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1. Introduction

C ertainly, the Lyapunov direct method has been, for more than 100 years, the efficient tool for the study of
stability properties of ordinary, functional, partial differential and difference equations. Nevertheless,

the application of this method to problems of stability in differential and difference equations with delay has
encountered serious difficulties if the delay is unbounded or if the equation has unbounded terms ([1–16]).
Recently, Burton, Furumochi, Zhang, Raffoul, Islam, Yankson and others have noticed that some of these
difficulties vanish or might be overcome by means of fixed point theory (see [17–32]). The fixed point theory
does not only solve the problem on stability but has a significant advantage over Lyapunov’s direct method.
The conditions of the former are often averages but those of the latter are usually pointwise (see [1]).

In this paper, we consider the following mixed type neutral difference equation

∆x (t) + a (t)∆x (τ (t)) +
k

∑
i=1

bi (t) x (σi (t)) +
l

∑
j=1

cj (t) x
(
τj (t)

)
= 0, (1)

with an assumed initial condition

x(t) = ψ(t) for t ∈ [m (t0) , t0] ∩Z, (2)

where ψ : [m (t0) , t0] ∩Z→ R is a bounded sequence and for t0 ≥ 0

m (t0) = inf{σi(s) : s ≥ t0, i = 1, ...k}.

Here ∆ denotes the forward difference operator ∆x(t) = x(t + 1)− x(t) for any sequence {x (t) , t ∈ Z+}.
For more details on the calculus of difference equations, we refer the reader to [11] and [24]. Throughout this
paper, we assume that a, bi and cj are bounded sequences, and τ, σi and τj are non-negative sequences such
that

τ (t) → ∞ as t→ ∞, τ (t) ≥ t, t ≥ t0,

σi (t) → ∞ as t→ ∞, i = 1, ..., k, σi (t) ≤ t, t ≥ t0,

τj (t) → ∞ as t→ ∞, j = 1, ..., l, τj (t) ≥ t, t ≥ t0.
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Equation (1) can be viewed as a discrete analogue of the mixed type neutral differential equation;

x′ (t) + a (t) x′ (τ (t)) +
k

∑
i=1

bi (t) x (σi (t)) +
l

∑
j=1

cj (t) x
(
τj (t)

)
= 0. (3)

In [25], Bicer investigated (3) and obtained the asymptotic behavior of solutions. Our purpose here is
to show the asymptotic behavior of solutions for (1). An asymptotic stability theorem with a necessary and
sufficient condition is proved by using the contraction mapping theorem. For details on contraction mapping
principle we refer the reader to [33] . An example is given to illustrate our main results.

2. Main results

Theorem 1. Let a, bi and cj non positive sequences. Assume that the following inequality has a nonnegative solution

−a (t) λ (τ (t))
τ(t)−1

∏
u=t

(1− λ (u))−
k

∑
i=1

bi (t)
σi(t)−1

∏
u=t

(1− λ (u))−
l

∑
j=1

cj (t)
τj(t)−1

∏
u=t

(1− λ (u)) ≤ λ (t) , t ≥ t0,

with λ (t) < 1. Then, (1) has a positive solution.

Proof. Let λ0 be a nonnegative solution of (1). Set

λn (t) =



λn−1 (t) , if m (t0) ≤ t ≤ t0,

−a (t) λn−1 (τ (t))
τ(t)−1

∏
u=t

(1− λn−1 (u))−
k
∑

i=1
bi (t)

σi(t)−1
∏

u=t
(1− λn−1 (u))

−
l

∑
j=1

cj (t)
τj(t)−1

∏
u=t

(1− λn−1 (u)) , t ≥ t0,

for n = 1, 2, .... Then, by (1), we get

λ0 (t) ≥ −a (t) λ0 (τ (t))
τ(t)−1

∏
u=t

(1− λ0 (u))−
k

∑
i=1

bi (t)
σi(t)−1

∏
u=t

(1− λ0 (u))−
l

∑
j=1

cj (t)
τj(t)−1

∏
u=t

(1− λ0 (u)) = λ1 (t) .

Then, we obtain λ0(t) ≥ λ1(t) ≥ ... ≥ λn(t) ≥ 0. So, there exists a pointwise limit λ(t) = lim
n→∞

λn(t). So,

from the Lebesgue convergence theorem, we obtain

λ (t) = −a (t) λ (τ (t))
τ(t)−1

∏
u=t

(1− λ (u))−
k

∑
i=1

bi (t)
σi(t)−1

∏
u=t

(1− λ (u))−
l

∑
j=1

cj (t)
τj(t)−1

∏
u=t

(1− λ (u)) .

Hence,

x (t) =


λ (t) , if m (t0) ≤ t ≤ t0,

λ (t0)
t−1
∏

u=t0

(1− λ (u)) , t ≥ t0,

is a positive solution of (1).

Theorem 2. Let a, bi and cj be non positive sequences and let ∆a(t) > 0, a (t0) 6= −∞. If

∞

∑
u=t0

l

∑
j=1

cj (u) = −∞,

and x is a eventually positive solution of (1), then x(t)→ ∞ as t→ ∞.
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Proof. Assume that x(t) > 0 for t ≥ T1. Choose T ≥ T1 such that T1 ≤ inf{σi(s) : s ≥ T, i = 1, ..., k}. Then
∆x(t) + a(t)∆x(τ(t)) ≥ 0, for t ≥ T,

∆x (t) + a (t)∆x (τ (t)) = −
k

∑
i=1

bi (t) x (σi (t))−
l

∑
j=1

cj (t) x
(
τj (t)

)
,

and
∆ [a(t)x (τ (t))] = a (t)∆x (τ (t)) + ∆a (t) x (τ (t + 1)) ,

that is

∆ [x (t) + a(t)x (τ (t))]− ∆a (t) x (τ (t + 1)) ≥ −
l

∑
j=1

cj (t) x
(
τj (t)

)
.

From this, we can write

∆ [x (t) + a(t)x (τ (t))] ≥ −
l

∑
j=1

cj (t) x
(
τj (t)

)
,

so

∆ [x (t) + a(t)x (τ (t))] ≥ −x (T)
l

∑
j=1

cj (t) ,

which implies

x (t) + a(t)x (τ (t)) ≥ a(t0)x (τ (t0))− x (T)
t−1

∑
u=t0

l

∑
j=1

cj (u) .

So, we get

x (t) ≥ a(t0)x (τ (t0))− x (T)
t−1

∑
u=t0

l

∑
j=1

cj (u) .

Then x(t)→ ∞ as t→ ∞.

Theorem 3. Let a(t) > 0, bi and cj be nonnegative sequences and let ∆a(t) < 0, a (t0) 6= ∞. If

∞

∑
u=t0

l

∑
j=1

cj (u) = ∞,

and x is a eventually positive solution of (1), then x(t)→ 0 as t→ ∞.

Proof. For t ≥ T1, since x(t) > 0 we Choose T ≥ T1 such that T1 ≤ inf{σi(s) : s ≥ T, i = 1, ..., k}. Then
∆x(t) + a(t)∆x(τ(t)) ≤ 0, for t ≥ T, and

∆x (t) + a (t)∆x (τ (t)) ≤ −
l

∑
j=1

cj (t) x
(
τj (t)

)
,

that is

∆ [x (t) + a(t)x (τ (t))]− ∆a (t) x (τ (t + 1)) ≤ −
l

∑
j=1

cj (t) x
(
τj (t)

)
.

From this, we can write

∆ [x (t) + a(t)x (τ (t))] ≤ −
l

∑
j=1

cj (t) x
(
τj (t)

)
,
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so

∆ [x (t) + a(t)x (τ (t))] ≤ −x (T)
l

∑
j=1

cj (t) ,

which implies

x (t) + a(t)x (τ (t)) ≤ a(t0)x (τ (t0))− x (T)
t−1

∑
u=t0

l

∑
j=1

cj (u) .

So, we get

x (t) ≤ a(t0)x (τ (t0))− x (T)
t−1

∑
u=t0

l

∑
j=1

cj (u) .

Since x(t) > 0, we get a contradiction.Then x(t)→ 0 as t→ ∞.

Now, we investigate the asymptotic behavior of solutions of (1), free of the sign of the coefficients. During
the process of inverting (1), an summation by parts will have to performed on the term involving ∆x(τ(t)).

Lemma 1. A sequence x is a solution of (1)–(2) if and only if

x (t) = (x (t0) + a (t0 − 1) x (τ (t0)))
t−1

∏
s=t0

(1− B(s))− a(t− 1)x(τ (t))

+
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) h (r) x (τ (r))−
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) B (r) x (r + 1)

−
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s))
k

∑
i=1

bi (r) x (σi (r))−
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s))
l

∑
j=1

cj (r) x
(
τj (r)

)
, (4)

for t ≥ t0, where

B (t) =
k

∑
i=1

bi (t) +
l

∑
j=1

cj (t) , 0 < B (t) < 1,

and
h (t) = a (t)− a (t− 1) (1− B(t)) . (5)

Proof. Since

x
(
τj (t)

)
= x (t + 1) +

τj(t)−1

∑
u=t+1

∆x (u) , and x (σi (t)) = x (t + 1) +
σi(t)−1

∑
u=t+1

∆x (u) .

We can rewrite (1) as

∆x (t) = −a (t)∆x (τ (t))−
k

∑
i=1

bi (t)
σi(t)−1

∑
u=t+1

∆x (u)−
l

∑
j=1

cj (t)
τj(t)−1

∑
u=t+1

∆x (u)− B (t) x (t + 1) . (6)

Multiplying both sides of (6) with
t

∏
s=t0

(1− B(s))−1, by summing from t0 to t− 1, we obtain

t−1

∑
r=t0

∆

[
r−1

∏
s=t0

(1− B(s))−1x (r)

]
= −

t−1

∑
r=t0

r

∏
s=t0

(1− B(s))−1a (r)∆x (τ (r))−
t−1

∑
r=t0

r

∏
s=t0

(1− B(s))−1B (r) x (r + 1)

−
t−1

∑
r=t0

r

∏
s=t0

(1− B(s))−1
k

∑
i=1

bi (t)
σi(r)−1

∑
u=t+1

∆x (u)−
t−1

∑
r=t0

r

∏
s=t0

(1− B(s))−1
l

∑
j=1

cj (t)
τj(r)

∑
u=t+1

∆x (u) .
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By dividing both sides of the above expression by
t−1
∏

s=t0

(1− B(s))−1 we get

x (t) = x (t0)
t−1

∏
s=t0

(1− B(s))−
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s))a (r)∆x (τ (r))−
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) B (r) x (r + 1)

−
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s))
k

∑
i=1

bi (r)
σi(r)−1

∑
u=t+1

∆x (u)−
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s))
l

∑
j=1

cj (r)
τj(r)−1

∑
u=t+1

∆x (u) . (7)

By performing an summation by parts, we get

t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s))a (r)∆x (τ (r))

= a (t− 1) x (τ (t))− a (t0 − 1) x (τ (t0))
t−1

∏
s=t0

(1− B(s))−
t−1

∑
r=t0

∆

[
t−1

∏
s=r

(1− B(s))a (r− 1)

]
x (τ (r)) . (8)

But,

t−1

∑
r=t0

∆

[
t−1

∏
s=r

(1− B(s))a (r− 1)

]
x (τ (r)) =

t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) [a(r)− a (r− 1) (1− B(r))] x (τ (r))

=
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s))h (r) x (τ (r)) ,

where h is given by (5). We obtain (4) by replacing (8) into (7). Since each step is reversible, the converse
follows easily. This completes the proof.

Theorem 4. Assume that 0 < B (t) < 1 and the following conditions hold

t−1

∏
s=t0

(1− B(s))→ 0 as t→ ∞, (9)

and

|a(t− 1)|+
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) |h (r)|+
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) |B (r)|

+
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s))
k

∑
i=1
|bi (r)|+

t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s))
l

∑
j=1

∣∣cj (r)
∣∣ ≤ β < 1. (10)

Then for each initial condition (2), every solution of (1) converges to zero.

Proof. Let x ∈ C([m (t0) , ∞) ∩ Z) is the space of all bounded sequences and M = {x ∈ C([m (t0) , ∞) ∩
Z) : x(t) → 0 as t → ∞}, be a closed subspace. Then (M, ‖.‖) is a Banach space with the norm ‖x‖ =

supt≥m(t0)
|x (t)| .

Define the operator φ : M→ M by

(φx) (t) =



ψ (t) , if m (t0) ≤ t ≤ t0,

(x (t0) + a (t0 − 1) x (τ (t0)))
t−1
∏

s=t0

(1− B(s))− a(t− 1)x(τ (t))

+
t−1
∑

r=t0

t−1
∏

s=r+1
(1− B(s)) h (r) x (τ (r))−

t−1
∑

r=t0

t−1
∏

s=r+1
(1− B(s)) B (r) x (r + 1)

−
t−1
∑

r=t0

t−1
∏

s=r+1
(1− B(s))

k
∑

i=1
bi (r) x (σi (r))−

t−1
∑

r=t0

t−1
∏

s=r+1
(1− B(s))

l
∑

j=1
cj (r) x

(
τj (r)

)
, t ≥ t0.

(11)
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It is clear that for x ∈ M, φx is bounded. Now, we will show that φ is a contraction. Let x and y be two
bounded sequences on [m (t0) , ∞) ∩Z and satisfying same initial condition (2). Then for t ≥ t0, we get

|(φx) (t)− (φy) (t)| ≤ |a(t− 1)| |x (τ (t))− y (τ (t))|+
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) |h (r)| |x (τ (r))− y (τ (r))|

+
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) |x (r + 1)− y (r + 1)| |B (r)|+
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s))
k

∑
i=1
|bi (r)| |x (σi (r))− y (σi (r))|

+
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s))
l

∑
j=1

∣∣cj (r)
∣∣ ∣∣x (τj (r)

)
− y

(
τj (r)

)∣∣ ≤ β ‖x− y‖ .

Thus, the operator φ has a unique fixed point in M, which solves ( 1). Now, we will show that, (φx) (t)→ 0
as t→ ∞. Actually, for x ∈ M, we have

|(φx) (t)| ≤ |(x (t0) + a (t0 − 1) x (τ (t0)))|
t−1

∏
s=t0

(1− B(s)) + |a(t− 1)| |x (τ (t))|

+
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) |h (r)| |x (τ (r))|+
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) |x (r + 1)| |B (r)|

+
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s))
k

∑
i=1
|bi (r)| |x (σi (r))|+

t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s))
l

∑
j=1

∣∣cj (r)
∣∣ ∣∣x (τj (r)

)∣∣ .

(12)

Note that by (9),

|(x (t0) + a (t0 − 1) x (τ (t0)))|
t−1

∏
s=t0

(1− B(s))→ 0 as t→ ∞.

Moreover, since x(t) → 0 as t → ∞, for each ε > 0, there exists T1 > t0 such that u ≥ T1 implies that
|x(τ(u))| < ε

2 . Thus, for t ≥ T1, the third term I3 in (12) satisfies

I3 =
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) |h (r)| |x (τ (r))|

≤
T1−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) |h (r)| |x (τ (r))|+
t−1

∑
r=T1

t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) |h (r)| |x (τ (r))|

≤
T1−1

∑
r=t0

t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) |h (r)| |x (τ (r))|+ ε

2

t−1

∑
r=T1

t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) |h (r)|

≤ ε

2
+ β

ε

2
≤ ε.

Thus I3 → 0 as t → ∞. By a similar technique, we can prove that the rest of terms in (12) tend zero as
t→ ∞. Therefore (φx)(t)→ 0 as t→ ∞. This completes the proof.

Theorem 5. Suppose that 0 < B (t) < 1. If all solutions of (1) converge to zero, then (9) holds.

Proof. Suppose that (9) does not holds. That is,

lim
t→∞

t−1

∏
s=t0

(1− B(s)) = δ 6= 0. (13)
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So, from (13), we can write δ 6= 0. Then, there exists a sequence {tn} approaching ∞, such that

tn−1

∏
s=t0

(1− B(s))→ δ as n→ ∞.

For x(t0) 6= 0, let x be a solution. Then,

lim
n→∞

|(x (t0) + a (t0 − 1) x (τ (t0)))|
tn−1

∏
s=t0

(1− B(s)) = |(x (t0) + a (t0 − 1) x (τ (t0)))| δ 6= 0. (14)

From Lemma 1, x(tn) satisfies (4). On the other hand, we know that

lim
n→∞

[
tn−1

∑
r=t0

tn−1

∏
s=r+1

(1− B(s)) |h (r)| |x (τ (r))| − |a(tn − 1)| |x (τ (tn))|

+
tn−1

∑
r=t0

tn−1

∏
s=r+1

(1− B(s)) |x (r + 1)| |B (r)|+
tn−1

∑
r=t0

tn−1

∏
s=r+1

(1− B(s))
k

∑
i=1
|bi (r)| |x (σi (r))|

+
tn−1

∑
r=t0

tn−1

∏
s=r+1

(1− B(s))
l

∑
j=1

∣∣cj (r)
∣∣ ∣∣x (τj (r)

)∣∣] = 0. (15)

Since all solutions tend zero, from (4), (14) and (15), we get

lim
n→∞

x (tn) = |(x (t0) + a (t0 − 1) x (τ (t0)))| δ 6= 0,

which contradicts all solutions of (1) converge to zero. The proof is completed.

We end the paper with the following example.

Example 1. consider the mixed type neutral difference equation

∆x (t) + a (t)∆x (τ (t)) + b1 (t) x (σ1 (t)) + c1 (t) x (τ1 (t)) = 0, (16)

with an assumed initial condition

x(t) = ψ(t) for t ∈ [m (t0) , t0] ∩Z,

where t0 = 0, m (t0) = −2, ψ(t) = t/3, a (t) =
1

3t+2 , b1 (t) = 1− 1
2t , c1 (t) =

1
2t+1 , τ (t) = 3t/2, σ1 (t) =

t/2− 2, τ1 (t) = 5t/2. We have

B (t) = 1− 1
2t+1 ,

t−1

∏
s=0

(1− B(s)) =
t−1

∏
s=0

1
2s+1 → 0 as t→ ∞,

and

|a(t− 1)|+
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) |h (r)|+
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) |B (r)|

+
t−1

∑
r=t0

t−1

∏
s=r+1

(1− B(s)) |b1 (r)|+
t−1

∑
r=0

t−1

∏
s=r+1

(1− B(s)) |c1 (r)|

=
1

3t+1 +
t−1

∑
r=0

t−1

∏
s=r+1

1
2s+1

∣∣∣∣ 1
3r+2 −

1
3r+1 × 2r+1

∣∣∣∣+ t−1

∑
r=0

t−1

∏
s=r+1

1
2s+1

(
1− 1

2r+1

)

+
t−1

∑
r=0

t−1

∏
s=r+1

1
2s+1

(
1− 1

2r

)
+

t−1

∑
r=0

t−1

∏
s=r+1

1
2s+1 ×

1
2r+1 ' 0.722 < 1.
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Thus all the conditions of Theorem 4 are satisfied and every solution of (16) converges to zero.

3. Concluding remarks

In this article, a neutral mixed type difference equation is considered. The asymptotic behavior of
solutions is obtained with a necessary and sufficient condition by using fixed point theorems. The results
are supported with a suitable illustrative example.
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