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Abstract 
Two dimensional numerical simulations of flow around a rotationally oscillating circular cylinder 
were performed at Re = 1000. A wide range of forcing frequencies, fr, and three values of oscilla-
tion amplitudes, A, are considered. Different vortex shedding modes are observed for a fixed A at 
several values of fr, as well as for a fixed fr at different values of A. The 2C mode of vortex shedding 
was obtained in the present study. It is important to point out that this mode has not been ob-
served by other investigators for rotationally oscillating case. Also, it is verified that this mechan-
ism has great influence on the drag coefficient for high frequency values. Furthermore, the lift and 
pressure coefficients and the power spectra density are also analyzed. 
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1. Introduction 
It is widely known that the vibrations induced by vortex shedding process may have negative effects in engi-
neering systems, such as economic loss, damage of installations, and very frequently with environment-related 
consequences. Thus, although the fluid flow around circular cylinder is a classical problem in fluid dynamic due 
to its simple geometry, this is a reason for which in the last decades, a great deal of effort has been devoted to 
the development of numerical and computational procedures for dealing with the problem of vortex shedding 
phenomena. Comprehensive studies on this subject have been reported in books [1]-[3]. 
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In applications in which a circular cylinder under rotational oscillations is involved, the flow dynamic is dif-
ferent from those observed for stationary cylinders and has fascinated researchers for a long time [4]-[7]. In this 
case, two important parameters related to the prescribed motion are the forcing frequency and amplitude. Hence, 
the characterization of those parameters on the flow structure becomes of capital importance. 

Among some studies over rotationally oscillating cylinders, the so-named Hybrid Vortex Method and the 
Discrete Vortex Method have been proposed [8] [9] to investigate the process of vortex formation for a set of 
forcing frequency at Reynolds number 200 and 1000. Srinivas and Fujisawa [10] have used the unsteady form of 
Reynolds-averaged Navier-Stokes equations combined with the k-ε model of turbulence in order to determine the 
effects of several parameters on the flow structure over a rotationally oscillating circular cylinder for Reynolds in 
the range 2000 - 3.0 × 104. Ray and Christofides [11] studied a control system based on the open-loop simulations 
to reduce the effects of drag exerted on a circular cylinder subjected to rotational oscillations for Reynolds number 
in the range 100 - 500.  

The present study focuses on two-dimensional, incompressible viscous flow over a rotationally oscillating 
circular cylinder by using the Immersed Boundary Methodology (IBM) [12] in order to investigate the oscilla-
tion effect in the wake structure behind the cylinder, at different forcing frequencies and amplitudes. In addition, 
the influence of those parameters on the drag, lift and pressure coefficients and the power spectra density are al-
so analyzed. The simulations were carried out for flows at Re = 1000, amplitudes equals to 1, 2 and 3 and for 
various frequency ratios. The used methodology has showed a promising tool to simulate mobile bodies and in 
the present study, it captures the vortex shedding mode, named 2C, which has not been found for the case of ro-
tational oscillation by other researchers. 

2. General Aspects of the Numerical Methodology 
Mathematical Formulation for the Fluid and for the Fluid-Solid Interface 
One approach, which is not very common to solve the Navier-Stokes equations, is the so called velocity-vorticity 
formulation [13]. Flows can also be modeled by these equations in primitive variables [14]. In this section, the 
IBM combined with the Virtual Physical Model (VPM) [15] is summarized. For a viscous and incompressible flow, 
the IBM is based on the Navier-Stokes Equation (1) with an added force source term which acts on the fluid so that 
a particle perceives the existence of the solid interface. The continuity Equation (2) is also expressed. 
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where ρ  [kg/m3] and v [m2/s] are the specific mass and the kinematic viscosity, respectively; iu  [m/s] and p 
[N/m2] are, respectively, the i-th velocity component and the pressure; if  [N/m3] is the i-th component of the 
Eulerian force calculated as follows: 

( ) ( ) ( ) ( )2
ij k k k

k
D S= − ∆∑f x x x F x x .                           (3) 

In Equation (3) x  [m] and kx  [m] are the position vectors of a Eulerian and a Lagrangian point, respec-
tively, and S∆  [m] is the arc length centered in each Lagrangian point, which is evenly spaced as shown in 
Figure 1(a). ( )kF x  [N] is the Lagrangian force over the interface, and ijD  [m−2] is the distribution function 
[16]. 

At this point, the mixed Eulerian-Lagrangian formulation is retained, in which the Eulerian fixed grid de-
scribes the flow and the Lagrangian grid (which can be fixed or not) describes the immersed body. These mesh-
es are geometrically independent from each other, and this fact enables to study the flows around simple, com-
plex, movable and deformable geometries, without any remeshing process. These two formulations are coupled 
by a force field obtained at the Lagrangian points and then distributed over the Eulerian nodes in the body 
neighborhood. By this strategy, one can use a simple Cartesian grid and it is not necessary to move the grids. 
According to the VPM [15] the Lagrangian force field is calculated based on the momentum balance over a fluid  
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Figure 1. (a) Illustration of the distance between two Lag- 
rangian points; (b) particle of fluid on the interface.         

 
particle placed on the Lagrangian points. 

By considering a particle of fluid placed on the fluid-solid interface as illustrated in Figure 1(b), the Lagrangian 
force field is given as follows: 
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where aF  [N] is the acceleration force, iF  [N] is the inertial force, vF  [N] is the viscous force, and pF  [N] 
is the pressure force. After obtaining the force field given by Equation (4), its values are distributed over the 
Eulerian nodes by using Equation (3) to generate the Eulerian force field that models the immersed body. 

3. Numerical Method 
A number of mesh-free methods have been developed in recent years [17] to circumvent the polygonisation 
problem found in the classical numerical methods. Here, the momentum and continuity equations are numerically 
solved using the finite difference method through the fractional step scheme based on the pressure correction 
concept [18]. Given the initial velocity, the pressure and the force fields, an estimated velocity field is obtained. 
This velocity field is used to calculate the pressure correction, by solving a linear system of algebraic equations, 
for which the Modified Strongly Implicit Procedure (MSI) [19] is used. The Poisson equation gives the coupling 
between Equation (1) and Equation (2). Also, it provides values of pressure that allow that the velocities com-
ponents, obtained by using the Navier-Stokes equations, satisfy the mass conservation condition. The time dis-
cretization is done by the second order Runge-Kutta method [20]. The estimation of the velocity is calculated as: 

( )1 1
n n

n n n
i j j ni i i

i
i j j j i

u u uu u up f
t x x x x x

ν
ρ

+    ∂  ∂− ∂∂ ∂ = − − + + +   ∆ ∂ ∂ ∂ ∂ ∂      



                    (5) 

where iu  [m/s] is the estimated velocity component, t∆  [s] is the computational time step and n  is the 
substep index. The Poisson equation for pressure correction, 1np +′ , with the source term given by the divergent 
of the estimated velocity, is expressed by: 

1
2 1

n
np

t
ρ +

+′∇ =
∆
u∇                                      (6) 

and the velocity field is updated by solving the algebraic equation ( )( )1 1 1n n n
i i iu u t p xρ+ + +′= − ∆ ∂ ∂ . The pre-

vious pressure field np  and the correction pressure 1np +′  are used to calculate the updated values of the pres-
sure field, according to the expression 1 1n n np p p+ +′= + . 

4. Results and Discussions 
In this section, numerical simulations are performed to investigate the effects of the oscillating amplitude and 
forcing frequency on the flow structure of a circular cylinder. Figure 2(a) shows the computational domain which 
dimensions are 40d (Lu = 16.5d; Ld = 23.5d), in the streamwise and 15d (H) in the cross-stream direction, where 
d [m] is the cylinder diameter. The upper and lower boundaries are placed at 7.5d. The flow direction is from the  

x

y

kx

x

∆S(    )xk

Particle of fluid

Interface
→

→

→

(a)

x→k

y
(b)

x

x→
→
F(    ,t)k



A. R. da Silva et al. 
 

 
198 

 
Figure 2. (a) Computational domain with a single rotating-oscillating cylinder; (b) Illustration of the 
velocities components and the angular velocity.                                                

 
left to the right side of the domain and at the inlet, a uniform velocity profile ( )0,1 == υu  is imposed. A Neu-
mann boundary condition is used at the outlet and lateral boundaries, ( 0u x xυ∂ ∂ = ∂ ∂ = , 0u y yυ∂ ∂ = ∂ ∂ = ), 
respectively. For the pressure, the Neumann condition is used at the inlet ( )0p x∂ ∂ =  and the Dirichlet condition 
is used on the outlet and in the lateral boundaries ( )0p = . On the surface of the cylinder, no-slip boundary 
condition ( )0u υ= =  is virtually employed using the IBM method. The time spent for each numerical simulation 
was about one hour. Also, the numerical code used herein was developed in Visual C. 

Rotational oscillations at a prescribed set of frequency ratios and amplitudes are then imposed on the cy-
linder, where the tangential velocity over each Lagrangian point k, as shown in Figure 2(b), is defined as 

( )sin 2πtg cV R A f t Rω= = , where A [m] is the oscillating amplitude, cf  [Hz] is the forcing frequency, and t [s] 
is the physical time. 

The simulations are performed at Reynolds number 1000, with a time step chosen arbitrarily of 51 10 st −∆ = ×  
for the first iteration. After that, and during the first 100 iterations, the time step size is increased gradually until 

31 10 st −∆ = × , for which the geometry of the immersed cylinder is completely defined according to the immersed 
boundary methodology. The grid is composed by 400 × 125 points in x and y directions, respectively; the oscil-
lating amplitude, A, ranges from 1 to 3, while the frequency ratio, r c of f f= , ( of  is the stationary cylinder 
frequency) varies from 0 to 6. Many cases have been performed, however, for the purposes of this work, only 
selected cases are presented. 

4.1. Vortex Shedding Modes 
Figure 3 shows the vorticity contours for 1A =  for different frequency ratios. When 0rf =  (Figure 3(a)), it 
is seen that the vortex street is aligned and symmetric with respect to the central axis of the flow, showing two 
single vortices shedding per cycle. It is so called 2S mode of vortex shedding. In the frequency range 
0.2 0.6rf≤ ≤  (Figure 3(b)) to (Figure 3(d)) the patterns of vortex shedding seem to be similar, but the sizes 
appear uneven. When 0.9rf =  (Figure 3(e)), one observes that the process of vortex formation is completely 
different from those of previous cases, and at the distance 12.5d downstream of the cylinder, the 2S mode ap-
pears again. Nevertheless, the transversal spacing is greater than that of the stationary case shown in Figure 3(a). 
When 1.05rf =  (Figure 3(f)), the 2S mode reappear. Figure 3(g) shows the P + S mode in which one pair and 
a single vortex are shed in each cycle. As frequency ratio further increases, Figure 3(h) shows that the wake 
structure remains essentially unchanged and similar to the stationary case. The no synchronized flow with the 
cylinder movement resembles to stationary cylinder flow, with some additional instabilities, due to the cylinder 
movement [21]. In other words, the instability caused by cylinder oscillation is limited to a region near to the 
cylinder, while far from immersed body, the vortices redirect to form the stable Von Kármán Street. This im-
plies that occurs vortex-vortex interaction of the same sign, near to the cylinder, resulting in large scale vortices, 
whose values frequencies are close to the stationary cylinder frequency ( 0.23of = ). 

Figure 4 shows visualizations of the flow structure obtained for A = 2 in the same frequency range as shown 
at Figure 3. In the range 0.2 0.5rf≤ ≤ , one can note the presence of two vortex pairs shed per cycle, named as 
2P mode. When 0.6rf = , the wake vortices are similar to the classical Von Kármán Street shown in Figure 
3(a), named 2S mode. However, the longitudinal and transversal spaces are larger than those corresponding to 
the stationary condition. In the frequency range 0.9 1.2rf≤ ≤ , the evolution of the patterns remains unchanged, 
as shown from Figure 4(d) to Figure 4(f). In addition, it is observed that the transversal spacing is greater near  
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Figure 3. Vorticity contours for Re = 1000 and A = 1 and several values of fr.                      

 

 
Figure 4. Vorticity contours for Re = 1000 and A = 2 and several values of fr.                      

 
the cylinder and decreases away from it. When 2.5rf =  (Figure 4(g)) it can be noted the presence of two vor-
tex pairs in each side of the central line of the flow, resulting in a conical wake structure. When rf  is higher, it 
is observed that the vortex pattern is the same as the Kármán vortex street, indicating that for higher frequency 
values, the effect of rotational oscillation is confined to the flow near the cylinder, and its influence in the far 
field of the vortex structure is insignificant, as shown in Figure 4(h). 

The patterns of vortex shedding from the cylinder in the near and far wakes are shown in Figure 5, for A = 3 
and various values of rf . In Figure 5(a) one can note that the vortex street is not aligned with respect to the 
central axis of the flow and there are few vortex pairs in the wake. In addition, Figure 5(b) shows that the vortex  
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Figure 5. Vorticity contours for Re = 1000 and A = 3 and several values of fr.                      

 
formation process is completely different from that of the previous cases, in which a new mode of vortex shed-
ding, named as 2C mode, appears. This mode indicates that two vortex pairs of the same signal are shed per 
cycle. It is important to mention that this mode was not observed by the authors cited in the references for the 
case of circular cylinders subjected to rotational oscillations. However, it is noted in the case of a pivoted cy-
linder as reported in Williamson and Jauvtis [22]. 

In the frequency range 0.6 1.05rf≤ ≤ , one can note that the vortex wakes are found to be basically the same 
as those obtained for A = 2 in the same frequency range. The result shown in Figure 5(g) demonstrates a new 
pattern of vortex shedding for which the double wake near the cylinder, composed by vortex of the same signal 
in each row coalesce at the final double street to form a single wake. As frequency ratio further increases, the 
pattern of vortex shedding tends to be the same from the non-oscillating case. 

4.2. Time Histories of the Fluid Dynamics Coefficients and Power Spectra Density  
It is known that the vortex shedding process causes fluctuations in the dynamic coefficients and affects the be-
havior of the flow structure. Figure 6 presents the time histories of the lift ( lC ) and drag ( dC ) coefficients as 
well as the power spectra of the lift coefficients for A = 1. Figure 6(a) shows that the transient behavior takes 
approximately 40 dimensionless time units (nine cycles in the present case) before reaching the periodic regime. 
From Figure 6(b) to Figure 6(h) one can note that the steady regime is reached more quickly than in the pre-
vious case due to fact that the cylinder’s oscillations accelerate the vortex shedding process. As can be seen in 
Figure 6(b), there is no harmonic behavior as observed for the previous stationary case, and the lift curve clear-
ly resembles the shape of a signal with frequency cf  that is beaten by another signal at of , indicating that 
there is a significant interaction between these two frequencies. Also, from Figure 6(b) to Figure 6(d) it is veri-
fied that the amplitudes of the lift coefficient are greater than that for the stationary case. Moreover, it is ob-
served a transition between the two vortex shedding modes when the frequency ratio is increased from 

1.05rf =  (Figure 6(f)) (2S mode) to 2.5rf =  (Figure 6(g)) (P + S mode), but the oscillation amplitudes for 
the P + S mode are larger than that those corresponding to the 2S mode. This means that the change on the vor-
tex modes has a strong influence on the time histories of the dynamics coefficients. As frequency further in-
creases, the oscillation amplitudes tend to be the same of the stationary case, as can be noted by the comparison 
between Figure 6(h) and Figure 6(a).  

When 0rf = , Figure 6(a) shows that the lift spectrum for the stationary case is composed by one peak at the 
dimensionless frequency 0.23oSt = . When 0.2rf =  there are two prominent frequencies in the lift spectrum  
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(g) 

 
(h) 

Figure 6. Time histories of the dynamic coefficients and power spectra for A = 
1: (a) fr = 0; (b) fr = 0.2; (c) fr = 0.5; (d) fr = 0.6; (e) fr = 0.9; (f) fr = 1.05; (g) fr 
= 2.5; and (h) fr = 6.0.                                                

 
shown in Figure 6(b). They correspond to the vortex shedding frequency 2 0.22St = , which is closed to oSt  
and the forcing frequency 1St . As the frequency ratio further increases from 0.2rf =  to 0.5rf =  (Figure 
6(c)) shows two frequencies in the power spectrum, but there is a discernible drift of the vortex shedding fre-
quency, 2St , towards the forcing frequency, 1St . The energy level of 2St  (secondary peak) is reduced and the 
frequency value is 83% of 0.23oSt = .  

When 0.6 1.05rf≤ ≤ , the frequency of vortex shedding, 2St , locks-in to the forcing frequency, 1St , result-
ing in only one dominating component in the lift frequency spectrum, as shown from Figure 6(d) to Figure 6(f). 
During the lock-in regime the wake structure is synchronized with the oscillatory motion of the cylinder and the 
interaction becomes strong. Also, it is observed that as the frequency ratio increases, the amplitudes of lift coef-
ficient curve decrease and then increase again outside the lock-in regime. Figure 6(d) shows an increase in 
energy level, compared with the previous, 0.5rf = , followed by a reduction when the frequency ratio is in-
creased, as shown in Figure 6(e) and Figure 6(f). Consequently, this increase and decrease in the frequency 
peak also affect the mean drag coefficient that reaches a maximum value at 0.8rf =  ( 1.97dC = ). As frequen-
cy ratio further increases, the lock-in regime no longer exists as shown in Figure 6(g) and Figure 6(h). Also, it 
is interesting to note that when 2.5rf =  (corresponding to the P + S mode), the smallest magnitude of the 
energy peak corresponds to 1St . On the other hand, as rf  further increases, the magnitude of 2St  tends to be 
constant, indicating that the large-scale Kármán vortex street has reached some stable state, corresponding to 
stationary condition. It is worth mentioning that 2St  is equal to the stationary case 0.23oSt = , as shown in 
Figure 6(h). 

Figure 7 shows the time evolution of the dynamics coefficients as well as the power spectra density of the lift 
coefficient for 2A = . When 0.2rf = , the drag and lift coefficients present behaviors similar to those shown in 
Figure 6(b). Given that each peak (both positive and negative) in the lift curve is related to the shedding of one 
vortex, then Figure 7(a) means that there should be eighteen vortices in the wake when the dimensionless time 
reaches 200. By regarding the lift curve, it is also interesting to observe a reduction in the interaction between 
the two frequencies, from the comparison between Figure 7(a) and Figure 6(b). In the range 0.9 1.2rf≤ ≤ , 
from Figure 7(d) to Figure 7(f) it is verified that the amplitudes decrease when compared with the previous 
frequency ratio. When 2.5rf = , the fluctuation of the lift coefficient increases again due to the change of the 
vortex shedding mode. For higher frequency ratios, the behavior is similar to that observed to 1A = , in such a 
way that the flow tends to the same vortex shedding mode as the one observed for the stationary cylinder. As 
oscillation amplitude increases, the lock-in regime increases ( 0.5 1.2rf≤ ≤ ) as shown in Figure 7. The ampli-
tude peak before the lock-in regime for 1St  ( 0.2rf = ), are larger than those observed in Figure 6(b) and Fig-
ure 6(c) for 1A = . As rf  increases from 0.5rf =  to 1.2rf = , it is observed a reduction in the magnitude  
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(g) 

 
(h) 

Figure 7. Time histories of the dynamic coefficients and power spectra for A = 2: 
(a) fr = 0.2; (b) fr = 0.5; (c) fr = 0.6; (d) fr = 0.9; (e) fr = 1.05; (f) fr = 1.2; (g) fr = 
2.5; and (h) fr = 6.0.                                                     

 
of the peak, as shown in Figure 7(b) to Figure 7(f). During the lock-in regime, the fluctuation amplitude of lift 
coefficient decreases, as the frequency ratio increases, and increases again outside the lock-in range. It is inter-
esting to point out that in the lock-in regime, for the cases for which has occurred reduction in the magnitude of 
the energy peak, the wake structure has greater transversal space near the cylinder, while, far away from the cy-
linder, it decreases (see Figure 4(d) to Figure 4(f)). When 2.5rf = , two spectral peaks can be seen again in 
the lift spectrum, indicating that the lock-in regime no longer exists. The energy peak associated to 2St  is 
greater than 1St  and its frequency value ( 2 0.19St = ) is smaller than that of the non-oscillating case. As rf  
further increases, it can be seen in Figure 7(h) that the wake configuration tends to be the same of classical Von 
Kármán Street corresponding to 2 0.23St = . 

Figure 8 shows the time histories of the lift and drag coefficients and the power spectra of the lift coefficient 
for 3A = . When 0.2rf = , still there are “kink” on the lift curve. This kink phenomenon occurs due to the fact 
that as the oscillation amplitude increases, a main vortex is formed and shed on one side of the cylinder at the 
same time as an adjacent secondary vortex having opposite sign is formed and annihilated later by the main vor-
tex. When 0.6rf = , it can be observed a reduction in the amplitude of the lift curve when compared to the pre-
vious frequency ratios, 0.2rf =  and 5.0=rf . In the frequency range 0.6 2.5rf≤ ≤  (Figure 8(c) to Figure 
8(g)) it is observed that as the frequency ratio increases, the fluctuation amplitude of the lift coefficient is re-
duced. This reduction is due to the vortex wake structure as shown from Figure 5(c) to Figure 5(g), where it 
was verified the 2S mode for 0.6rf = , the elliptical wake for 0.7 1.05rf≤ ≤ , and a wake with two rows of 
vortices near the cylinder for 5.2=rf . At higher frequency ratios, the amplitude of the lift curves approaches 
to that observed for the stationary case.  

For 3=A , the lock-in regime is located at the interval 5.22.0 ≤≤ rf , for which the maximum mean drag 
coefficient is obtained at 6.0=rf  ( 93.2=dC ). Also, as the frequency ratio increases from 2.0=rf  to 

5.0=rf , the energy level increases. After that, the energy level reduces from 5.0=rf  to 5.2=rf . Finally, 
another aspect to be pointed out is that as the oscillation amplitude increases, the frequency range in which the 
lock-in regime occurs is enlarged: [ 05.16.0 − ] for 1=A ; [ 2.15.0 − ] for 2=A  and [ 5.22.0 − ] for 3=A . 

Another relevant aspect to be investigated is the energy level of the power spectra, as shown in Figure 9. The 
most immediate conclusion is that as the frequency ratio increases, the energy level increases and after decreases 
keeping approximately unchanged for all analyzed amplitudes, for frequency ratio equal to 2. Also, higher 
energy levels are obtained in the lock-in regime for all amplitudes. Moreover, as the oscillating amplitude in-
crease the energy level in the lower boundary of the lock-in regime also increase. 
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Figure 8. Time histories of the dynamic coefficients and power spectra for A 
= 3: (a) fr = 0.2; (b) fr = 0.5; (c) fr = 0.6; (d) fr = 0.7; (e) fr = 0.9; (f) fr = 1.05; 
(g) fr = 2.5; and (h) fr = 6.0.                                                     

 

 
Figure 9. Energy level of St1 in function of frequency ratio fr for A = 1, A = 2 
and A = 3.                                                           

4.3. Comparison with other Previous Studies 
It is desirable to compare the present results with some numerical results from previous studies reported by other 
investigators. Figure 10 (left) shows a plot of the mean drag coefficient as a function of the frequency ratio ob-
tained for the present numerical simulations and the literature results [4] [9], for 3A =  at Reynolds number 
1000. It can be noted that all the results indicate a sharp peak of the dC  curve at low frequency ratios, and 
small values of dC  at high frequencies ratio This behavior has been also observed for other Reynolds number 
and oscillation amplitudes [10] [23]. It can be verified that the present computational results are in good agree-
ment with the results by references for low frequency ratios, but overestimates dC  in high frequencies, which 
may reflect the assumptions of the numerical methodology used in the present calculations. It is important to 
mention that according to Srinivas and Fujisawa [10], there is a great discrepancy in the literature concerning the 
behavior of the mean drag coefficient in the Reynolds numbers range [1000-3000]. 

Another aspect to be pointed out is that the maximum mean drag coefficients were obtained for the 2S mode 
for all the analyzed amplitudes, in which the longitudinal and transversal spacing for the oscillating cylinder is 
greater than those of the stationary cylinder. This fact can be observed by analyzing the vorticity contours cor-
responding to the maximum dC , as shown in Figure 11, where a is the transversal spacing and b indicates the 
longitudinal spacing. It should be noted that as the oscillating amplitude increases, b increases and a takes a 
constant value. This enables to conclude that the mean drag coefficient is more strongly dependent on the longi-
tudinal spacing than the transversal spacing. 
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Figure 10. (left) Mean drag coefficient in function of fr for A = 3 and (right) in 
function of oscillation amplitude. Re = 1000.                                       

 

 
Figure 11. Presentation of longitudinal and transversal spacing between the vortices.            

4.4. Pressure Distribution 
The mechanism of increase and reduction of dC  for low and high frequency ratios, respectively, can also be 
analyzed through the mean pressure distribution along the surface of the stationary and oscillating cylinders. 
Figure 12(a) shows an illustrative scheme of the angleθ  along the surface of the immersed body, which is de-
fined as zero at the downstream point of the cylinder.  

The pressure coefficient is obtained by the relation ( ) ( )20.5p kC p p Uρ∞ ∞= − , where kp  is the static pres-
sure in the Lagrangian points, ∞p  is the static pressure of the undisturbed flow at the inlet of the domain, and 
( 25.0 ∞Uρ ) is the dynamic pressure taken as the reference. Figure 12(b) and Figure 12(c) show the distribution 
of the mean pressure coefficient pC  for all the analyzed amplitudes and two frequency ratios. It can be noted 
that pC  at the maximum local pressure ( 0θ = ° ) is almost unit, as expected. Also, it can be verified how the 
mean pressure coefficient downstream of the cylinder ( °=180θ ) varies with the cylinder oscillation amplitude. 
When 6.0=rf , it can be observed that for A = 1 the mean pressure coefficient downstream of the cylinder 
( °=180θ ) presents a small decrease (in absolute values) when compared with the stationary cylinder. Never-
theless, it is noted a considerable increase in the mean pressure coefficient when the oscillation amplitude in-
creases from A = 1 to A = 2. As amplitude further increases from A = 2 to A = 3, pC  tends to be the same for

°=180θ . When 5.1=rf , it can be observed a little decrease in pC  at °=180θ  for A = 1, while for A = 2, 
a greater reduction in pC  value is observed from 84.2−=pC  (fr = 0.6) to 0.25pC = −  (fr = 1.5). 

By comparing Figure 12(b) and Figure 12(c) for A = 3, it can be noted an inversion of the mean pressure 
coefficient signal, from 2.8pC = −  (fr = 0.6) to 0.04pC =  (fr = 1.5). Thus, the forcing frequency plays an 
important role on the pressure distribution, enabling to verify that for low frequency ratios, the flow downstream 
of the cylinder is very dissipative due to viscous effects. This effect contributes to reduce the pressure and con-
sequently to increase the drag over the cylinder. However, at high frequency ratios, the wake dynamic down-
stream of the cylinder is not so strong when compared to the corresponding ones obtained for low frequencies, 
which contribute to increase the pressure and, consequently, to reduce the drag coefficient.  

5. Concluding Remarks 
The numerical simulations of the flow over the rotationally-oscillating circular cylinder by using the Immersed  
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Figure 12. Illustrative scheme of the angle θ along the cylinder surface 
(a) and the distribution of the mean pressure coefficient in function of 
the angle (b) and (c).                                             

 
Boundary Method combined with the Virtual Physical Model have been addressed. Given the strong influence 
of the oscillation amplitude and frequency on the flow around the cylinder, the influence of these parameters on 
the lift and drag coefficients, on the pressure distribution, as well as on the vortex shedding frequency has been 
investigated. 

The simulations shown that the flow structure in the near wake was strongly dependent on the oscillation fre-
quency. Also, it observed different vortex shedding modes (“2C”, “2P”, “2S”, and “P + S”) for a fixed oscilla-
tion amplitude at different values of frequency ratios, and also for a fixed frequency ratio at different values of 
oscillation amplitudes, in addition to the conical wakes. Another important feature of the numerical methodolo-
gy is its capability to identify the 2C mode of the vortex shedding, which has not been observed by other inves-
tigators for the case of rotationally-oscillating cylinders.  

The study reported herein enabled to observe a number of important features that should be mentioned: 
• The range of resonance increases as the oscillation amplitude increases; 
• For high frequency ratios, the wake structure configuration is similar to the classical Von Kármán Street, and 
the values of the vortex shedding frequency take the values corresponding to the stationary cylinder case; 
• The pressure distribution over the cylinder is influenced by forcing frequency, and consequently affects the 
drag over the cylinder. It implies that drag control can be done by the rotational oscillations mechanism;  
• The Immersed Boundary Method combined with the Virtual Physical Model can be easily employed in the 
case of moving bodies, being a very useful tool to simulate problems involving prescribed motion. 
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