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Abstract. With the extensive application of ontology in the fields of infor-
mation retrieval and artificial intelligence, the ontology-based conceptual

similarity calculation becomes a hot topic in ontology research. The essence

of ontology learning is to obtain the ontology function through the learning
of ontology samples, so as to map the vertices in each ontology graph into

real numbers, and finally determine the similarity between corresponding

concepts by the difference between real numbers. The essence of ontology
mapping is to calculate concepts from different ontologies. In this paper,

we introduce new ontology similarity computing in view of stochastic pri-

mal dual coordinate method, and two experiments show the effectiveness
of our proposed ontology algorithm.
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1. Introduction

Ontologies play an increasingly important role in the fields of software engineer-
ing, artificial intelligence, information retrieval, and Web services. According to
the degree of domain dependence, the ontology can be divided into Top Ontol-
ogy, Domain Ontology, Task Ontology and Application Ontology. As a kind of
description framework and standard specification of knowledge, it is the repre-
sentation of related concepts and the relationship between concepts. It selects
general terms and concepts in the fields described, and uses ontology language
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to define and describe. Standard universal unambiguous domain ontology. Do-
main ontology is a tool for knowledge exchange and sharing between designers
and systems. It facilitates the processing of structured knowledge and supports
semantic operations. It has been widely used in knowledge management and
data mining. The introduction of ontology concept promotes the integration of
traditional information retrieval mechanism and semantic content, which can ef-
fectively improve the search efficiency and search accuracy of knowledge. Several
algorithms and related results on ontology can refer to Wang et al. [1], Cheng
et al. [2], Peng et al. [3], Zhang et al. [4], Zhang et al. [5], Zhang et al. [6], Xue
and Pan [7], Zhong et al. [8], Jiang et al. [9], and Liang [10].
With the advent of the era of big data, the ontology needs to deal with not only
text concepts, but also images, audio and video. Therefore, machine learning
algorithms have been widely used in ontology similarity calculations in recent
years. A classic method is to learn the ontology function through ontology
sample set, this ontology function maps the whole ontology graph to a one-
dimensional real number, and each ontology vertex corresponds to a real number.
The similarity of the concepts is judged by comparing the distances between the
real numbers. Since the information of each ontology vertex is expressed as a p-
dimensional vector, the ontology function can be regarded as a map f : Rp → R.
In this paper, we present an ontology learning algorithm for ontology similarity
measuring and ontology mapping by means of stochastic primal dual coordinate
trick.

2. Setting

First, we use a p-dimensional vector to express all the information of a vertex
v (corresponding to a concept). For convenience, we use v to denote vertex,
vector and concept as well. Assume that {vi}ni=1 is the ontology sample set, n is
the capacity of ontology sample, {li}ni=1 are the ontology loss function, β is the
ontology sparse vector, and g is the punish function. In this way, to learn an
optimal ontology function can be transform to learn an ontology sparse vector
β, and generally the optimization model can be formulated as

min
β∈Rp

Pλ(β) =
1

n

∑
i∈{1,··· ,n}

li(v
T
i β) + λg(β), (1)

where λ is a positive balance parameter. For example, in the setting of mixture
norm punishment, the punish function can be expressed as g(β) = ‖β‖1 + ‖β‖22.
Let V ∈ Rn×p be the ontology information matrix which is denoted as V =
[v1, · · · , vn]T , and its j-th column is denoted as V:j . Let {l∗i }ni=1 be the convex
conjugate function of {li}ni=1, and g∗ be the convex conjugate function of g.
Then, the dual problem of ontology problem (1) can be written as

max
α

Dλ(α) = − 1

n

∑
i∈{1,··· ,n}

l∗i (−αi)− λg∗(
VTα

λn
). (2)
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Assume that ontology loss functions li are 1
γ -smooth. Using the standard sto-

chastic primal-dual coordinate method for regularized empirical risk minimiza-
tion, we can get the following implementation process (see Zhang and Xiao
[11] for more details). First, input mini-batch size a, β0, α0 as initial solu-

tions, β
0 ← β0, α0 ← α0. Then, for t = 1, 2, · · · to converged do: Gener-

ate random index from sampling probability p(in Zhang and Xiao [11], pi =
1
2n + ‖vi‖2

2
∑

k∈{1,··· ,n} ‖vk‖2
) a times with replacement (denote K as the set of ran-

dom indices); set σi and τ as parameters depend on p, and θ = max{1−2τλ, 1−
(maxi∈{1,··· ,n}

1
api

+ n
2aσiγ

)−1}. Then update the dual and the primal coordi-

nates αt+1
i = argmaxw∈R{−w < vi, β

t
> −l∗i (−w) − npi

2σi
(w − αti)2} if i ∈ K

(otherwise, αt+1
i = αti), α

t+1
i = αti +

(αt+1
i −αt

i)

apin
for i ∈ {1, · · · , n}, βt+1 =

argminβ∈Rp{λg(β)− 1
nβ

TVTαt+1 +
‖β−βt‖22

2τ }, and β
t+1

= βt+1 + θ(βt+1 − βt).

3. Ontology learning algorithm using stochastic primal dual
coordinate trick

Now, in this section, we introduce the trick of ontology optimization algorithm
in terms of stochastic primal dual coordinate techniques. Set dual optimality
violation κti for i ∈ {1, · · · , n} and each iteration t as

κti = −αti −∇li(vTi βt). (3)

Hence, the sampling probability is set as (if κi 6= 0)

pi =
1

|{i ∈ {1, · · · , n}, κti 6= 0}|
, (4)

and pi = 0 otherwise. Then, the above stochastic primal dual coordinate based
ontology implementation can be modified as follows. Input mini-batch size a, β0,
and α0; for t = 1, 2, · · · to converged do: αti ← update(αt−1i ) (for i ∈ {1, · · · , n}),
βt ← update(βt−1), determine κt and p using (4), (β̂0, α̂0)← (βt, αt), after the

inner loop do (βt, αt)← (β̂u, α̂u) if Pλ(β̂u)−Dλ(α̂u) < Pλ(βt)−Dλ(αt); for inner
loop u = 1, · · · , dna e, randomly pick up a subset indices K, α̂ui ← update(α̂u−1i )

if i ∈ K, and β̂u ← update(β̂u−1).

By setting ψtj = |βtj − ∇g∗j (
VT

:jα
t

nλ )|, the the above stochastic primal dual coor-
dinate based ontology implementation can be further modified as follows. In-
put mini-batch size a, β0, and α0; for t = 1, 2, · · · to converged do: αti ←
update(αt−1i ) (for i ∈ {1, · · · , n}), βt ← update(βt−1), determine κt, ψtj and

p using (4), (β̂0, α̂0) ← (βt, αt), after the inner loop do (βt, αt) ← (β̂u, α̂u)

if Pλ(β̂u) − Dλ(α̂u) < Pλ(βt) − Dλ(αt); for inner loop u = 1, · · · , dna e, ran-

domly pick up a subset indices K, α̂ui ← update(α̂u−1i ) if i ∈ K, and β̂uj ←
update(β̂u−1j ) for j ∈ {m ∈ {1, · · · , p}, ψtm 6= 0}.
At last, one remark is that if we randomly pick up a subset Mh follows the
probability vector q, then the iterative process presented in last section can be
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re-written as follows. First, input dual mini-batch size a, primal mini-batch size

b, β0, α0 as initial solutions, β
0 ← β0, α0 ← α0. Partition the indices of primal

variables into p mod b mini-batches whose the number of elements are b + 1
and (bpb c − p mod b) mini-batches whose the number of elements are b. For
t = 1, 2, · · · to converged do: Generate random index from sampling probability
p a times with replacement (denote K as the set of random indices); randomly
pick up a subset Mh follows the probability vector q; update the dual and the

primal coordinates αt+1
i = argmaxw∈R{−w < vi, β

t
> −l∗i (−w)− npi

2σi
(w−αti)2}

if i ∈ K (otherwise, αt+1
i = αti), α

t+1
i = αti +

(αt+1
i −αt

i)

apin
for i ∈ {1, · · · , n},

βt+1
j = argminx∈R{λg(x) − x

n < V:j , α
t+1 > + qMhp

2τ |Mh| (x − βtj)
2} if j ∈ Mh

(otherwise, βt+1
j = βtj), and β

t+1
= βt+1 + θ(βt+1 − βt).

4. Experiments

Four simulation experiments relating the ontology similarity measure and ontol-
ogy mapping are designed below. In order to adjacent to the setting of ontology
algorithm, a p-dimensional vector is applied to express the information of each
vertex. The information includes the name, instance, attribute and structure
of a vertex. Here the instance of vertex is used to express the set of the reach-
able vertex in the directed ontology graph. The effectiveness of main ontology
algorithm is verified in the following two experiments.

4.1. Ontology similarity measure experiment on plant data. In the
first experiment, “PO” ontology built in http: //www.plantontology.org. was
adopted to test the efficiency of the proposed new algorithm for ontology sim-
ilarity measuring. The basic structure of “PO” is shown in Figure 1. P@N
standard was also used for this experiment. Furthermore, ontology methods
discussed in [12], [13] and [14] for the “PO” ontology were considered as well.
The accuracies of these three algorithms were calculated to compare with that
obtained through the algorithm proposed in the paper. Table 1 presents part of
the data.
We first give the closest N concepts for every vertex on the ontology graph by
experts in plant field, and then we obtain the first N concepts for every vertex
on ontology graph by the our algorithm, and compute the precision ratio.

P@3 average P@5 average P@10 average
precision ratio precision ratio precision ratio

Algorithm in our paper 0.4892 0.5739 0.7103
Algorithm in [12] 0.4549 0.5117 0.5859
Algorithm in [13] 0.4282 0.4849 0.5632
Algorithm in [14] 0.4831 0.5635 0.6871

Tab. 1. The experiment results of ontology similarity measure

When N= 3, 5, or 10, the precision ratio obtained by the proposed algorithm
is higher than those determined by the algorithms in [12], [13] and [14]. In
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Figure 1. The structure of “PO” ontology.

particular, the precision ratios of those algorithms increase significantly as N
increases. It can be concluded that the algorithm described in our paper is
superior to those proposed in [12], [13] and [14].

4.2. Ontology mapping experiment on humanoid robotics data. Hu-
manoid robotics ontologies O2 and O3 which were applied for our second exper-
iment. Figure 2 and Figure 3 exhibit the structures of O2 and O3, respectively.
This experiment is to determine ontology mapping between O2 and O3 by our
algorithm. Likewise, the authors applied P@N criterion to measure the equal-
ity of the experiment. The ontology algorithms used in [15], [13] and [14] to
humanoid robotics ontologies were employed. Then the precision ratios of these
three methods were compared with that of the proposed algorithm. The exper-
imental results are demonstrated in Table 2.

Figure 2. “humanoid robotics” ontology O2.
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Figure 3. “humanoid robotics” ontology O3.

P@1 average P@3 average P@5 average
precision ratio precision ratio precision ratio

Algorithm in our paper 0.2778 0.5000 0.5667
Algorithm in [15] 0.2778 0.4815 0.5444
Algorithm in [13] 0.2222 0.4074 0.4889
Algorithm in [14] 0.2778 0.4630 0.5333

Tab. 2. The experiment results of ontology mapping

The experimental results in Table 2 reveal that our algorithm performs more
efficiently than those described in [15], [13] and [14], particularly when N is
large enough.
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