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Abstract
Gravitational-wave detectors are exquisitely sensitive instruments and routinely enable
ground-breaking observations of novel astronomical phenomena. However, they also witness
non-stationary, non-Gaussian noise that can be mistaken for astrophysical sources, lower detection
confidence, or simply complicate the extraction of signal parameters from noisy data. To address
this, we present iDQ, a supervised learning framework to autonomously detect noise artifacts in
gravitational-wave detectors based only on auxiliary degrees of freedom insensitive to gravitational
waves. iDQ has operated in low latency throughout the advanced detector era at each of the two
LIGO interferometers, providing invaluable data quality information about each detection to date
in real-time. We document the algorithm, describing the statistical framework and possible
applications within gravitational-wave searches. In particular, we construct a likelihood-ratio test
that simultaneously accounts for the presence of non-Gaussian noise artifacts and utilizes
information from both the observed gravitational-wave strain signal and thousands of auxiliary
degrees of freedom. We also present several examples of iDQ’s performance with modern
interferometers, showing iDQ’s ability to autonomously reproduce known data quality monitors
and identify noise artifacts not flagged by other analyses.

1. Introduction

Gravitational-wave (GW) detectors, like the advanced LIGO [1] and Virgo [2] interferometers (IFOs), are
exquisitely sensitive machines. This sensitivity requires complex control schemes to isolate the instruments
from their surroundings [3, 4] and detailed calibration to infer the correct astrophysical strain incident on
the detectors [5]. Their success, including the first direct detection of GWs [6], the now routine detection of
binary black hole coalescences [7], and the detection of coalescing neutron stars [8, 9], which enabled
ground-breaking multi-messenger observations [10–12], is due to a combination of the detectors’ sensitivity
and advanced signal processing techniques.

However, several sources of noise still limit the detectors’ sensitivity. The most fundamental is stationary
Gaussian noise [13, 14], which can be completely characterized by a power spectral density (PSD) and
describes the detectors’ behavior reasonably well most of the time. Another common noise source, referred
to as non-Gaussian noise transients (colloquially termed glitches [15]), manifests as bursts of excess power in
the detectors above and beyond what would be expected from stationary Gaussian noise alone. Because this
is also the hallmark of a GW signal, non-Gaussian noise transients can be mistaken for real GW signals if
they occur simultaneously in multiple detectors and currently limit searches’ sensitivity to many expected
astrophysical signals (e.g. [7, 16, 17]). Throughout the advanced detector era, an extensive zoology has been
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developed to categorize and mitigate the impact of non-Gaussian noise transients. This includes examining
the morphology of the noise transients themselves in GW strain data as well as searching for correlations
between the noise transients and other degrees of freedom that are not sensitive to GWs. Many other works
have explored the former [18–20]. We focus on the latter.

Information from the detectors is recorded in a set of discretely sampled timeseries, referred to as
channels. These channels observe many different degrees of freedom within the interferometers, including
control signals used to stabilize the device [3, 4, 21, 22] and monitors of the physical environment [23]. In
total, there are more than 2× 105 channels recorded at each LIGO detector, although onlyO(104) are
sampled at frequencies high enough to be within the detectors’ sensitive band. Typically the auxiliary features
used within iDQ are derived from this subset of channels, which are sampled at≳ 256 Hz. Each channel may
witness a variety of possible noise sources, some of which may couple to the measurement of GWs and some
of which may not. Because of the large number of channels, it is impractical to measure the couplings
between all of them directly via targeted injection campaigns. Instead, we rely on statistical correlations
between channels to infer the noise’s source. If channels insensitive to GWs routinely glitch in close
proximity to non-Gaussian transients within the GW channel, we infer that the transients in the GW channel
are mostly likely due to terrestrial noise rather than being of astrophysical origin. Figure 1 depicts a
probabilistic graphical model representing this inference.

iDQ [24, 25], a statistical framework for this inference, has operated throughout the advanced detector
era and continues to provide robust, real-time measures of correlations between thousands of degrees of
freedom within each detector and non-Gaussian noise in the GW channel. The speed and reliability of this
information has proven invaluable for several GW detections (e.g. GW170817 [8] and examples in
section 5). With the expected increases in detector sensitivity and corresponding elevated detection rates over
the next few years [26], real-time data quality information will only become more important.

iDQ, first described in reference [27], was developed as an extension of reference [28] in preparation for
the first observing run, which began in September 2015. Although there is a long history of algorithmic
development in the field, including hierarchical veto application schemes based on approximations of the
likelihood ratio [29], the Poisson significance of coincident noise [30], the percentage of time witnesses
remove noise [31], and applications of more general machine learning algorithms [28, 32, 33], many of these
algorithms fail to produce probabilistic statements about their predictions. Furthermore, such algorithms
did not operate in real-time, a key component of searches for multi-messenger astrophysical events [34].
Additionally, GW interferometers are not stationary over long periods of time; the characteristics of the noise
change. This means that correlations measured by any particular algorithm at any particular time may not
generalize well to data recorded later, complicating the inference process. We note that there is a distinction
between non-Gaussian noise and non-stationarity. For example, non-Gaussian noise may be described by
stationary Poisson processes. In fact, many algorithms make this assumption [29, 30], although it is not
guaranteed to be the case.

iDQ provides a framework in which any supervised learning algorithm can be run in real-time, and
several common algorithms (e.g. Random Forests, Support Vector Machines, and Neural Networks, see [28])
are already included. It calibrates their output (real numbers between zero and one) into statistical
statements about the confidence that non-Gaussian noise is present in the GW channel. This is accomplished
via two-class classification, amenable to many machine learning algorithms. Additionally, iDQ automatically
re-trains and re-calibrates the algorithms to capture non-stationarity within the detectors. This means that
iDQ autonomously adapts to new sources of non-Gaussian noise within the detectors, identifying witnesses
of previously unseen noise sources and flagging data as problematic without human intervention.

We describe iDQ’s formalism in section 2, including our use of supervised learning in section 2.2.
Section 3 describes how we structure the inference, including how we construct vectorized representations of
a detector’s state (section 3.2), how we train machine learning algorithms, including ways to extract feature
importance from the trained models (section 3.3), as well as how iDQ manages cross-validation (section 3.4)
and calibrates its predictions into probabilistic statements (section 3.5). A few examples of iDQ’s
performance are shown in section 5 and possible applications within searches are discussed in section 6,
including a likelihood ratio test based on first-principles noise models which account for our imperfect
knowledge of the presence of non-Gaussian noise in our detectors. We conclude in section 7.

2. Formalism

We couch our statistical inference as two-class classification, which we approach within a supervised learning
framework. This produces predictions for the presence or absence of non-Gaussian noise. It is worth noting
that this is not the only approach, and one could instead attempt to regress the full waveform of the
non-Gaussian noise based on auxiliary degrees of freedom (e.g. [35, 36]). However, classification is more
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Figure 1. Probabilistic graphical model representing different sources of noise within GW interferometers. Each circle represents a
different process, some of which are observed and some of which are not, and conditional dependencies are represented by
directed arrows. We assume that each separate process additionally includes independent stationary additive Gaussian noise,
which we omit for clarity. Latent processes, which we cannot observe directly, are shown as unshaded circles. The top row
corresponds to processes that can influence the target channel (h), including astrophysical signals (s) and a subset of possible
sources of non-Gaussian noise (G1 – GN ). Conditional dependencies from these channels to h (thick arrows) are how
non-Gaussian noise couples into the target channel. The bottom row (GN+1 – GN+M) corresponds to possible sources of
non-Gaussian noise that do not affect h but may affect auxiliary witnesses. Observed processes are shown in the middle row,
which include h (grey shaded circle) as well as N unsafe auxiliary channels (red shaded circles), which may be influenced by s or h
(or both), andM safe auxiliary channels (blue shaded circles), which only witness sources of non-Gaussian noise. If we marginalize
over the latent processes in this graph, we will introduce conditional dependencies between h and the auxiliary channels as well as
between different sets of auxiliary channels. iDQ only uses information from safe auxiliary channels to infer these induced
correlations, thereby predicting the presence or absence of non-Gaussian noise in the target channel without observing the target
channel itself.

tractable at this time, and we construct our inference in that framework using a vectorized representation of
the detector’s auxiliary state.

2.1. Statistical inference
First, a bit of nomenclature. The target channel h(t) refers to the degree of freedom containing non-Gaussian
noise we would like to identify, typically a proxy for the GW channel. This is shown in grey in figure 1.
Auxiliary channels refer to all other channels. Because GW detectors are complicated devices that require
active control, several auxiliary channels may be nearly identical to the target channel (i.e. contain signals
derived from h used to control the interferometer). These are referred to as unsafe auxiliary channels, as they
are likely to witness real GW signals, and it would be unsafe to use them to construct veto conditions as they
could systematically veto real GW signals [31]. These are shown in red in figure 1. The remaining auxiliary
channels, which are not sensitive to GWs, are referred to as safe auxiliary channels a⃗(t), shown in blue in
figure 1. Safety is typically determined through a series of hardware injections in which excitations are
injected into the interferometer to mimic the effect of a real GW. Auxiliary channels which correlate strongly
with the hardware injections may similarly correlate with real GW signals and are deemed unsafe. iDQ only
uses information from safe auxiliary channels, although labels for supervised learning are derived from h.

To put this more formally, we assume the target channel is composed of three independent
components

h(t) = n(t)+ s(t)+ g(t) (1)

where n is stationary Gaussian noise, s is the astrophysical strain induced in the detector, and g represents
non-Gaussian noise artifacts. We can only observe h and therefore model n, s, and g as latent processes which
may or may not be correlated with other degrees of freedom. Furthermore, we assume n is stationary over
timescales much longer than either s or g and can therefore be completely described by a single PSD.
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Because we adopt a two-class classification scheme, we must define our classes. We take G to be the union
of all possible types of non-Gaussian noise (Gi) without explicitly enumerating each class (as opposed to, e.g.
GravitySpy’s explicit multi-class classification [20]).

G=
⋃

i∈ glitch
classes

Gi (2)

Typically, this is defined by a set of thresholds on h, such as signal-to-noise ratio (ρ) and a frequency range.
For instance, one may target only loud, low-frequency noise relevant for high-mass binary black hole
searches. G then consists of all time samples that correspond to h within these thresholds. The complement
of G, referred to as C, corresponds to clean times when the detector does not display non-Gaussian noise
such that

p(G)+ p(C) = 1 ∀ t (3)

and

p(G∩C) = 0 ∀ t. (4)

Furthermore clean states axiomatically imply g(t)= 0 ∀ t ∈C, in that there are no non-Gaussian noise
transients within clean times.

Because we derive labels based on h instead of g, true signals may also fall within the thresholds defining
G. However, the true signal rate is expected to be orders of magnitude less than the rate of non-Gaussian
noise artifacts (≲ 1/day as opposed to∼ 1/minute), and we do not expect GWs to significantly pollute our
training set 8. Furthermore, because we only use safe auxiliary channels, defined by their insensitivity to GW
signals, we expect s to be independent of a⃗, and h containing GW signals is indistinguishable from h without
GW signals based on a⃗ alone. Nonetheless, one could remove almost all true signals by removing any element
of G that is coincident between multiple detectors 9. This would also accidentally remove elements of G due
to g that just happened to be coincident, but we expect the processes producing g to be independent in each
detector 10. Removing such a random subset of G would only decrease our sample size without biasing the
training sets. However, because of the additional complexity associated with synchronizing processes
running at geographically disparate locations, and the fact that the impact on our training sets is negligible,
iDQ does not currently remove elements coincident between detectors from its training set.

Again, this is not the only way to construct the inference. Instead of classification, one could use the fact
that ρmeasures the probability that Gaussian noise alone could have produced h, and can therefore be used
to estimate the probability that a non-Gaussian transient is present. Instead of classifying samples separated
by hard thresholds, one could regress ρ directly or use ρ to define weighed training sets. We leave such
extensions to future work, but note that similar model comparisons are implicit within our
marginal-maximized likelihood ratio test (section 6.2).

iDQ infers the probability of the presence of non-Gaussian noise artifacts (g ̸= 0) within h based on safe
auxiliary channels. Specifically, iDQ estimates

pG(t) = p(G|⃗a(t))

=
p(⃗a|G)p(G)

p(⃗a|G)p(G)+ p(⃗a|C)p(C)
. (5)

using supervised learning to estimate the likelihoods p(⃗a|G) and p(⃗a|C).

8We note that elevated detection rates expected with advanced detectors at design sensitivity and other planned detectors may cause this
assumption to break down, necessitating further curation of training sets within our supervised learning framework.
9Note that a few key detections were essentially made with data from a single interferometer (e.g. GW170817 was initially detected as a a
single-interferometer trigger at LIGO Hanford) and therefore requiring coincidences between detectors may not remove all astrophysical
signals.
10The assumption of independent noise in each detectormay break down in certain cases, like correlatedmagnetic noise due to Schumann
resonances.
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2.2. Supervised Learning as Dimensional Reduction
As described in section 1, GW interferometers monitor a large number of auxiliary degrees of freedom as
discretely sampled timeseries recorded at different rates. iDQ represents the information in these auxiliary
channels as a set of features extracted from each channel separately and compiled into an array of fixed
dimension.

Several example feature extractors are described in reference [37, 38], and these generally rely on a
wavelet decomposition to identify excess power beyond what is expected from stationary Gaussian noise
alone. These feature extractors map discretely sampled timeseries into tabular data, such as the frequency,
amplitude, and duration of non-Gaussian transients. iDQ constructs high-dimensional representations of
the detector’s auxiliary state based on this tabular data, typically recordingO(5) features for each ofO(103)
auxiliary channels. Although efforts to extract better feature sets are on-going [39], iDQ implicitly assumes
that features extracted in this way from each channel are sufficient statistics. Indeed, the wavelet
decompositions at the core of many feature extractors form overcomplete bases and contain all information
available in the original channel. There is also evidence that the precise algorithmic details of the feature
extractor may not significantly impact the overall inference (see section 6.2 of reference [40]).

The Neyman-Pearson lemma [41] states that an optimal classification scheme orders samples by their
likelihood ratio

ΛG
C (⃗a) =

p(⃗a|G)
p(⃗a|C)

=
p(C)

p(G)

(
pG

1− pG

)
(6)

However we do not know the functional form of the likelihoods a priori and must estimate them from
observed samples. Compounding this, the dimensionality of a⃗ can be very large, typicallyO(104) or more.
This drives us to supervised machine learning as a way to approximate ΛG

C and reduce the dimensionality to
something tractable.

We therefore consider the main product of supervised learning algorithms, referred to as classifiers, to be
a map from the high dimensional input space to the unit intervalM(⃗a) :RN≫1 →R∈ [0,1]. The precise
functional form of the map is determined by the details of the algorithm and is unimportant for the rest of
the inference, but we expect elements of G to be mapped to values near 1 and elements of C to be mapped to
values near 0. We then construct a likelihood ratio in this lower dimensional space for each classifier
separately, de facto estimating

pG =
p(M(⃗a)|G)p(G)

p(M(⃗a)|G)p(G)+ p(M(⃗a)|C)p(C)
. (7)

Estimates of p(M(⃗a)|G) and p(M(⃗a)|C) are obtained by evaluating labeled samples with trained classifiers
and directly modeling the resulting distributions (section 3.5 and appendix A).

Optimal classifiers will order samples according to ΛG
C , so we expect Λ

G
C to be monotonic in the classifier’s

outputM(⃗a). Therefore iDQ also calculates the efficiency and false alarm probability as cumulative
conditioned likelihoods integrated over classifier predictions

efficiency= P(M(⃗a)≥ r|G)

=

1ˆ

r

dxp(M(⃗a) = x|G) (8)

and

false alarm probability= P(M(⃗a)≥ r|C)

=

1ˆ

r

dxp(M(⃗a) = x|C) (9)

These cumulative statistics define the receiver operating characteristic (ROC) curve for a classifier, the
standard metric for classification performance. Likelihood ratio tests optimize the efficiency at all false alarm
probabilities.

We also note that iDQ can run multiple classifiers in parallel over the same data. Because each classifier
produces a different map, and therefore may be able to better identify different subsets of glitches, we should
be able to extract more information by combining classifiers. De facto, this would amount to using
supervised learning to map a very high-dimensional space into a more manageable size, which may be
amenable to direct modeling of the likelihood. This is the case for one-dimensional output from a single
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Figure 2. iDQ’s workflow. Channels are processed into feature sets a⃗(t), which are then used in several asynchronous processes to
train classifiers, calibrate their output, and produce real-time probabilistic predictions for the presence of non-Gaussian noise G
in the target channel h(t). The large block on the right identifies the steps within the iDQ pipeline, while the source of features
and segments on the left identify input used at various points in the workflow.

classifier. Combining a handful of classifiers should not pose a more complicated conceptual issue, although
running enough classifiers in parallel may require us to use supervised learning again to model the joint
likelihood over their output. This type of boosted classifier, previously explored within iDQ [27], would again
reduce the problem to likelihoods defined over a one-dimensional space. Although not yet implemented,
such boosted classification schemes are an active area of research.

3. Decomposition of the statistical inference

iDQ divides the workflow into several asynchronous processes which communicate to share updated models
and calibration. As figure 2 shows, features are generated for each IFO and retrieved by various processes
(section 3.1). Vectorized representations of the detector’s auxiliary state are constructed as needed in each
process (section 3.2). Training (section 3.3) produces models for each classifier, which are then used in both
evaluation (section 3.4) and timeseries production (section 3.6). The evaluated output is used to calibrate the
model (section 3.5), and the resulting map transforms the low-latency predictions made during timeseries
production into probabilistic measures with associated uncertainties. These measures, such as pG, can then
be ingested by GW searches in real-time.

3.1. Data discovery
iDQ relies upon an external source of features, typically taken to be tabular data denoting the location and
properties of non-Gaussian transients in a set of channels. Although not strictly necessary (e.g. iDQ could
ingest the raw timeseries directly from the detectors), we find that this preprocessing efficiently extracts the
features relevant for our classification problem. Figure 2 represents these feature streams as directed arrows
exiting the feature extractor and entering the iDQ workflow. Pragmatically, these are implemented as
abstractions that manage data discovery and produce a consistent tabular output format regardless of the
features’ source, thereby simplifying any client interactions throughout the pipeline.

Most feature extractors operate in one of several wavelet domains, extracting excess power as collections
of time-frequency pixels. Common choices are the Haar wavelet transform and the Q-transform [37].
However, the precise form of the feature extractor is unimportant beyond the fact that different wavelet
transforms are able to better resolve different aspects of non-Gaussian noise transients. iDQ used features
extracted with an implementation of the Haar transform (KleineWelle [42]) during the LIGOs’ first two
observing runs before switching to a low-latency implementation of the Q-transform during the third
observing run [38]. iDQ can also use features extracted from multiple wavelet transforms simultaneously.
What’s more, not all feature extractors produce the same set of features, although all provide some measure
of the transient’s central time, duration, frequency content, and amplitude or significance (typically
measuring how rare the transient would be in stationary Gaussian noise). iDQ allows users to choose the
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(sub)set of features, although typically at least the central time, amplitude, and frequency are used.
reference [28] explored the relative importance of features in the Haar domain, finding the relative time
offset and significance to be most important.

Samples from G and C are identified based on the features present in h. Specifically, any transient which
meets the criteria for G (see section 2) is recorded as a target time. Samples from C, called random times, are
drawn according to a Poisson process in stretches of data sufficiently far away from target times. These clean
segments are defined by another set of thresholds on h, which are typically chosen to be slightly looser than
the bounds defining target times. This creates an effective buffer between samples in G and C, which is
believed to avoid threshold effects and improve classifiers’ ability to distinguish the sets. At the end of the day,
any time segment not declared clean is considered dirty (i.e. t ∈G), and this dirty time is accounted for
within the calibration’s prior odds (section 3.5).

Additionally, iDQ gathers IFO-state information from a remote database [43]. Segments produced
outside of iDQ record high-level state information about the detectors, such as when the IFOs record
science-quality data, but without fine enough temporal resolution to flag subsecond non-Gaussian noise
transients. iDQ polls the database for such segments, filtering the training and evaluation samples to retain
only times within science-quality data. This may not be strictly necessary in all cases and can introduce
additional latency before segments are available. Segment information is, therefore, optional (directed
arrows in figure 2 are dashed instead of solid), but is almost always used in practice except during low-latency
timeseries production. Timeseries production only applies existing models and calibration to IFO data.
Therefore, it does not care whether the detectors are currently recording science-quality data.

3.2. Feature vector construction
Given a stream of features, we must still determine which features to use. Most, if not all, supervised
classification schemes require consistent dimensionality in the input feature space (⃗a ∈RN with fixed N).
Therefore iDQ must downselect features if too many auxiliary transients are nearby or fill in default values if
no auxiliary transients are available. Mapping the streams of features from many auxiliary channels into an
array of fixed dimension is referred to as vectorization, and is carried out on-the-fly as needed within the
pipeline.

Although other types of features have been investigated in the literature, such as averaging over small
neighboring time windows [33], iDQ implements the following vectorization scheme following
reference [28], which was also employed in [32]. For each auxiliary channel, iDQ queries all transients in that
channel with central times within some window surrounding the time of interest. If no auxiliary transients
are available, default values are returned for all requested features, thereby denoting auxiliary channels that
were inactive. Otherwise, iDQ will extract features from the loudest auxiliary transient (largest ρ) within the
window. We note that this is not the only choice, and quiet transients in closer coincidence with the time of
interest may be more relevant than louder transients further away [39]. Nonetheless, this select-loudest
algorithm works well in practice 11 with coincidence windows∼ 100ms.

The resulting feature vectors are collected into sets for training, evaluation, and timeseries generation.
Each vector is labeled according to whether the time is associated with an element of either G or C based on
h, thereby constituting a supervised learning training set. These labels are completely ignored during
evaluation and timeseries generation. As implemented, each feature vector retains a reference to the data
discovery abstraction used to retrieve the features (see section 3.1). In this way, classifiers can access the full
feature set if desired, although most rely on the vectorization scheme articulated above. A notable exception
is the Ordered Veto Lists algorithm (OVL [29]), which directly ingests the data discovery abstraction during
training. This is done to avoid additional overhead associated with vectorization and is peculiar to the OVL
algorithm, although this type of behavior is more broadly supported within iDQ.

3.3. Training
Given vectorized representations of the auxiliary features for each time of interest, iDQ then trains classifiers
to separate the labeled samples. Again, classifiers are only given features extracted from safe auxiliary
channels and cannot construct decision surfaces based on the vectors’ G or C labels. The details of each
classifier’s training algorithm are specific to each classifier, and iDQ generally relies on external libraries for
their implementation (e.g. support vector machines, random forests, and neural networks as implemented in

11 There is some evidence that our feature vectors are relatively sparse (i.e. it is rare to have multiple coincident auxiliary transients in a
single channel) and the relevant information encoded in the feature sets is simply whether or not there were any non-Gaussian transients
in the auxiliary channel within the specified window. In that case, it is perhaps not surprising that the select-loudest algorithm retains all
the relevant information.
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scikit-learn [44], Keras [45], and XGBoost [46]). However, a few algorithms are implemented directly
within iDQ, such as OVL [29].

In this way, iDQ uses supervised learning on labeled auxiliary feature vectors to generate maps from
high-dimensional input spaces to a single scalar rank, a real number between zero and one. We note that
vectorization itself also introduces dimensional reduction, as we extract features from at most a single
auxiliary transient per channel, but beyond that it is the classifiers themselves that determine which features
are relevant and which are not. This establishes amodel for each classifier (α):

Mα : a⃗ ∈RN → rα ∈ [0,1]. (10)

Each classifier generates a separate model, and different models may be able to separate the training sets to
different degrees. iDQ requires ranks to be within the unit interval, although this choice is arbitrary. The
important aspect of the model is the relative ordering of samples, not the precise value of the rank. Therefore,
any monotonic mapping from the unit interval to another range will preserve all relevant information.

Each classifier additionally manages internal cross-validation or provides techniques to prevent
over-fitting (see appendix B for an example). Again, the details may be specific to each classifier, but iDQ also
provides a cross-validation scheme independent of the classifiers themselves. Section 3.4 describes the
various techniques used to evaluate a classifier’s performance fairly, making sure to account for any
generalization error associated with the derived models. Each trained model additionally records the range of
data used during training as a unique hash. These hashes are used in evaluation (section 3.4) and timeseries
generation (section 3.6) to track how data was manipulated as it progressed through the pipeline.

Some algorithms also support measures of feature importance within trained models. These are often
related to the directional derivative of the model with respect to each auxiliary feature: ∂M/∂ai |⃗a. Features
with larger directional derivatives tend to be more important, although each classifier’s measure of feature
importance may adopt different specific details (appendix B describes how OVL extracts the feature
importance measures shown in figures 7 and 8). Not all classifiers provide this information. Many that do
only provide global estimates averaged over all samples instead of the local estimates at a particular auxiliary
vector. However, we leave further investigations of standardized measures of feature importance, such as
reference [47], to future work.

3.4. Evaluation
Supervised learning relies on cross-validation to evaluate generalization errors. This typically consists of
subdividing the data into distinct sets, one of which is used for training and the other to evaluate
performance. iDQ supports two main ways to subdivide the data into different bins for cross-validation.

Acausal or round-robin binning divides the data into a sequence of small segments, mixing samples
independently of their time ordering. Figure 3 demonstrates how segments are assigned to different data sets.
Briefly, for N different bins withM segments per bin, iDQ generates Nsegs = N×M segments of equal
duration. Data from the first segment is assigned to the first bin, the second segment to the second bin, and
so on. Data from the (M+ 1)th segment is assigned to the first bin, the (M+ 2)th segment to the second bin,
and this repeats until all data has been assigned. We then train over all data outside of the ith bin to generate
a model used to evaluate data inside the ith bin, repeating the procedure for all bins. This approach provides
features drawn from consistent distributions in both training and evaluation, even if the instantaneous
feature distributions change over time. With features drawn from consistent distributions in both training
and evaluation, acausal binning measures the best performance that should ever be expected from a classifier.

Causal binning again divides the data into many small segments. Figure 4 shows this schematically. Each
analysis then trains on a cumulative set of historical segments and uses the resulting model to evaluate the
next segment, preserving the relative time ordering. Again, this is repeated for all segments, each using all
historical data available during training. This allows users to investigate how detector non-stationarity affects
their algorithm.

Each approach has its uses, and both produce ROC curves that measure classifiers’ performance in a fair
manner. Importantly, iDQ can simultaneously run multiple classifiers, guaranteeing they see identical data
sets and that comparisons are as fair as possible. Evaluation also records each model’s hash within each
feature vector to maintain a record of how each feature vector was classified.

3.5. Calibration
While training and evaluation are the foundation of iDQ’s supervised learning approach, calibrating the
resulting ranks into probabilistic statements is of equal importance. iDQ does this by directly modeling the
observed conditioned likelihoods for each classifier’s rank: p(rα|G) and p(rα|C). Just like each classifier’s
model retains a hash to track provenance, each pair of conditioned likelihoods, or calibration map, records a
unique hash to denote the evaluated samples from which it was generated.
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Figure 3. Schematic diagram showing data segmentation for acausal batch operation. Each row corresponds to one of N bins, and
each column corresponds to one of N×M segments. Data from sequential segments are assigned in order to different bins,
effectively giving each bin access to samples from throughout the entire analysis period during training. Evaluation sets from each
bin remain disjoint from training sets, though, allowing for meaningful cross-validation of classifier performance.

Figure 4. Schematic of data segmentation for causal batch analyses. Each row illustrates the data included in a single bin, and
columns represent different segments of data. Each bin uses historical data cumulatively when training (grey shaded boxes),
including an initial lookback period before the first evaluation segment (red boxes). Bins progressively train on more and more
time-ordered data, thereby testing algorithmic sensitivity to detector non-stationarity in a similar way to what is experienced
during streaming operation.

iDQ can model the conditioned likelihoods in two ways, related to different assumptions about the nature
of ranks produced by a classifier’s model. Both quantify the uncertainty in their estimates, and both work
well in practice. Figure 5 shows how they correctly model non-trivial conditioned likelihoods. Calibration
maps further estimate prior odds for G and C samples. We describe these procedures in more detail below.

3.5.1. Continuous calibration maps
If classifiers produce ranks that can take any real value within the unit interval, with no discrete lumps of
probability so that

lim
ε→0

 r+εˆ

r−ε

dxp(x|X)

∝ ε ∀ r ∈ [0,1], (11)

then it is appropriate to model the underlying distribution with a continuous kernel density estimate (KDE).
iDQ implements a Gaussian kernel and dynamically optimizes the kernel’s bandwidth to maximize a
cross-validation likelihood quantifying how well the KDE reproduces the observed sample set. iDQ reflects
observed samples around rank= 0 and 1 to avoid edge effects within the KDE while numerically enforcing
proper normalization. Uncertainty in the KDE model for the true likelihood at each rank is modeled by a
β-distribution (see appendix A). This procedure accurately predicts the observed variance in KDEs obtained
from different realizations of sample sets drawn from the same underlying distributions, regardless of the
true distribution.
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Figure 5. (left) Example calibration distribution representing p(M(⃗a)|G) from a batch analysis during a period of elevated
radio-frequency noise at the LIGO Hanford detector on Monday December 22, 2015 (see figure 9). Solid lines denote the
optimized Gaussian KDE representing the distributions; shaded regions correspond to the expected error in that fit; and dashed
lines show histograms of the observed ranks. A cumulative histogram is shown above the differential histogram as it more clearly
shows the rounding effects of the finite bandwidth assumed within the KDE model. (right) The corresponding calibration
coverage shows the approximate fraction of glitches assigned a particular nominal efficiency the calibration map. Perfect
calibration corresponds to a diagonal line. The step-like behavior observed here comes from interpolation artifacts when
assigning nominal efficiencies to glitches based on the regularly sampled timeseries.

3.5.2. Discrete calibration maps
If the trained model only produces a finite number of possible ranks, the resulting distribution may be better
modeled as a weighed sum of δ-functions

p(r|X) =
∑
i

wiδ(r− ri)

∣∣∣∣∣ ∑
i

wi = 1 (12)

equivalent to our continuous Gaussian KDE in the limit of vanishingly small bandwidths. Weights are
estimated as the fraction of observed samples assigned to that rank, and uncertainty in the weights is again
modeled as a β-distribution such that

p(wi|ni,N)∝ wni
i (1−wi)

N−ni (13)

where ni out of N total samples were assigned rank ri.
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3.5.3. Prior odds
While iDQ’s conditioned likelihoods, and therefore the likelihood ratio ΛG

C , do not depend on the prior odds
between G and C, most applications instead rely on pG (equation (5)). While pG is monotonic in ΛG

C , the
exact value can be made arbitrarily large or small based on the prior odds assumed. This forces us to carefully
consider our assumptions a priori about the relative frequencies of G and C. iDQ implements several choices,
either allowing users to specify fixed prior odds, estimating them based on the relative fractions of samples
within training sets, or estimating them based on the fraction of time declared clean within a training set. All
these are based on the premise that the prior odds are approximately the ratio of the rates at which each type
of sample occurs, adopting different techniques for approximating the rates of G (RG) and C (RC) samples.

As appropriate for inference over tabulated data, one approximation is RG/RC ≈ NG/NC. This asks what
the chance is that one would select either a G or C sample when randomly choosing an element of the fixed
training set. Generally, NG is set by the true RG in the detector and the amount of time over which we collect
samples. Similarly, NC depends on the rate at which we generate clean samples, which is an arbitrary choice
typically chosen to balance training accuracy and computational expense. While formally correct for
tabulated data, and therefore useful in some applications, this model does not necessarily represent the prior
odds relevant for timeseries production.

Alternatively, we can model RG/RC ≈ TG/TC = (T/TC)− 1 where TC/T is the fraction of analysis time
declared clean (alternatively, not dirty) when constructing the sample set. We measure TC directly from the
conditions defining C based on h (section 3.1). This approach models the relative frequency of times
declared glitchy or clean, rather than selecting an element from tabular data, as is more appropriate for
timeseries production.

3.6. Timeseries production
iDQ produces streaming estimates of statistical quantities as the culmination of training and calibration.
These timeseries should be thought of as the main data product generated within iDQ and are the most
applicable to GW searches. iDQ generates vectorized feature sets on a regular grid in time, typically sampled
at≥ 128 Hz. The regularly spaced vectors are then evaluated using a trained model, and the resulting array of
ranks is calibrated into several statistical quantities using a calibration map. These quantities are then
distributed in real-time to GW searches, and we discuss ways to incorporate them within searches in
section 6.

Section 4 describes the differences between offline (batch) and online (stream) modes of operation in
more detail, but both utilize asynchronous processes to manage training, evaluation, calibration, and
timeseries production. Because some tasks require the output from other tasks, iDQ synchronizes them by
polling for specific models and calibration maps from various repositories, referred to asmodular data
servers (MDSs). In this way, timeseries jobs can obtain the most relevant model and calibration map for any
stretch of data. As with data discovery, iDQ does not depend on the particular implementation of a MDS as
long as it allows tasks to get and put results through a consistent interface. De facto, most MDSs are
implemented via local filesystems.

As noted in section 3.5, the prior odds assumed during calibration can have a significant impact on the
interpretability of the resulting timeseries. In particular, we expect p(G)≪ p(C) because the typical duration
of non-Gaussian noise transients is usually much less than their separation:O(10−1 sec)≪O(102 sec).

Because of the ambiguity associated with the choice of prior odds, iDQ produces timeseries for multiple
statistical quantiles besides pG, including ΛG

C , the conditioned survival functions (efficiency and false alarm
probability), as well as the raw rank produced by the model. Access to ΛG

C allows users to estimate pG with
whatever prior odds they choose. Furthermore, the false alarm probability approximates the amount of time
discarded by the classifier, and therefore could be used to set a convenient working point. What’s more, the
calibration map also provides uncertainty estimates based on the finite calibration sample size.

4. Batch vs. streammodes

In addition to the decomposition described in section 3, iDQ supports two modes of operation related to
how it synchronizes processes.

The offline, or batch, mode targets specific stretches of data and can support both causal and acausal
binning schemes (section 3.4). Additionally, batch jobs run tasks synchronously within each bin, which is to
say that training must complete before evaluation begins, evaluation must complete before calibration
begins, and calibration must complete before timeseries are produced. However, separate bins are
independent and can be processed in parallel. Batch analyses have loose latency requirements.

The online, or stream, mode instead runs in low-latency, typically producing timeseries within
O(10−1 sec) of receiving features, regardless of the wavelet transform used to generate those features. The
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Figure 6. Example iDQ timeseries for OVL [29] with 3 different ranking metrics (see appendix B) from a batch analysis ofO(102)
sec during a period of elevated radio-frequency noise at the LIGO Hanford detector on Monday December 21, 2015. From the top
to the bottom, we show the estimated probability of a glitch given the auxiliary data, the log likelihood-ratio between the glitch
and clean models, the ratio of the detection efficiency to the false alarm probability (FAP), the FAP itself, and the raw rank
produced by the classifier. For reference, central times for glitches derived from h are shown with light grey lines, occuring at a
rate of∼ 10Hz at this time. We see that OVL correctly identifies the times at which glitches are present in h and that our prior
(p(C)≫ p(G)) correctly drive pG to small values when the likelihood is uninformative.

dominant source of latency for iDQ is feature generation and vectorization. The time required for feature
extractors to processO(103) channels was recently reduced to∼ 5sec with a low-latency implementation of
the Q-transform used during the third observing run [38], as opposed to∼ 32sec for the implementation of
the Haar transform (KleineWelle [42]) used throughout the first two observing runs. Vectorization can also
limit iDQ’s latency, but the pipeline can generate vectors consisting ofO(5) features for each ofO(103)
channels at rates above 128 Hz, which is typical of production configurations as most glitches have durations
∼ 100 ms. We also note that iDQ can use features extracted with multiple wavelet transforms simultaneously,
if desired.

Online jobs process all data causally and manage tasks asynchronously. However, because some tasks
require input from others before they can begin, the streaming iDQ pipeline will run small batch pipelines if
models and/or calibration maps are not initially available for all classifiers. Once initial models and
calibration maps are available, separate processes for training, evaluation, calibration, and timeseries
production run in parallel and interact through put and get requests in MDSs (section 3.6). This means that
re-training and re-calibration happen continuously, with a new data set defined and fed to classifiers as soon
as they finish processing their previous sets. When each task begins processing a new data set, it polls the
relevant MDS to obtain all the required data products without waiting for the asynchronous processes to
complete. For example, several evaluation strides may use the same set of models because the training jobs
generally take longer to complete than evaluation. Nonetheless, as soon as a training job completes, the
evaluation jobs will automatically retrieve the new model.

Training jobs usually take the longest to complete, with runtimes ofO(hours), and it is possible, then,
that trained models will respond relatively slowly to detector non-stationarity. However, if the model
becomes out-of-date, the much faster evaluation and calibration jobs, which complete inO(sec), will detect
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Figure 7. iDQ’s low-latency predictions surrounding the non-Gaussian noise transient coincident with GW170 817 in the LIGO
Livingston detector. (top panel) Time-frequency decomposition of the GW strain chosen to highlight the noise transient’s short
duration; GW170 817’s inspiral track is shown for reference (dashed line), with times measured relative to the coalescence time.
(2nd panel) Time-frequency representation of the top-ranked auxiliary witness active at this time, autonomously identified by
iDQ as correlated with non-Gaussian noise without a priori knowledge about the type of noise present in the detectors. (3rd
panel) A canonical saturation monitor, which identified the time as problematic. (bottom panel) OVL’s feature importance,
showing multiple veto configurations (appendix B) active in coincidence with the glitch. Color denotes OVL’s rank, with rank→ 1
indicating high confidence in the presence of a glitch. OVL finds various Alignment Sensing and Control (ASC) auxiliary channels
to be relevant, including the amount of light transmitted through the x-arm’s end-station test mass (ASC-X_TR), which are partly
responsible for mainining the interferometer’s angular alignment during operation.

the decreased performance and update iDQ’s probabilistic statements accordingly. For example, if a model
suddenly cannot distinguish between G and C samples, the calibration jobs will update the conditioned
likelihoods to p(r|G)∼ p(r|C), and therefore return the prior odds.

Asynchronous, parallel processing lowers the latency required to produce timeseries at the cost additional
complexity in data discovery. Because data may occasionally be dropped before it reaches iDQ, each process
analyzes data in small strides and internally manages timeout logic, skipping data if it takes too long to arrive.
In production, we generally find iDQ achieves duty cycles above 99\%, thereby essentially guaranteeing
results will be reliably provided to GW searches in low-latency. In fact, iDQ’s information was distributed at
the same time as the calibrated GW strain during the third observing run.

While many analyses will utilize the batch workflow, we expect streaming processes to be the most
relevant in the coming years as iDQ’s predictions are incorporated further into low-latency GW searches.
Indeed, the examples in figures 7 and 8 were all derived from streaming analyses. Section 6 enumerates a few
other possible applications.

5. Examples

We present a few examples of iDQ’s behavior with real detector data from the first two observing runs. First,
and perhaps most importantly given the context, is the non-Gaussian noise artifact coincident with
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Figure 8. Example iDQ output surrounding a GW candidate identified by a search for unmodeled transients [48] on 4 February
2017. (top panel) A time-frequency representation of h(t), showing the radio-frequency whistle in coincidence with the candidate.
(2nd panel) A time-frequency representation of the highest-ranked auxiliary channel active at this time, showing a similar whistle.
(3rd panel) Canonical saturation monitors, inactive during the whistle, as expected. Canonical monitors for whistles do not exist
in low-latency and can often miss whistles even in high latency. (bottom panel) OVL’s feature importance for active auxiliary
channels. Color indicates OVL’s rank, with rank→ 1 corresponding to pG → 1. We see that iDQ clearly identified the whistle in
low-latency while canonical monitors were silent or otherwise unavailable.

GW170 817 in the LIGO Livingston interferometer [49]. Although similar noise transients are witnessed
several times per day in each IFO, their exact cause is not known. They are, however, often associated with
saturations within the interferometric control systems, and monitors exist to flag such saturations. Figure 7
shows a time-frequency projection highlighting the noise transient’s short duration, as well as the behavior of
the canonical monitors for saturations. iDQ, at the same time and without prior knowledge of the existence
of saturations or which auxiliary degrees of freedom correlate with noise in h, autonomously identified
witnesses for such events and flagged the time as very likely to be a glitch in real-time. This information was
automatically made available within 8 sec of the candidate being reported to the Gravitational Wave
Candidate Event DataBase (GraceDB [50]), thereby informing decisions in real-time about the candidate’s
probability of being astrophysical in origin and the resulting announcement to the broader astronomical
community [51]. GW170 817 serves as an example of how iDQ can independently identify noise sources
already known to human analysts. Additionally, the witnesses iDQ identifies sometimes flag problematic
time associated with loud noise transients that go unnoticed by more conventional monitors, including
saturation-like glitches that happen to not saturate the control signals being monitored (e.g. [52]).

Pursuing this further, figure 8 presents a radio-frequency whistle identified as a possible GW candidate by
oLIB, a search for unmodeled GW bursts [48], on 4 February 2017. iDQ vetoed this event within 7s. As with
GW170817, iDQ autonomously developed witnesses for such noise and clearly identifies the time as glitchy.
We note that canonical monitors for saturations did not flag this event, as expected because they monitor
sources of different types of non-Gaussian noise, and iDQ’s low-latency predictions were the only data
quality products available at the time that could reject this candidate as noise without relying on the human
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Figure 9. Example receiver operating characteristic (ROC) curves generated within iDQ relating the glitch detection efficiency to
the false alarm probability. (left) ROC curves from a batch analysis of LIGO Hanford data from December 18–20, 2015 (~ 2 days,
101 glitches). (right) A batch analysis of LIGO Hanford data from December 22, 2015 (1 hour, 5504 glitches). Shaded boxes
approximate 1-σ uncertainty from the counting experiment used to measure the ROC curves at the points where they are
measured, with linear interpolation between. Grey dashed lines correspond to uninformative classifier, and colored lines
correspond to different ranking metrics within OVL (appendix B.1). Each of these analyses used iDQ’s internal acausal
cross-validation scheme with two bins and two segments per bin, and these ROC curves therefore account for generalization
error. These two examples represent approximate limits on the performance seen within iDQ, and primarily differ by the type of
noise present within the detector. Nonstationary changes in non-Gaussian noise can be sudden and severe, necessitating
automatic re-training and re-calibration.

inspection of the signal morphology in h(t). Rejecting candidates from unmodeled transient searches based
on h(t) morphology itself is risky, and therefore iDQ’s auxiliary witnesses provide much greater confidence
the transient was of terrestrial origin. At the time of writing, no low-latency monitors exist for such
radio-frequency whistles besides iDQ.

Figures 7 and 8 show two examples of noise transients that are typically witnessed well by the auxiliary
degrees of freedom used within iDQ. Both were identified in low-latency the OVL algorithm ([29];
appendix B) running within iDQ’s framework. We typically find that, in agreement with reference [28], OVL
performs as well as, if not better than, more complex algorithms, and we primarily uses its predictions to
identify noise in low-latency. In general, different classifiers may witness different noise sources, and
combining the ranks from multiple classifiers (creating a boosted classifier) is an active area of research.

Figure 9 presents a few ROC curves showing iDQ’s typical performance, also demonstrating iDQ’s ability
to run multiple classifiers simultaneously over the same data. We focus on OVL with 3 different choices for
the ranking metric (appendix B.1). OVL, running within iDQ’s framework, typically identifies ~
10\%–40\% of non-Gaussian noise artifacts (KleineWelle [42] triggers between 32 and 2048Hz with ρ≳ 8)
at the cost of≲ 0.1%–1\% false alarm probability. This depends on the mixture of noise sources present
within the detectors, though, as a high fraction of well-witnessed noise will lead to correspondingly more
impressive ROC curves. Figure 9 shows one such example from the LIGO Hanford detector a few days before
GW151 226 [53]. An intense radio-frequency glitch-storm produced a large number of clearly witnessed
noise transients, and OVL identified≥ 90\% of them with≤ 1\% false alarm probability. It is worth noting
that, at that time, offline canonical monitors for radio-frequency noise had become less effective due to
detector non-stationarity [17, ]. iDQ automatically detected new witnesses without human intervention and
retained a high glitch-detection efficiency in low-latency.

6. Applications within gravitational-wave searches

The optimal incorporation of probabilistic data quality information within GW searches remains largely
unaddressed in the literature. In this section, we present a likelihood ratio test that incorporates imperfect
knowledge of the presence of non-Gaussian noise within our detectors. We first review the current state of
the field and how data quality information is often incorporated into searches, demonstrating how iDQ’s
products could be used within existing methodologies while discussing different approaches’ relative
advantages and drawbacks. We then formulate a search based on first-principles models of noise processes
within detectors and the incorporation our imperfect knowledge of data quality based on both auxiliary and
GW strain information.
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6.1. Current Veto and Gating Strategies
Data quality products are currently applied within searches in two main ways. Data quality vetoes are applied
after filtering, meaning after a search has produced a list of candidates. Usually, vetoes are specified as a list of
segments and any candidate that falls within these segment is rejected. Gating, on the other hand, attempts to
remove problematic data before filtering, thereby preventing false positives from appearing in candidate lists
at any point. Importantly, both approaches assume binary data quality information. That is, the data is either
declared clean or glitchy with complete certainty. iDQ extends this by providing probabilistic measures of
data quality.

Let us begin with vetoes applied after candidates have already been identified. A naive approach is to
perform a simple coincidence experiment between the search’s candidates and data quality monitors. If, for
example, iDQ’s false alarm rate timeseries dips below a threshold anywhere within a coincidence window
surrounding a GW candidate, this may indicate that a non-Gaussian noise artifact is present near the
candidate, which may suggest it is of terrestrial origin. Other methods to identify problematic data based on
auxiliary channels, often constructed by hand, are often used to define such veto segments. Of course, this
depends on the precise way GW candidate reference times are recorded, as low-mass compact binary
coalescences can sometimes coalesce several seconds after the non-Gaussian noise that caused the false alarm.
In effect, this maps timeseries output into binary veto segments with a window and a threshold.

iDQ’s output was used in this way with modest success during the first two observing runs [54], but
vetoes suffer from several limitations. First, searching for extreme excursions in any of iDQ’s timeseries
within a coincidence window naturally introduces an additional trials factor. For example, if the coincidence
window is longer than the typical separation between glitches, then the probability of obtaining pG~ 1 for at
least one point in that window is almost surely 1. This complicates the statistical interpretation of iDQ’s
predictions, since, for example, what iDQ reports as the false alarm probability will not generally correspond
to the false alarm probability of finding a large excursion within a large window. Furthermore, the mapping
from threshold–window pairs to the effective false alarm probability will depend strongly on the quantity
used, and there is no single obvious choice. One may threshold on the false alarm probability in an attempt
to bound the probability of false alarms, but one may alternatively threshold on the likelihood ratio ΛG

C as
this may be more appropriate for likelihood ratio tests. This could be tuned by hand, but that then negates
any efforts to calibrate model predictions within iDQ, thereby defeating the purpose of a large part of the
pipeline. Nonetheless, the conceptual simplicity and ease of implementation make this attractive for practical
applications. For this reason, veto segments remain a core data quality product within GW searches.

A perhaps more sophisticated approach to vetoing based on extremized timeseries is to incorporate the
extremum value within a window as part of a likelihood ratio test. While this may remove some ambiguity
about the effective false alarm probability (the likelihood ratio test will naturally account for the probability
of seeing such extrema within clean data) and remove the need to tune thresholds by hand, the ambiguities
associated with the choice of window and statistic still remain. Although properly constructed likelihood
ratios should be able to simultaneously incorporate arbitrarily many window–statistic pairs, one quickly
encounters the pragmatic issues with modeling high-dimensional probability distributions that led us to
employ machine learning as dimensional reduction in the first place (section 2.2).

Reference [55] explores a somewhat simpler construction, in which the iDQ logΛG
C timeseries is

maximized over 1-second windows, slightly transformed and then applied directly as a multiplicative factor
to a likelihood ratio detection statistic. The transformation for iDQ’s logΛG

C was empirically determined and
fixed a priori, essentially assuming the functional form for the trials factor introduced by the maximization
and how that modified the likelihood of a signal being present. While the assumed mapping may not be
optimal, iDQ was found to moderately benefit current searches even with this simple approach.

Another approach is the idea of gating in some form, in that we should remove all problematic (glitchy)
times before filtering, thereby removing the need to select a specific extremization procedure to veto post hoc.
Heuristically, the logic is that candidates are generated with large ρ by glitches ringing up templates, and we
can model the correlations between ρ and the presence of a glitch either explicitly within a likelihood ratio
test over many variates or implicitly by removing the contribution of h(t) due to a glitch from the matched
filter response altogether.

Such gating schemes are now ubiquitous within the field and trivial to implement within white noise.
However, IFOs generate colored noise and the presence of loud glitches can ring whitening filters, polluting
surrounding data that would otherwise be unaffected by the noise-transient. This prompted the
development of inverse-Tukey window gating [56, 57] as well as more complicated in-painting techniques
designed to zero the filter response within a specified window after whitening [58]. We derive similar
approaches to in-painting in section 6.2 from first-principles.

While gating mechanisms become more complex, we note that current approaches all rely on the same
premise, that there is a predefined set of times declared glitchy that must be removed from the analysis. These
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gates are typically defined by extremization processes over monitors and hard thresholds, and therefore
suffer from the same ambiguities in determining appropriate settings as post hoc veto segments, although
without the ability to simultaneously consider multiple choices as would be possible in a likelihood ratio test.
Nonetheless, it is sometimes the case that filtering artifacts from gating or the ambiguity in defining gates are
preferable to the original noise transient.

One could define gating conditions based on iDQ timeseries, but again we must face the selection of
thresholds with no more obvious metric than guessing and checking how this affects searches’ sensitivities.
One could be tempted to soften the hard thresholds with an adaptive gate, such that the matched filter
response of a timeseries h with a filter f would be modified to

ρC(t) =

ˆ
dτh(t− τ)f(τ)p(C|M(⃗a(τ))) (14)

in effect estimating ρ by probabilistically keeping the times expected to be clean based on auxiliary degrees of
freedom. Again, while heuristically appealing, it is not clear that this approach is optimal. Indeed, it suffers
from the same issues of whether to apply the adaptive gate before or after whitening the data as normal gates.

While GW searches have benefited from data quality information made available in the past (e.g. [17]),
the issues associated with choosing or optimizing ad hoc prescriptions for applying that information beg the
question of whether there is a self-consistent framework that would provide a natural motivation for a
particular approach. We present such a framework, and additionally prescribe how the greater information
available from probabilistic knowledge of data quality can be used without the need to cast that information
into binary flags.

6.2. Optimal Searches with Imperfect Knowledge of non-Gaussian Noise
We now formulate the problem from a first-principles model of the noise processes within our detectors. As a
reminder, we assume linear additive noise so that the detector output is given by h= n+ s+ g, where we only
observe h and the auxiliary state a⃗, meaning we must marginalize over the unobserved latent processes n, s,
and g. We begin by formulating probability distributions for detector noise in the target channel and
auxiliary features conditioned on whether the IFO is in a glitchy or clean state.

In clean states, we assume the noise is generated by a stationary process, at least over timescale relevant to
the filter, such that the autocorrelation function is given by

Cij(τ) =
〈
n(ti)n(tj = ti + τ)

〉
=

ˆ
dfe2πifτS( f) (15)

where S(f ) is the PSD. Adopting the Einstein summation convention, we then obtain

p(n|C)∝ exp

(
−1

2
njC−1

ij ni

)
(16)

by assuming Gaussianity. Furthermore, we expect n to be independent of a⃗ and declare g= 0 ∀ t ∈C such
that

p(n, s,g,h, a⃗|C) = p(n|C)p(⃗a|C)δ(g)p(s)δ(h− (n+ s+ g)) (17)

where the astrophysical strain induced in the detector is assumed to be independent of the instantaneous
detector behavior. We use iDQ’s conditioned likelihood to model p(⃗a|C)∼ p(M(⃗a)|C) and assume an
astrophysically-motivated prior for signals p(s).

In glitchy states, we still assume n is distributed as in clean times and that n is independent of (⃗a, s, g).

p(n, s,g,h, a⃗|G) = p(n|C)p(g|⃗a,G)p(⃗a|G)p(s)δ(h− (n+ s+ g)) (18)

We note that the only difference is that we demand p(g|C) = δ(g) but leave p(g|⃗a,G) as a completely
unknown function. Assuming that the set of data {g(t) | t ∈ G} is distributed somehow, we can construct a
combined likelihood spanning predefined labeling of both G and C samples as

p(n, s,g,h, a⃗) = p(n|C)δ(h− (n+ s+ g))p(s)

[∏
i∈C

p(⃗ai|C)δ(gi)

]p({gj|j ∈ G}|⃗a,G)
∏
j∈G

p(⃗aj|G)

 (19)

Marginalizing over latent processes yields

p(h, a⃗) =

ˆ
DnDsDgp(n, s,g,h, a⃗)
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=

ˆ
Dsp(s)

∏
i∈C

p(⃗ai|C)
∏
j∈G

p(⃗aj|G)
ˆ

Dg

(
p(n= h− s− g|C)p({gj|j ∈ G}|⃗a,G)

∏
i∈C

δ(gi)

)
(20)

The result, in general, depends on how g ∈G is distributed, which is unknown. We note that assuming g
is Gaussian-distributed with divergent variances, so that any g is equally likely, incurs a large Occam factor
from the normalization. While not a problem when considering a single known permutation of which times
are glitchy and which are clean, as was done in reference [58], this Occam factor can present issues when
comparing different permutations, as we do below. Instead, we note that

ˆ
Dg

(
p(n= h− s− g|C)p({gj|j ∈ G}|⃗a,G)

∏
i∈C

δ(gi)

)
≤max

nj∈G
{p(n|C)} | ni = hi − si ∀ i ∈ C

=
1√

(2π)Ndet|C|
exp

−1

2

∑
i,j∈C

(hi − si)C−1
ij (hj − sj)


≢ pC(n= h− s|perm) (21)

where ̸ pC is the distribution for n restricted to n(t)̸= 0 iff t ∈C, which depends on the specific permutation
of which times are clean and which are glitchy. This, then, implies

p(h, a⃗|perm) =

ˆ
Dsp(s)

∏
i∈C

p(⃗ai|C)
∏
j∈G

p(⃗aj|G)
ˆ

Dg

([∏
i∈C

δ(gi)

]
p({gj|j ∈ G}|⃗a,G)p(n= h− s− g|C)

)

≤
ˆ

Dsp(s)
∏
i∈C

p(⃗ai|C)
∏
j∈G

p(⃗aj|G) ̸ pC(n= h− s|perm) (22)

which is not a proper distribution (i.e. normalizable) because of the maximization, but instead is an upper
bound on the marginal likelihood for h and a⃗ given a permutation.

We, in effect, construct an inference only using times declared clean. This is necessary because we do not
know how g is distributed within glitchy times. Alternatively, machine learning models that infer g directly
from a⃗, or other assumptions about how g is distributed (e.g. [59]), would allow us to retain observations of
h∈G and marginalize over g directly. We note that maximized likelihood does not break the assumption of
Gaussianity or stationarity; we simply restrict our selves to times known to be clean and treat glitchy times as
if they were not observed. In spirit, then, this is similar to gating.

However, we only have probabilistic knowledge of which times are glitchy and which are clean based on h
and a⃗. We therefore must marginalize over all permutations weighed by their relative prior probabilities. That
is

p(h, a⃗)≤
∑
perm

p(perm)
∏
i∈C

p(⃗ai|C)
∏
j∈G

p(⃗aj|G)
ˆ

Dsp(s) ̸ pC(n= h− s|perm)


with

p(perm) = p(C)NCp(G)NG (23)

so that the resulting likelihood is

p(h, a⃗)≤
∑
perm

∏
i∈C

p(⃗ai|C)p(C)
∏
j∈G

p(⃗aj|G)p(G)
ˆ

Dsp(s) ̸ pC(n= h− s|perm)


=
∑
perm

(
p(⃗a|perm)p(perm)

ˆ
Dsp(s) ̸ pC(n= h− s|perm)

)
and we remember that the specific sets C and G depend on the permutation. Note, beyond the conditioned
likelihoods from iDQ, even non-trivial prior odds alone can affect the resulting inference. For example, this
tells us that if p(G)= p(C)/10 and p(⃗a|G) = p(⃗a|C) ∀ t, then one should marginalize over all possible
covariance matrices that account for the prior knowledge that one glitch occurs for every 10 clean samples,
on average.

Existing gating approaches assume exact data quality knowledge (p(C|⃗a) is either exactly 0 or exactly 1),
thereby selecting a single permutation and a single noise model. In appendix D, we show how
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marginalization allowing for the presence of glitches, but without a priori knowledge of when the glitches
occur, can effectively gate glitches automatically. This recovers and indeed expands upon current data quality
approaches even without knowledge of auxiliary data. Proper prior odds also allow us to infer how many
glitches are likely to be present and where they are likely to be, all without a priori knowledge beyond the
relative frequencies of G and C samples.

With these marginal-maximized likelihoods in hand, we construct a likelihood ratio for the presence or
absence of a signal in the data.

ΛS
!S =

´
Dsp(s)

∑
perm

p(⃗a|perm)p(perm) ̸ pC(n= h− s|perm)∑
perm

p(⃗a|perm)p(perm) ̸ pC(n= h|perm)
(24)

Appendix D.1 shows how the statistic behaves in the presence of glitches with either quiet or loud signals; in
both cases it remains sensitive to GWs while being insensitive to the presence of glitches.

However, there is always the chance that our noise model remains insufficient to properly characterize
IFO behavior, in which case other well-developed ad hoc signal consistency tests, such as χ2 goodness-of-fit
tests, could be combined with ΛS

!S within a larger likelihood ratio test, similar to how some searches currently
include the matched filter ρ [56, 60], itself a proxy for the likelihood ratio in stationary Gaussian noise. If ΛS

!S

is sufficient, additional variates like ad hoc χ2 tests will not hurt the search’s sensitivity. If it is not, they may
continue to be vital.

Appendix D.2 shows how ΛS
!S’s marginalization acts as an explicit signal consistency test without the need

for additional ad hoc χ2 tests. In effect, the marginalization over whether any particular data sample is
declared glitchy or clean constitutes a signal consistency test conditioned on the rest of the clean data in that
permutation: given the other clean data, is it more likely that the observed datum in question was generated
by stationary Gaussian noise or a glitch?

The computational cost of direct marginalization may be prohibitively high, though, as the
combinatorics of the number of different permutations grow exponentially with the length of the signal.
Appendix D.3 discusses a few possible approximations that may render this more tractable.

We note that many pipelines may not assume the GW signal comes from a known template family and
instead search for unmodeled transients [48, 61–63]. Such searches are often constructed by finding a
maximum likelihood estimator for s and the corresponding maximum likelihood, subject to loose
constraints on the GW waveform morphology or polarization to avoid degeneracies from underconstrained
inferences. While we leave the explicit development of analogous searches to future work, we note that
similar maximum likelihood techniques should work just as well with our marginal-maximized ΛS

!S.
Similarly, one could formulate the probability of observing Gaussian noise in terms of a time-frequency

decomposition of the data instead of the time-domain formulation provided here. In this case, one could
construct an analogous marginal-maximized ΛS

!S where the individual time-frequency pixels were assigned
glitch or clean labels, marginalizing over all permutations. Several parallel streams of probabilistic data
quality, each targeting a specific frequency band, could be produced with parallel instances of the existing
iDQ framework. Such a formulation is perhaps closer in spirit to the time-frequency glitch model considered
in reference [59] than it is to gating, although it would only exacerbate any computational issues associated
with direct marginalization already present in our time-domain formulation.

7. Discussion

We present a statistical learning framework to infer the presence of non-Gaussian noise within
gravitational-wave detectors: iDQ. Using a supervised learning approach to classification, we decompose the
inference into training, evaluation, calibration, and finally timeseries production. iDQ accounts for
non-stationarity in the detectors by continuously re-training classifiers to autonomously detect and exploit
new witnesses for non-Gaussian noise without human intervention. iDQ’s framework can accommodate any
supervised learning algorithm that operates on tabular data, and iDQ supports multiple modes of operation.
Offline, or batch operation reproduces and expands upon previous functionality in the literature, fairly
evaluating different algorithms’ relative performance. Online, or stream operation manages multiple
asynchronous processes to continuously re-train and re-calibrate statistical data quality inferences,
producing robust probabilistic data quality information in real-time.

While some issues remain open, such as the best way to recover from detector non-stationarity (possibly
through the use of weighted training sets) as well as the development and incorporation of novel feature sets
and boosted classifiers, we show how iDQ has already proven invaluable within real GW searches.
Specifically, we show several examples in which iDQ either autonomously reproduced the behavior of
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canonical data quality monitors without a priori knowledge of the type of noise in GW detectors or robustly
identified noise sources otherwise unflagged by canonical monitors. Reference [55] describes how iDQ has
already been included within some GW searches. We reiterate that iDQ has operated in low-latency
throughout the entire advanced detector era and provided robust data quality information in low-latency for
all detections to-date [7].

We also explore current methods of incorporating data quality information within GW searches,
discussing their relative merits and drawbacks, and note that all rely on absolute knowledge of data quality.
That is, most existing techniques implicitly require analysts to assume they know whether the detector is in a
glitchy or clean state with absolute certainty at all times. iDQ moves beyond this assumption. We instead
introduce a way to incorporate probabilistic data quality information that accounts for our imperfect
knowledge of the presence or absence of non-Gaussian noise based on safe auxiliary channels alone. This
approach presents several attractive features, automatically incorporating optimally located gates without a
priori knowledge of where gates should be placed, as well as providing signal-consistency tests from
first-principles noise models rather than ad hoc χ2 tests. While we remark that the computational expense of
direct marginalization over imperfect data quality information may be large, we also suggest several possible
solutions, leaving their full development to future work.

With increasing detection rates and improved detector sensitivity, robust data quality information will
only become more important over the next few years. Indeed, the importance of low-latency information for
multi-messenger astronomy cannot be overstated. iDQ has provided robust low-latency probabilistic data
quality information throughout the advanced detector era, and will continue to do so as GWs reveal new
astrophysical phenomena in the most extreme environments found anywhere in the Universe.
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Appendix A. Gaussian kernel density estimates

We review basic features of kernel density estimates (KDEs) and describe the particular one-dimensional
Gaussian kernel implemented within iDQ. For convenience, iDQ adopts a fixed bandwidth (standard
deviation) for all samples and imposes reflecting boundary conditions in order to avoid edge effects associated
with the finite range of ranks (r∈ [0, 1]). This is done by reflecting the samples across the bounds of their
range so that

{xi}→ {xi}⊕{2Xmin − xi}⊕{2Xmax − xi}, (25)

which forces the KDE’s derivative to vanish at Xmin and Xmax.
We define a Gaussian kernel between two points (x, y) given a bandwidth (b) as

K(x,y;b) =
1√
2πb

e−(x−y)2/2b2 . (26)

We consider a set of observed samples (xi) with associated weights (wi). The samples are assumed to be
independently and identically distributed according to p(x). iDQ assigns equal weights to each sample.
Similarly, without loss of generality, we can set

∑
iwi = 1, but this is not strictly necessary. We consider the

following estimate for the probability density function p(y) given b within the prior bounds xi ∈ [Xmin,Xmax].

p̂(y|b,{xi}) =
1

N
∑
i

wi (K(y,xi;b)+K(y,2Xmin − xi;b)+K(y,2Xmax − xi;b)) (27)
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N =

Xmaxˆ

Xmin

dy
∑
i

wi (K(y,xi;b)+K(y,2Xmin − xi;b)+K(y,2Xmax − xi;b)) (28)

where the observed samples xi are explicitly reflected around the prior bounds. This is the basic estimator
used within iDQ’s continuous calibration maps (section 3.5.1) to model the conditioned likelihoods given
observed evaluated sample sets. Furthermore, iDQ estimates the corresponding survival functions

P̂(y|b,{xi}) =
Xmaxˆ

y

dγ p̂(γ|b,{xi}) (29)

=
1

N
∑
i

wi

Xmaxˆ

y

dγ (K(γ,xi;b)+K(γ,2Xmin − xi;b)+K(γ,2Xmax − xi;b)) (30)

with cumulative normal distributions computed during a single iteration over the sample set rather than
numerical integration of p̂. Given a bandwidth, iDQ generates a dense grid of ranks and evaluates these
estimators once for each grid point. Calibration during timeseries production (section 3.6) can then be
performed rapidly via linear interpolation without requiring repeated iteration over the sample set, which
can be quite large:O(104). We now consider the choice of bandwidth and how to represent the uncertainty
in our KDE representation given different realizations of the observed sample set. While all KDEs are biased
estimators (E[p̂(y)] ̸= p(y)) because they smooth the true distribution according to K(x, y; b), our bandwidth
optimization procedure finds the best representation of p possible given our kernel. In practice, then, iDQ
produces correct coverage (e.g. 50\% of samples have nominal survival functions≤ 50\%) to within the
expected statistical uncertainty for stationary distributions.

A.1. Bandwidth optimization

Common practice is to define a leave-one-out cross-validation likelihood and use this to optimize the
bandwidth. We adopt the following likelihood

logL(b;{xi}) =
1∑

i
wi

∑
i

wi log

 1∑
j ̸=i

wj

∑
j̸=i

wjK(xi,xj;b)

 (31)

As shown in reference [48], maximizing this likelihood is equivalent to minimizing the Kullback-Leibler
divergence between the true distribution and our estimator, approximating an integral over the measure
defined by the true distribution p(x) with a Monte-Carlo integral over the observed sample set. The astute
reader will note that we do not impose reflecting boundary conditions within logL. We expect the impact to
be minor and the computational complexity is significantly lessened.

iDQ optimizes b separately for G and C samples through direct bisection searches within prespecified
prior bounds. While this generates reliable estimators, we also note that logL is often quite flat near its
maximum and nearby bandwidths may produce similarly well behaved estimators. In principle, one could
marginalize over the choice of bandwidth with respect to a prior

p̂marg(y|{xi}) =
bmaxˆ

bmin

dbp(b)L(b;{xi})p̂(y;b,{xi}). (32)

We expect marginalization to produce more robust estimators [64], although we find that using the b that
maximizes logL works well enough in practice and avoids the additional computational burden of direct
numerical marginalization.
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A.2. Representating an estimator’s uncertainty as a β-distribution

Because iDQ has access to only a finite number of samples, p̂(x) will not perfectly reproduce p(x). iDQ
models this sample uncertainty with β-distributions. Let us consider the function

f(y;b,{xi}) = p̂(y|b,{xi})
√
2πb

3

=

√
2πb

3
∑
i
wi

∑
i

wi (K(xi,y;b)+K(2Xmin − xi,y;b)+K(2Xmax − xi,y;b)) (33)

Because this statistic depends on the set of random variables xi, it will also follow some distribution. We
note that f ∈ (0, 1], and therefore a β-distribution is a good candidate for compactly representing the
expected uncertainty. Specifically, we fit a β-distribution to estimates of the mean and variance of f, based on
the observed sample set.

E [f(y;b)] =

ˆ (∏
i

dxip(xi)

)
f(y;b,{xi})

=

ˆ ∏
i

dxip(xi)

√
2πb

3
∑
j
wj

∑
j

wj

(
K(xj,y;b)+K(2Xmin − xj,y;b)+K(2Xmax − xj,y;b)

)
=

√
2πb

3
∑
j
wj

∑
j

wj

ˆ
dxjp(xj)

(
K(xj,y;b)+K(2Xmin − xj,y;b)+K(2Xmax − xj,y;b)

)ˆ ∏
i̸=j

dxip(xi)

=

√
2πb

3

ˆ
dxp(x)(K(x,y;b)+K(2Xmin − x,y;b)+K(2Xmax − x,y;b))

≈
√
2πb

3
∑
j
wj

∑
j

wj

(
K(xj,y;b)+K(2Xmin − xj,y;b)+K(2Xmax − xj,y;b)

)
(34)

where in the last line we approximate the integral over p(x) as a weighed sum of our observed samples. We
also calculate the second moment as

E
[
f2
]
=

ˆ (∏
i

dxip(xi)

)
f2

=

√
2πb

3
∑
j
wj


2∑

j

w2
j

ˆ dxp(x)(K(x,y;b)+K(2Xmin − x,y;b)+K(2Xmax − x,y;b))2

+

∑
j,k̸=j

wjwk

(ˆ dxp(x)
(
K(xj,y;b)+K(2Xmin − xj,y;b)+K(2Xmax − xj,y;b)

))2


=

√
2πb

3
∑
j
wj


2
∑

j

w2
j

 1∑
j
wj

∑
i

wi(K(xi,y;b)+K(2Xmin − xi,y;b)+K(2Xmax − xi,y;b))
2

+


∑

j

wj

2

−
∑
j

w2
j


 1∑

j
wj

∑
i

(K(xi,y;b)+K(2Xmin − xi,y;b)+K(2Xmax − xi,y;b))


2

(35)

and thereby obtain the variance directly via V [f(y;b)] = E
[
f2
]
− E [f]2. In the case of equal weights with N

samples, this yields

V [f(y;b)] =
2πb2

N

[
1

N

∑
i

(
K(xj,y;b)+K(2Xmin − xj,y;b)+K(2Xmax − xj,y;b)

)2
−

(
1

N

∑
i

(
K(xj,y;b)+K(2Xmin − xj,y;b)+K(2Xmax − xj,y;b)

))2
 .
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We note that V{x}[f(y;b)]∝ N−1Vx[K(y,x;b)], as expected for a Fisher-efficient estimator. Now, the
β-distribution defined by

Beta(x;α,β)∝ xα−1(1− x)β−1
∣∣ x ∈ [0,1] (36)

has mean and variance

E[x] =
α

α+β
(37)

V[x] =
αβ

(α+β)2(α+β+ 1)
(38)

We choose α and β to reproduce E[f ] and V[f ]. The distribution of our estimator p̂(y;b,{xi}) is
therefore given by

p̂(y;b,{xi})∼
(

3√
2πb

)
Beta(α(b,{xi}),β(b,{xi})) (39)

where the fit parameters are a function of the bandwidth and observed samples. We note that some estimates
of the mean and variance have no corresponding solution in terms of α and β, typically corresponding to
expectation values very close to 0 or 1. We therefore impose a minimum expectation value of ~ 10−6 for
numerical stability.

iDQ estimates the best-fit α and β parameters at every point on the dense grid over ranks used to
compute p̂, interpolating between neighboring grid points as needed. This provides rapid estimates of
sampling uncertainty at the same time as point estimates within timeseries production. A similar procedure
is used to model uncertainty in the cumulative distribution P̂(x). Sample uncertainty for the likelihood ratio
ΛG

C (equation (6)) is obtained via Monte-Carlo sampling from the β-distributions representing p̂(r|G) and
p̂(r|C). Again, these uncertainty measures are computed once for each grid point and interpolated as needed.

Appendix B. Updates to the Ordered Veto List (OVL) algorithm

The Ordered Veto List (OVL, [29]) algorithm has been updated since originally published. These changes
provide greater flexibility within the algorithm as well as parallelization and other computational
optimizations. We refer readers to reference [29] for an introduction to OVL and focus only on the updates
in what follows.

B.1. Veto performance metrics

First, we note that OVL is very similar in concept to both hVeto [30] and UPV [31], in that this class of
algorithm develops a hierarchically applied list of veto configurations, each consisting of a single auxiliary
channel, a significance threshold for triggers in that channel, and a symmetric time window used to
construct veto segments around noise in the auxiliary channel. By direct optimization over many
channel–threshold–window tuples, the algorithms identify a preferred order in which to apply the veto
conditions. As discussed in reference [29], the ordering depends on the metric used to rank channel
performance, and, indeed, this is the main difference between the original OVL implementation, hVeto, and
UPV. Specifically, OVL originally used the ratio of the marginal efficiency to the marginal deadtime. That is,
the fraction of remaining noise transients removed to the fraction of remaining time removed by the veto
configuration. This behaves similarly to a likelihood ratio test and optimizes ROC curves, subject to
algorithmic constraints. hVeto uses a measure of the Poisson significance of removing coincident noise
transients that, as discussed in reference [29], favors veto conditions that remove many noise transients given
a fixed efficiency–deadtime ratio. UPV orders configurations by the ratio of the number of target transients
removed to the number of auxiliary transients present, thereby preferring more deterministic couplings.
However, there are counterexamples (e.g. figure 9).

Because each metric has its own merits, the updated OVL algorithm now allows users to specify the
metric used to rank configurations, thereby reproducing the behavior of the original OVL, hVeto, and UPV
within a single framework. We note that OVL uses exact segment logic when constructing segments, unlike
hVeto [30], and defines the use percentage slightly differently than UPV. OVL computes the use percentage as
the ratio of target transients removed to the effective number of auxiliary transients present, defined as the
quotient of the vetoed time associated with an entire veto configuration to the window used to construct the
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veto segments. The effective number of auxiliary transients, then, clusters nearby auxiliary noise to avoid
overcounting if many neighboring auxiliary disturbances within a single channel produce nearly identical
veto segments. Anecdotally, we find that ranking by either the efficiency-to-deadtime ratio or the use
percentage routinely produce better ROC curves than ranking by the Poisson significance, in agreement with
reference [29].

B.2. Training

OVL’s training scheme has also been slightly updated, although it still remains largely as described in
reference [29]. Specifically, OVL still trains via a nested iteration, evaluating veto configurations’
performance hierarchically with a given ordering, pruning ineffective configurations, and re-ordering the list
within each epoch. Pruning is done to avoid over-training and is accomplished by setting minima on various
veto configuration performance metrics, like the efficiency–deadtime ratio or Poisson significance. The
precise impact of these minima has not been quantified, but typically analysts select values to balance the loss
in efficiency associated with restricting the vetolist to only the most exceptionally well-ranked veto
configurations and the generalization error introduced by over-fitting, as efficient vetoes can sometimes
correspond to statistically rare accidental coincidences within the training set that do not generalize well. For
this reason, it is thought that pruning based on the Poisson significance has the largest impact on
over-training.

OVL learns when it re-orders its list, as this places higher ranked veto conditions first. Because of the
hierarchical nature of OVL, we take care to re-order the veto configurations to preserve as much information
as possible. Specifically, within each re-ordering, we first sort the list to place high-threshold, small-window
configurations first. All else being equal, these should produce better veto configurations. Only then do we
order the configurations by their metrics, so that configurations with the same score are ordered to prefer
high thresholds and short windows. Pragmatically, we find this makes a small but noticeable difference in the
final ordering produced by the algorithm.

B.3. Ranks

Because iDQ requires classifiers to generate ranks within the unit interval and the metrics used within OVL
typically span the positive real line, we map the metric scores (m) into ranks (r) according to

r=
m

ξ+m
, (40)

where the scale (ξ) is fixed for each metric separately to account for their very different dynamic ranges seen
with typical interferometric data. We note that this mapping is not unique, and other functional forms
would accomplish the same task. However, equation (40) distributes the ranks more uniformly over the unit
interval than some other mappings, and this can help iDQ’s calibration build accurate representations of the
resulting conditional likelihoods.

B.4. Feature importance

Finally, we would be remiss if we did not discuss OVL’s notion of feature importance, one of the most
attractive aspects of the algorithm besides its robust performance. Because OVL only considers a single
auxiliary channel at a time and applies them in a specific order, it is straightforward to determine which
auxiliary features (channel, threshold, and window) are responsible for OVL’s predicted rank at any time. In
this way, OVL reports which veto configurations were active as a function of time while simultaneously
reporting their relative importances as their ranks. Indeed, feature importance as a function of time is shown
in figures 7 and 8.

OVL also measures correlations between veto conditions. Specifically, it can report the intersection of
segments created by each veto configuration as a symmetric matrix. Diagonal elements correspond to the
time contained within of each set of veto segments separately. Nearly redundant veto configurations, then,
will produce intersection times close to the times of each configuration separately. We note that OVL’s
training algorithm, by design, will remove redundant configurations and therefore reduce the amount of
overlap in the list by applying configurations hierarchically, removing vetoed transients and time before
proceeding to the next configuration. This, combined with pruning, will tend to select a single witness
configuration out of sets of highly correlated configurations. Nonetheless, such ‘covariance matrices’
between veto configurations may prove useful when diagnosing the source of specific noise transients
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identified by the selected auxiliary witnesses. Figure B1 shows examples of correlations between the veto
configurations used surrounding GW170817.

Appendix C. Synthetic feature generation

In addition to supporting multiple possible feature sources, each supplying distinct sets of features, iDQ can
also generate synthetic data on-the-fly. This is done for testing purposes and to benchmark algorithms.
Briefly, iDQ simulates an arbitrary number of stationary Poisson processes representing sources of noise.
Each of these synthetic processes is described by a separate rate as well as distributions over frequency and ρ.
Synthetic processes are then witnessed by user-specified sets of channels, and each witness records values
scattered around the true value within the process (e.g. central times recorded in witness channels are
Gaussian-distributed around the central times produced by the process, with separate standard deviations
for each witness). In this way, the synthetic processes entangle the features witnessed by several channels, and
noise in a single channel can be modeled by a separate process witnessed only by that channel. Each channel
may witness multiple streams, generating arbitrarily complex correlations within the feature set. This
implementation realizes the probabilistic graphical model depicted in figure 1.

Appendix D. Futher discussion of optimal searches

We now explore some attractive features and limiting cases of ΛS
!S (equation (24)) in order to build further

intuition for how marginalization over probabilistic data quality information benefits searches. We note that
if p(C|⃗a) is binary, that is we assume perfect knowledge of which data is clean and which is glitchy, only a
single permutation retains non-trivial probability. Current gating schemes, then, are equivalent to assuming
perfect knowledge of data quality within the detectors at all times, at best an exaggeration of the current state
of the field since the sources of many non-Gaussian noise transients remain unknown (e.g. [40, 65]).

We also note that, assuming trivial conditioned likelihoods from iDQ (p(r|C) = p(r|G) ∀ r), the weight
assigned to each permutation is p(perm) = p(C)NCp(G)NG = p(C)NC(1− p(C))N−NC , which is just the
binomial distribution with N trials, NC successes, and a probability of success given by p(C). This has the
appealing interpretation of marginalizing over the number and placement of glitches given knowledge about
their relative frequency but nothing else. Indeed, this is the most basic piece of data quality information that
could be incorporated and, as we will see, it could already significantly improve search backgrounds.

D.1. Toy model

Let us consider a toy model of stationary white noise in three observed data. We assume constant prior odds
for G vs. C, but otherwise assume a⃗ is uninformative. The marginal-maximized likelihood then becomes

p(h, a⃗) =
1

(2π)3/2σ3

[
p(C)3 exp

(
−|h1 − s1|2 + |h2 − s2|2 + |h3 − s3|2

2σ2

)
+ p(C)2p(G)

(
exp

(
−|h1 − s1|2 + |h2 − s2|2

2σ2

)
+exp

(
−|h1 − s1|2 + |h3 − s3|2

2σ2

)
+ exp

(
−|h2 − s2|2 + |h3 − s3|2

2σ2

))
+ p(C)p(G)2

(
exp

(
−|h1 − s1|2

2σ2

)
+ exp

(
−|h2 − s2|2

2σ2

)
+ exp

(
−|h3 − s3|2

2σ2

))
+p(G)3

]
Now, let us further assume t1, t3 ∈ C and t2∈G for concreteness such that

h1 − s1 = n1 ∼ σ (41)

h2 − s2 = n2 + g2 ≫ σ (42)

h3 − s3 = n3 ∼ σ (43)
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In this case, we obtain

p(h, a⃗)≈ 1

(2π)3/2σ3

[
p(C)3 exp

(
−|g2|2

2σ2

)
+ p(C)2p(G)

(
exp

(
−|n1|2 + |n3|2

2σ2

)
+ 2exp

(
−|g2|2

2σ2

))
+p(C)p(G)2

(
exp

(
−|n1|2

2σ2

)
+ exp

(
−|g2|2

2σ2

)
+ exp

(
−|n3|2

2σ2

))
+ p(G)3

]
≈ 1

(2π)3/2σ3

[
p(C)3e−|g2|2/2σ2

+ p(C)2p(G)e−(|n1|2+|n3|2)/2σ2

+ p(C)p(G)2
(
e−|n1|2/2σ2

+ e−|n3|2/2σ2
)

+p(G)3
]

If we now assume glitches are relatively rare a priori (p(C)/p(G)≫ e−1/2), then the second term
dominates over the third and fourth terms. Because the glitch is loud, we additionally have
e−|g2|2/2σ2 ≪ p(G)/p(C) and the second term also dominates the first term, yielding

p(h, a⃗)≈ p(C)2p(G)

(2π)3/2σ3
exp

(
−|h1 − s1|2 + |h3 − s3|2

2σ2

)
(44)

which is equivalent to the what we would obtain if we knew the correct sample to gate a priori, even though
we did not, up to a normalization constant. Specifically, the marginalization automatically detects the correct
placement for gates based on the relative frequency of G and C samples and the data’s consistency with
Gaussian noise without any other a priori knowledge. We note that, if the signal is quiet (h− s~ h~σ), then
we obtain

logΛS
!S ≈−|h1 − s1|2 + |h3 − s3|2

2σ2
+

|h1|2 + |h3|2

2σ2
(45)

exactly as expected for stationary white Gaussian noise with the glitch gated with precise a priori knowledge
of the glitch’s location. If instead the signal is loud, the inference is more complicated as the noise-only model
may confuse what is really a loud signal with a loud glitch, although we have

ΛS
!S ≈

(
p(C)

p(G)

)2

exp

(
−|h1 − s1|2 + |h3 − s3|2)

2σ2

)
∼
(
p(C)

p(G)

)2

≫ 1 (46)

which is still large due to the prior odds and therefore still strongly in favor of a signal. While the full solution
with more samples and colored noise is more challenging technically, is follows the same basic principles.

We again note that the benefits of marginalization seen within this toy model assume uninformative
auxiliary information and simply accounts for the possibility that glitches exist within the detectors and our
imperfect knowledge of data quality. Informative supervised learning models based on a⃗ with correct
calibration, such as those provided by iDQ, can only further improve the inference. In the case of our toy
model, this would simply add additional weight to the correct permutation that gated the second sample.

D.2. Signal consistency tests

We remark that signal consistency tests, like χ2 goodness-of-fit, require the data to be consistent over several
smaller, independent trials, looking at the distribution of

∑
t ρ(t)

2 rather than (
∑

t ρ(t))
2. We note that such

χ2 statistics are ad hoc and not uniquely defined. Therefore, there is no particular reason we should expect to
derive the form of any such statistic from first-principles considerations. Nonetheless, we show that
marginalization naturally defines a signal consistency requirement similar in spirit to, but different in detail
from, existing χ2 tests.

Let us further consider the model comparisons implicit with the marginalization over permutations. As
an example, let us assume that the G or C assignments are known perfectly for all samples except one: hk. The
explicit marginalization over this single unknown sample is then

p(h, a⃗) = p(⃗ak|C)p(C)


exp

(
− 1

2

∑
i,j∈C+k

(hi − si)Cij(hj − sj)

)
√
(2π)Ndet|C|
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+ p(⃗ak|G)p(G)


exp

(
− 1

2

∑
i,j∈C

(hi − si)Cij(hj − sj)

)
√
(2π)Ndet|C|


= p(⃗ak|C)p(C) ̸ pC(n= h− s)

(
exp

(
−
∑
i∈C

(hi − si)C−1
ik (hk − sk)−

1

2
(hk − sk)

2C−1
kk

)
+

p(G|⃗ak)
p(C|⃗ak)

)
(47)

We note that

exp

(
−
∑
i∈C

(hi − si)C−1
ik (hk − sk)−

1

2
(hk − sk)

2C−1
kk

)
=

√
2π

det|C|C+k

det|C|C
p(hk − sk|{hi − si ∀ i ∈ C}) (48)

which is the likelihood of observing (hk − sk) as part of the stationary Gaussian noise process conditioned on
the observations of the rest of the Gaussian noise process known to be clean (hi − si ∀ i ∈ C) multiplied by
the prior volume allowed by the additional degrees of freedom. This is a signal consistency test that checks
whether the kth sample agrees with the signal seen in the other NC samples. Marginalization compares this
consistency test against the posterior odds that the kth sample was a glitch based on a⃗k, effectively placing a
lower bound on the probability of seeing any hk − sk. Within likelihood ratio tests, this prevents the
noise-only model from becoming vanishingly small in the presence of loud glitches, thereby preventing the
likelihood ratio from diverging and rendering the search much less sensitive to glitches. Indeed, this is exactly
the behavior seen in our toy model.

D.3. Computational cost of marginalization

We note that the marginalization over all permutations proposed within ΛS
!S is combinatorially expensive.

Efficiently implementing such a calculation is an open problem, but we discuss a few possible solutions
below.

First, one could Monte-Carlo integrate instead of performing the entire sum. However, Monte-Carlo
integrals have variances that scale as

Var

[
1

N

∑
i

fi

]
∼ 1

N
Var [f] (49)

The integral’s variance, then, could be quite large in the presence of loud glitches as the variance between
different permutations would be large. Such integrals may require many samples to converge.

Alternatively, one could sample from the sum in a scheme similar to the Metropolis-Hasting
algorithm [66]. Jump proposals would consist of flipping the label of one sample from G to C or vice versa,
much like an Ising spin model [67]. However, Markov-Chain Monte-Carlo estimates of marginal likelihoods
are not without their own computational challenges and may not scale well in practice.

Regardless of the sampling procedure, we note that the number of possible permutations could be
exponentially reduced by labeling small contiguous segments as G or C instead of labeling every time sample
separately. This would greatly reduce the computational cost, perhaps to something tractable, but introduces
issues of how to select the window size. Based on our considerations of model comparisons occurring within
the marginalization, windows of comparable size to the stationary Gaussian noise’s autocorrelation times
may be appropriate, as this is the relevant timescale over which hk|hi∈C becomes less in formed by hi∈C and
therefore less stringent of a test.

We would need to compute the probability that there was a glitch present at any time within each
segment. This coarse-graining should be straightforward, though, as

p(G ∈ window|⃗a) = 1−
∏

ti∈window

p(C|⃗a(ti)) (50)

A related approach would be to round the probabilities up or down based on some threshold. That is, if
p(C|⃗a) is above some threshold, we only consider permutations where that sample is labeled C. Similarly, if
p(C|⃗a) is below another threshold, we only consider permutations where that sample is labeled G,
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marginalizing over only the samples in the middle. In effect, this would define

peff(C|⃗a) =


1 p(C|⃗a)≥ pmax

p(C|⃗a) pmin < p(C|⃗a)< pmax

0 p(C|⃗a)≤ pmin

(51)

There is no single obvious choice of thresholds, however, so care would be needed. We note that this is
similar to the auto-gating implemented within some existing searches [56, 60], although the thresholds are
placed on ρ and are not currently determined by p(G|⃗a)/p(C|⃗a). What’s more, they ignore the conditioning
on other data already declared clean. Indeed, this could be considered a conservative choice as the threshold
to declare a sample clean based on the conditioned likelihood hk|hi∈C should only be more stringent than a
threshold derived without the observations of hi∈C.

Such coarse-graining is likely to result in information loss and therefore less sensitive searches. However,
the impact may be small enough and the computational speed-ups large enough to make this tractable,
thereby improving GW search sensitivity compared to current approaches that do not marginalize over
imperfect data quality information. reference [55] implements one such coarse-graining procedure, although
they do not attempt to marginalize over probabilistic data quality and instead directly modify their
likelihood ratio with a multiplicative factor that depends on iDQ’s output. Even this simple approach already
shows modest improvements in search sensitivity.
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