 7(c) and (d) are the corresponding χ2 values for each
of the Voronoi bins of the two sCMDs shown in Figures 7(a)
and (b), respectively. Figures 7(c) and (d) show a difference
mostly in the main sequence and MSTO which favors the
sCMD shown in Figure 7(a).

4.3. Age Estimation

Figure 5 shows a clear bias toward χ2 values higher than the
mean of the empirical χ2 distribution. As a result, the χ2 values
smaller than the mean of the empirical χ2 distribution were
considered to have a “fit probability” of 1 while the “fit
probability” of χ2 values higher than the mean of the empirical
χ2 distribution was defined by the empirical χ2 distribution
where the cumulative distribution function is shown in
Figure 8.

The “fit probability” from the empirical χ2 distribution was
multiplied by the probability found in Section 3.1 to result in a
final weight for each of the 1100 isochrones. The age

distribution is shown in Figure 9. The weighted average of
the age of the 1100 isochrones is equal to 13.80 Gyr and the
weighted standard deviation is 0.75 Gyr. Thus, we measure the
absolute age of M92 to be 13.80± 0.75 Gyr. At 95%
confidence, we find the age to be in the range 12.4–15.4 Gyr.

5. Discussion

5.1. Distance Modulus and Reddening

As described in Section 4.1, we tested distance moduli
ranging from 14.62 to 14.82 (with an increment of 0.01) and
reddening ranging from 0.0 to 0.05 (with an increment of 0.01)
for each isochrone. The best-fitting age corresponding to each
distance modulus and age is shown in Figure 10. This figure
clearly (and unsurprisingly) indicates that the lower best-fit age
favors a higher distance modulus. The Pearson correlation
coefficient between the distance modulus and best-fit age
=− 0.780, indicating a strong negative correlation between the
distance modulus and the best-fit age. This result is expected: a
higher distance modulus will shift the theoretical isochrone in
the sCMD in the opposite direction of a shift in the sCMD due
to a lower isochrone age and will remain close to the true
distribution of stars observed in M92. Figure 10 also shows a
strong preference toward lower reddening values.
The weighted average of distance modulus is

μ= 14.72± 0.04 mag (D= 8.79± 0.16 kpc), which is similar
to Carretta et al. (2000), but lower than Cecco et al. (2010) and
slightly higher than Baumgardt & Vasiliev (2021), who found
μ= 14.66± 0.04. Our result has a strong preference toward a
low reddening: there are no well-fitting isochrones with E
(B− V )= 0.04 or 0.05. Since the distribution of reddening is
nonsymmetric, we select the central 68% of the distribution and
find that the reddening of M92 is in the range E

Figure 8. The cumulative distribution function of the χ2 values which are
higher than the mean of the empirical χ2 distribution while being within 3σ of
the mean of the empirical distribution.

Figure 9. The weighted distribution of ages corresponding to best-fit
isochrones (blue histogram). The orange curve represents the best-fit Gaussian
model, 13.80, 0.75( ). The 95% confidence interval of the estimated age is
12.4, 15.4( ) Gyr.

Figure 10. The best-fit age corresponding to each combination of distance
modulus and reddening. The annotation on each block represents the estimated
age (Gyr) from each combination. The color represents the occurrence of each
combination as a percentage of the total 1100 best-fit isochrones. 78 out of the
1100 best-fit isochrones choose distance modulus =14.71 and reddening
= 0.0 with an estimated age of 13.78 Gyr.
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(B− V )= 0.005–0.025 mag, with the distribution skewed to
smaller reddening values. This is within the range of previous
results as shown in Table 2.

Most of the studies on GC age dating (e.g., Carretta et al.
2000; Salaris & Weiss 2002) rely mainly on MSTO stars to
determine the age of a cluster. However, we include a wider
range of stars with F606W magnitude from 15.925 to 19.925.
As a result, our study includes not only MSTO stars but also a
subset of stars lying on the main sequence (MS) and giant
branch (GB). Although MS stars and GB stars are not very
sensitive to age, we include them in this study to constrain the
distance modulus and reddening of M92.

To test this idea, we applied the method described in
Section 3.2 and Section 4 to M92 data with only MSTO stars.
Due to computational limitations, we generated and fitted 2,

000 sets of sCMDs (1000 of which had been found to be good
fits in our previous analysis, and 1000 which were poor fits in
our previous analysis). By exclusively using MSTO stars, we
were able to determine the age of M92 as =13.88± 0.81 Gyr
with distance modulus μ= 14.68± 0.05 and reddening E
(B− V )= 0.005–0.045. These results, which exhibit a slightly
higher age and larger uncertainty compared to those in Table 2,
follow expectations: removing MS and GB stars provides more
freedom in selecting distance modulus and reddening, thus
partially offsetting the impact of the change in isochrone age.
In this case, we suggest that the wider range of best-fit
reddening values is the cause of the higher uncertainty in age
estimated and the slightly lower distance modulus value is
likely due to the strong negative correlation between it and
the age.

5.2. Monte Carlo Parameters

To determine if the observational data is best fit by a limited
range in our MC parameters, we compare the distribution of
input MC parameters (see Table 1) to the distribution of the
MC parameters in the set of 1100 best-fit isochrones. Most
parameters have similar distributions, while differences are
found for a few parameters. For example, the distribution of the
mixing length is shown in Figure 11. While a uniform
distribution from 1.0 to 2.5 was used as input, the best-fitting
isochrones show a very strong preference for mixing length
values between 1.5 and 2.0.
The value of solar-calibrated mixing length depends strongly

on the surface boundary conditions which are used in
constructing a stellar model. The correlation between the
mixing length and surface boundary condition for the 1100 sets
of best-fitting isochrones is shown in Figure 12. DSEP
determines the conditions at the surface of the star using
model atmospheres. The three options used in the MC were
PHOENIX model atmospheres (based upon a sophisticated
radiative transfer code; see Hauschildt et al. 1999) which has a
solar-calibrated mixing length of 1.7, the simple Eddington
gray model atmosphere which has a solar-calibrated mixing
length αMLT= 1.7, and the empirical solar Krishna Swamy
atmosphere which has solar-calibrated mixing length
αMLT= 2.0. Both the Gray and Phoenix models of atmosphere
prefer lower mixing length values while the Krishna Swamy
model of atmosphere prefers higher mixing length values when
fit to M92. The resulting double-peak feature is shown in
Figure 11.
To determine which MC parameters are most important for

determining the uncertainty in the age estimate for M92, the
error budget for each parameter was calculated. For all the MC
parameters in Table 1, along with distance modulus and
reddening, we performed a maximum likelihood estimation
using the weighted least square regression method, including
the calculation of the covariance matrix. The estimate of the
error contributed from each MC parameter is shown in
Figure 13. Parameters that contribute less than 0.05% are

Table 2

Source Age (Gyr) Distance Modulus μ (mag) Reddening E(B − V ) (mag)

This paper 13.80 ± 0.75 14.72 ± 0.04 0.005 ∼ 0.025
Carretta et al. (2000) 14.8 ± 2.5 14.74 ± 0.07 0.025 ± 0.005
VandenBerg et al. (2002) 13.5 ± 1.0 14.62 0.023
Cecco et al. (2010) 11.0 ± 1.5 14.82 0.025 ± 0.010

Figure 11. The distribution of mixing length as an input parameter (see
Table 1). The solar-calibrated mixing length used as the median set of MC
parameters is 1.75.

Figure 12. The distribution of mixing length from the 1100 sets of best-fit
isochrones for all three models of atmosphere used.
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combined as “others” and their contribution could be the result
of their correlation with other parameters. The distance
modulus is the dominant source of error.

Since the distance modulus parameter contributes most to the
error and might dominate other parameters the value of the
distance modulus and reddening was fixed, and the maximum
likelihood estimation was repeated without those two

parameters. The result shows a similar contribution from each
MC parameter that agree with Figure 13. The four MC
parameters which contribute the most to the error budget were
selected and their correlation with estimated age is shown in
Figure 14. There is no significant correlation between [Fe/H]
and age. This is because M92 has a relatively well-determined
[Fe/H] value, and since it is very metal poor, the uncertainty in

Figure 13. Contributions to the error of the age of M92 from each Monte Carlo parameter with distance modulus and reddening. The covariance and parameters that
contribute less than 0.05% (i.e., less than 1% of the total error budget) are combined as “others”. All the errors are converted to the percentage of the age of M92. The
black dotted line represents the combined age error of 5.43%.

Figure 14. Distribution (bottom panels) of the four parameters with >1% (or 140 Myr) contribution to the age error from Figure 13 and their correlation with the
measured age (top panels). Orange histograms represent the input distribution corresponding to Table 1 and blue histograms show the distribution of corresponding
MC parameters from the 1100 best-fit isochrones.
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the log-scaled [Fe/H] corresponds to a small change in the
mass fraction of heavy elements (Z). There is a negative
correlation between [α/Fe] and age, as best-fit isochrones
prefer a lower α abundance which leads to a higher estimated
age. The helium diffusion coefficient has an MC distribution
that is weighted toward a somewhat smaller value than was
found in Thoul et al. (1994) and displays an anticorrelation
with age.

6. Conclusion

We determine the age of M92 using a statistical approach
with Monte Carlo simulations which takes into account the
uncertainties in the theoretical stellar evolution models and
isochrones along with the observed uncertainties in the distance
modulus, reddening, and composition of M92. We created
20,000 sets of Monte Carlo input parameters with 20 variables,
which were used to generate 20,000 sets of theoretical
isochrones over an abundance range of −2.40� [Fe/
H]�−2.20 dex. We use DSEP to construct a set of isochrones
from 8 Gyr to 16 Gyr with 0.2 Gyr increment for each set of
input parameters. Each isochrone is calibrated using HIP 46120
and HIP 106924, two single, main-sequence stars with accurate
colors and absolute magnitudes from HST ACS photometry
and Gaia EDR3 parallaxes.

Each calibrated isochrone is used to generate an sCMD with
4,000,000 data points. Using the Voronoi Binning method, 800
bins are generated for each sCMD. HST ACS data for M92 is
fit by each set of Voronoi bins with a shift in distance modulus
ranging from 14.62 to 14.82 with an increment of 0.01, and
reddening ranged from 0.0 to 0.05 with an increment of 0.01. A
χ2 goodness-of-fit parameter was calculated (see Equation (3))
and compared to the empirical χ2 distribution generated using
HST ACS data combined with an artificial star test.

We find that 1100 isochrones from the 20,000 sets of
isochrones constructed were within 3σ of the mean of the
empirical distribution. The age of M92 is determined by the
mean age of the 1100 isochrones, weighted by the result from
single star calibrations and χ2 comparison. We find the age of
M92 to be 13.80± 0.75 Gyr, an error of 5.4%. The dominant
contributor to this uncertainty is the distance modulus, with the
metallicity, α enhancement, and treatment of helium diffusion
being the other sources of non-negligible error. The fact that
the distance to M92, and not stellar physics, dominates the
uncertainty points to the importance of precise and accurate
distance measurements for further improvements in absolute
age measurements. In future papers, we will present absolute
age measurements for additional metal-poor GCs and their
implications for our understanding of stellar physics and
cosmology.
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