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Abstract
This paper introduces a novel algorithmic framework for a deep neural network (DNN), which in
a mathematically rigorous manner, allows us to incorporate history (or memory) into the
network—it ensures all layers are connected to one another. This DNN, called Fractional-DNN,
can be viewed as a time-discretization of a fractional in time non-linear ordinary differential
equation (ODE). The learning problem then is a minimization problem subject to that fractional
ODE as constraints. We emphasize that an analogy between the existing DNN and ODEs, with
standard time derivative, is well-known by now. The focus of our work is the Fractional-DNN.
Using the Lagrangian approach, we provide a derivation of the backward propagation and the
design equations. We test our network on several datasets for classification problems.
Fractional-DNN offers various advantages over the existing DNN. The key benefits are a significant
improvement to the vanishing gradient issue due to the memory effect, and better handling of
nonsmooth data due to the network’s ability to approximate non-smooth functions.

1. Introduction

Deep learning has emerged as a potent area of research and has enabled a remarkable progress in recent years
spanning domains like imaging science [1–4], biomedical applications [5–7], satellite imagery, remote
sensing [8–10], etc. However, the mathematical foundations of many machine learning architectures are
largely lacking [11–15]. The current trend of success is largely due to the empirical evidence. Due to the lack
of mathematical foundation, it becomes challenging to understand the detailed workings of networks
[16, 17].

The overarching goal of machine learning algorithms is to learn a function using some known data. Deep
Neural Networks (DNN), like Residual Neural Networks (RNN), are a popular family of deep learning
architectures which have turned out to be groundbreaking in imaging science. An introductory example of
RNN is the ResNet [1] which has been successful for classification problems in imaging science. Compared to
the classical DNNs, the innovation of the RNN architecture comes from a simple addition of an identity map
between each layer of the network. This ensures a continued flow of information from one layer to another.
Despite their success, DNNs are prone to various challenges such as vanishing gradients [11, 18, 19],
difficulty in approximating non-smooth functions, long training time [20], etc.

We remark that recently in [21] the authors have introduced a DenseNet, which is a new approach to
prevent the gradient ‘wash out’ by considering dense blocks, in which each layer takes into account all the
previous layers (or the memory). They proceed by concatenating the outputs of each dense block which is
then fed as an input to the next dense block. Clearly as the number of layers grow, it can become prohibitively
expensive for information to propagate through the network. DenseNet can potentially overcome the
vanishing gradient issue, but it is only an adhoc method [21, 22]. Some other networks that have attempted
to induce multilayer connections are Highway Net [23], AdaNet [24], ResNetPlus [25], etc. Furthermore,
rigorous approaches to learn nonsmooth functions such as the absolute value function |x| are scarce [26].

There has been a recent push in the scientific community to develop rigorous mathematical models and
understanding of the DNNs [15]. One way of doing so is to look at their architecture as dynamical systems.
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The articles [14, 27–30] have established that a DNN can be regarded as an optimization problem subject to
a discrete ordinary differential equation (ODE) as constraints. The limiting problem in the continuous
setting is an ODE constrained optimization problem [14, 29]. Notice that designing the solution algorithms
at the continuous level can lead to architecture independence, i.e. the number of iterations remains the same
even if the number of layers is increased.

The purpose of this paper is to present a novel fractional deep neural network which allows the network
to access historic information of input and gradients across all subsequent layers. This is facilitated via our
proposed use of fractional derivative based ODE as constraints. We derive the optimality conditions for this
network using the Lagrangian approach. Next, we consider a discretization for this fractional ODE and the
resulting DNN is called Fractional-DNN. We provide the algorithm and show numerical examples on some
standard datasets.

For completeness, we also mention the Fractional Physics Informed Neural Networks (fPINNs) [31],
where the authors aim to solve Partial Differential Equations (PDEs), in particular fractional PDEs. This is an
extension of authors’ previous works in [32, 33]. Their idea is to minimize the PDE residual in a least-squares
formulation and learn the unknown parameters using a standard feedforward NN. We also mention [34, 35],
where authors solve fractional differential equations using artificial neural networks. This is completely
different than what we propose in this paper. Our goal is to introduce a new NN with memory using the
fractional derivatives. We formulate the NN problem as an ODE constrained optimal control problem and
use Lagrangian formulation to derive the optimality conditions. We apply our NN to classification problems
but notice that it can also be applied to the problems discussed in [31, 32].

Fractional derivatives appear in numerous scientific and engineering domains. The application of
fractional derivatives onto functions requires less smoothness on these functions, in comparison with the
integer order derivatives. The main idea behind fractional derivatives is to replace the ‘derivatives’ by
‘integrals’. The resulting fractional operators are nonlocal, which naturally enables long range interactions.
This idea is being widely used, for example, in Peridynamics which has recently emerged as a new branch of
mechanics. Peridynamics can naturally capture nonsmooth effects such as crack formation [36, 37]. Notice
that the classical derivatives do not make sense in that nonsmooth setting. As in the classical setting, various
stochastic models can also describe the occurrence of fractional derivatives in diffusion processes. For
example, fractional Laplacian corresponds to long jump random walk. If the particle experiences delays
between the jumps, one arrives at the fractional time derivatives, see [38–41] and the references therein. By
using the first principle arguments, the fractional Laplacian has also made an appearance, recently, in
geophysics [42, 43]. Fractional Laplacian is also being used extensively as a regularizer in inverse problems
[2, 44, 45]. On the other hand, fractional time derivative can capture hereditary or memory effects in
materials [46].

The inherent nonlocality of fractional operators and their flexibility in applications to nonsmooth
functions, is the key motivation for us to use them in Deep Learning. In the architectural setting of Deep
Learning algorithms, this nonlocality translates to long-range connections between the network layers, i.e. it
goes beyond the simple addition of skip connections. In [47], the authors have considered a dynamical
system representation of a classical RNN, which makes use of integer order derivative to model single layer
skip connection. In our work, we build upon the same model by replacing integer order time derivative with
fractional order time derivative. In particular, fractional time derivative allows memory effects, therefore, in
our proposed Fractional-DNN all the layers are connected to one another. In addition, fractional time
derivatives can be applied to nonsmooth functions [48]. Fractional calculus has also been used in optimal
control problem, see [49–51]. Thus, we aim to keep the benefits of standard DNN and the ideology of
DenseNet, but remove the bottlenecks.

There are several benefits of using fractional order derivatives in machine learning architectures. First,
they facilitate modeling of multi-layer connections. This in turn leads to an improved handling of the
vanishing gradient issue, persistent in deep learning architectures. We have demonstrated this numerically, in
this paper, through our proposed Fractional-DNN algorithm. Secondly, they allow approximation of
functions, i.e. network architectures, which are not smooth. We have demonstrated how fractional time
derivatives can be applied to nonsmooth functions. Thirdly, we have empirically observed that our proposed
Fractional-DNN brings about an improvement in the learning rate, which is an important hyper-parameter
that influences training [52]. Lastly, use of fractional order derivatives in deep learning brings the two fields
of optimal control and deep learning closer, where both fields can benefit from the tools that have been
independently discovered thus forth, see for instance [2, 30, 31, 47, 53].

The paper is organized as follows. In section 2 we introduce notations and definitions. We introduce our
proposed Fractional-DNN in section 3. This is followed by section 4 where we discuss its numerical
approximation. In section 5, we state our algorithm. The numerical examples given in section 6 show the
working and improvements due to the proposed ideas on three different datasets.
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Table 1. Table of Notations.

Symbol Description

n ∈ N Number of distinct samples
nf ∈ N Number of sample features
nc ∈ N Number of classes
N ∈ N Number of network layers (i.e. network depth)
Y ∈ Rnf×n Y= {y(i)}ni=1 is the collective feature set of n samples.
Cobs ∈ Rnc×n Cobs = {c(i)}ni=1 are the true class labels of the input data
W ∈ Rnc×nf Weights
K ∈ Rnf × nf Linear operator (distinct for each layer)
b ∈ R Bias (distinct for each layer)
P ∈ Rnf×n Lagrange multiplier
enc ∈ Rnc A vector of ones
τ ∈ R Time step-length
σ(·) Activation function, acting pointwise
γ Order of fractional time derivative
(·) ′ Derivative w.r.t. the argument
tr(·) Trace operator
(·)⊺ Matrix transpose
⊙ Point-wise multiplication
m1 Max count for randomly selecting a mini-batch in training
m2 Max iteration count for gradient-based optimization solver
αtrain, αtest Percentage of training and testing data correctly identified

2. Preliminaries

The purpose of this section is to introduce some notations and definitions that we will use throughout the
paper. We begin with table 1 where we state the standard notations. In section 2.1 we describe the
well-known softmax loss function. Section 2.2 is dedicated to the Caputo fractional time derivative.

2.1. Cross entropy with softmax function
Given collective feature matrix Y with true labels Cobs and the unknown weightsW, the cross entropy loss
function, given by

E(W,Y,Cobs) =−1

n
tr(C⊺

obs log(S(W,Y))), (1)

measures the discrepancy between the true labels Cobs and the predicted labels log(S(W,Y)). Here,

S(W,Y) := exp(WY) diag

(
1

e⊺nc exp(WY)

)
(2)

is the softmax classifier function, which gives normalized probabilities of samples belonging to the classes.

2.2. Caputo fractional derivative
In this section, we define the notion of Caputo fractional derivative and refer [54, equations (2.4.17) and
(2.4.18)], also see [55], for the following definitions.

Definition 2.1 (Left Caputo Fractional Derivative). For a fixed real number 0< γ < 1, and an absolutely
continuous function u : [0,T]→ R, the left Caputo fractional derivative is defined by:

dγt u(t) =
1

Γ(1− γ)

ˆ t

0

u ′(r)

(t− r)γ
dr, (3)

where Γ(·) is the Euler-Gamma function.

Definition 2.2 (Right Caputo Fractional Derivative). For a fixed real number 0< γ < 1, and an absolutely
continuous function u : [0,T]→ R, the right Caputo fractional derivative is defined by:

dγT−tu(t) =
−1

Γ(1− γ)

ˆ T

t

u ′(r)

(r− t)γ
dr. (4)
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Moreover, if γ= 1 and u∈C1([0,T]), then one can show that dγt u(t) = u ′(t) = dγT−tu(t). We note that the
fractional derivatives in equation (3) and equation (4) are nonlocal operators. Indeed, the derivative of u at a
point t depends on all the past and future events, respectively. This behavior is different than the classical case
of γ= 1.

The left and right Caputo fractional derivatives are linked by the following fractional integration by parts
formula, [49, Lemma 3], for γ ∈ (0, 1), let

Lγ :=
{
f ∈ C([0,T]) : dγt f ∈ L2(0,T)

}
, Rγ :=

{
f ∈ C([0,T]) : dγT−tf ∈ L2(0,T)

}
.

Lemma 2.3 (Fractional Integration-by-Parts). For f ∈ Lγ and g ∈ Rγ , the following integration-by-parts
formula holds:

ˆ T

0
dγt f(t)g(t) dt=

ˆ T

0
f(t)dγT−tg(t) dt+ g(T)(I1−γ

t f)(T)− f(0)(I1−γ
T−t g)(0), (5)

where I1−γ
t w(t) and I1−γ

T−t w(t) are the left and right Riemann-Liouville fractional integrals of order γ and are
given by

I1−γ
t w(t) :=

1

Γ(1− γ)

ˆ t

0

w(r)

(t− r)γ
dr and I1−γ

T−t w(t) :=
1

Γ(1− γ)

ˆ T

t

w(r)

(r− t)γ
dr.

3. Continuous fractional deep neural network

After the above preparations, in this section, we shall introduce the Fractional-DNN. First we briefly describe
the classical RNN, and then extend it to develop the Fractional-DNN. We formulate our problem as a
constrained optimization problem. Subsequently, we shall use the Lagrangian approach to derive the
optimality conditions.

3.1. Classical RNN
Our goal is to approximate a map F . A classical RNN helps approximate F , for a known set of inputs and
outputs. To construct an RNN, for each layer j, we first consider a linear-transformation of Y j− 1 as,

Gj−1(Yj−1) = Kj−1Yj−1 + bj−1,

where the pair (Kj,bj) denotes an unknown linear operator and bias at the jth layer. When N > 1, the network
is considered ‘deep’. Next we introduce non-linearity using a non-linear activation function σ (e.g. ReLU or
tanh). The resulting RNN is,

Yj = Yj−1 + τ(σ ◦ Gj−1)(Yj−1), j= 1, · · · ,N; N> 1, (6)

where τ > 0 is the time-step. Finally, the RNN approximation of F is given by,

Fθ(·) =
((

I+ τ(σ ◦ GN−1)
)
◦
(
I+ τ(σ ◦ GN−2)

)
◦ · · · ◦

(
I+ τ(σ ◦ G0)

))
(·),

with θ = (Kj,bj) as the unknown parameters. In other words, the problem of approximating F using classical
RNN, intrinsically, is a problem of learning (Kj,bj).

Hence, for given datum (Y0,C), the learning problem then reduces to minimizing a loss function
J (θ,(YN,C)), subject to constraint equation (6), i.e.

min
θ

J (θ,(YN,C))

s.t. Yj = Yj−1 + τ(σ ◦ Gj−1)(Yj−1), j= 1, . . . ,N.
(7)

Notice that the system equation (6) is the forward-Euler discretization of the following continuous in time
ODE, see [1, 14, 47],

dtY(t) = σ(K(t)Y(t)+ b(t)), t ∈ (0,T),

Y(0) = Y0.
(8)
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The continuous learning problem then requires minimizing the loss function J at the final time T subject to
the ODE constraints equation (8):

min
θ=(K,b)

J (θ,(Y(T),C))

s.t. dtY(t) = σ(K(t)Y(t)+ b(t)), t ∈ (0,T),

Y(0) = Y0.

(9)

Notice that designing algorithms for solving the continuous in time problem equation (9) instead of the
discrete in time problem equation (7) has several key advantages. In particular, it will lead to algorithms
which are independent of the neural network architecture, i.e. independent of the number of layers. In
addition, the approach used in solving problem equation (9) can help us determine the stability of the neural
network equation (7), see [27, 30]. Moreover, for the neural network equation (7), it has been noted that as
the information about the input or gradient passes through many layers, it can vanish and ‘wash out’, or grow
and ‘explode’ exponentially [18]. There have been adhoc attempts to address these concerns, see for instance
[21, 23, 24], but a satisfactory mathematical explanation and model does not currently exist. One of the main
goals of this paper is to introduce such a model.

Notice that equation (8), and its discrete version equation (6), incorporates many algorithmic processes
such as linear solvers, preconditioners, non-linear solvers, optimization solvers, etc. Furthermore, there are
well-established numerical algorithms that re-use information from previous iterations to accelerate
convergence, e.g. the BFGS method [56], Anderson acceleration [57], and variance reduction methods [58].
These methods account for the history Yj,Yj−1,Yj−2, . . . ,Y0, while choosing Y j+ 1. Motivated by these
observations we introduce versions of equation (6) and equation (8) that can account for history (or
memory) effects in a rigorous mathematical fashion.

3.2. Continuous fractional-DNN
The fractional time derivative given by equation (3) has a distinct ability to allow a memory effect, for
instance in materials with hereditary properties [46]. Fractional time derivative can be derived by using the
anomalous random walks where the walker experiences delays between jumps [38]. In contrast, the standard
time derivative naturally arises in the case of classical random walks. We use the idea of fractional time
derivative to enrich the constraint optimization problem equation (9), and subsequently equation (7), by
replacing the standard time derivative dt by the fractional time derivative dγt of order γ ∈ (0, 1). Recall that
for γ= 1, we obtain the classical derivative dt . Our new continuous in time model, the Fractional-DNN, is
then given by (cf equation (8)),

dγt Y(t) = Fθ(Y(t), t,θ(t)), t ∈ (0,T),

Y(0) = Y0,
(10)

where dγt is the Caputo fractional derivative as defined in equation (3). The discrete formulation of
Fractional-DNN will be discussed in the subsequent section.

The main reason for using the Caputo fractional time derivative over its other counterparts such as the
Riemann Liouville fractional derivative is the fact that the Caputo derivative of a constant function is zero
and one can impose the initial conditions Y(0)=Y0 in a classical manner [59]. Note that dγt is a nonlocal
operator in a sense that in order to evaluate the fractional derivative of Y at a point t, we need the cumulative
information of Y over the entire sub-interval [0, t). This is how the Fractional-DNN enables connectivity
across all antecedent layers (hence the memory effect). As we shall illustrate with the help of a numerical
example in section 6, this feature can help overcome the vanishing gradient issue, as the cumulative effect of
the gradient of the precedent layers is less likely to be zero.

The generic learning problem with Fractional-DNN as constraints can be expressed as,

min
θ=(K,b)

J (θ,(Y(T),C))

s.t. dγt Y(t) = Fθ(Y(t), t,θ(t)), t ∈ (0,T),

Y(0) = Y0.

(11)

Note that the choice of J depends on the type of learning problem. We will next consider a specific structure
of J given by the cross entropy loss functional equation (1).

5



Mach. Learn.: Sci. Technol. 2 (2021) 015003 H Antil et al

3.3. Continuous fractional-DNN and cross entropy loss functional
Supervised learning problems are a broad class of machine learning problems which use labeled data. These
problems are further divided into two types, namely regression problems and classification problems. The
specific type of the problem dictates the choice of J in equation (11). Regression problems often occur in
physics informed models, e.g. sample reconstruction inverse problems [2, 7]. On the other hand,
classification problems occur, for instance, in computer vision [60, 61]. In both the cases, a neural network is
used to learn the unknown parameters. In the discussion below we shall focus on classification problems,
however, the entire discussion directly applies to regression type problems, as well.

Recall that the cross entropy loss functional E, defined in equation (1), measures the discrepancy between
the actual and the predicted classes. Replacing, J in equation (11) by E together with a regularization term
R(W,K(t),b(t)), we arrive at

min
W,K,b

E(W,Y(T),Cobs)+R(W,K(t),b(t))

s.t.

{
dγt Y(t) = σ(K(t)Y(t)+ b(t)), t ∈ (0,T),

Y(0) = Y0 .

(12)

Note that, in this case, the unknown parameter θ := (W,K, b), where K and b are, respectively, the linear
operator and bias for each layer, and the weightsW are a feature-to-class map. Furthermore, σ is a
non-linear activation function and (Y0,Cobs) is the given data, with Cobs as the true labels of Y0.

To solve equation (12), we rewrite this problem as an unconstrained optimization problem via the
Lagrangian functional and derive the optimality conditions. Let P denote the Lagrange multiplier, then the
Lagrangian functional is given by,

L(Y,W,K,b;P) := E(W,Y(T),Cobs)+R(W,K(t),b(t))+ ⟨dγt Y(t)−σ(K(t)Y(t)+ b(t)),P(t)⟩,

where, ⟨·, ·⟩ :=
´ T
0 ⟨·, ·⟩F dt is the L

2-inner product, and ⟨·, ·⟩F is the Frobenius inner product. Using the
fractional integration-by-parts formula equation (5), we obtain

L(Y,W,K,b;P) = E(W,Y(T),Cobs)+R(W,K(t),b(t))−⟨σ(K(t)Y(t)+ b(t)),P(t)⟩
+ ⟨Y(t),dγT−tP(t)⟩+ ⟨(I1−γ

t Y)(T),P(T)⟩F −⟨Y0,(I
1−γ
T−t P)(0)⟩F.

(13)

Let (Y,W,K,b;P) denote a stationary point, then the first order necessary optimality conditions are given by
the following state, adjoint and design equations:

(a) State equation. The gradient of L with respect to P at (Y,W,K,b;P) yields the state equation
∇PL(Y,W,K,b;P) = 0, equivalently,

dγt Y(t) = σ(K(t)Y(t)+ b(t)), t ∈ (0,T),

Y(0) = Y0,
(14)

where dγt denotes the left Caputo fractional derivative given by equation (3). For the state variable Y,
we solve equation (14) forward in time, therefore we call equation (14) as the forward propagation.

(b) Adjoint equation. Next, the gradient of L with respect to Y at (Y,W,K,b;P) yields the adjoint
equation∇YL(Y,W,K,b;P) = 0, equivalently,

dγT−tP(t) = (σ ′(K(t)Y(t)+ b(t)) K(t))⊺ P(t)

= K(t)⊺
(
P(t)⊙σ ′ (K(t)Y(t)+ b(t)

))
, t ∈ (0,T),

P(T) =−1

n
W

⊺
(−Cobs + S(W,Y(T))),

(15)

where dγT−t denotes the right Caputo fractional derivative given by equation (4) and S is the softmax
function defined in equation (2). Notice that the adjoint variable P in equation (15), with its ter-
minal condition, is obtained by marching backward in time. As a result, the equation (15) is called
backward propagation.

6
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(c) Design equations. Finally, equating∇WL(Y,W,K,b;P),
∇KL(Y,W,K,b;P), and ∇bL(Y,W,K,b;P) to zero, respectively, yields the design equations (with
(W,K,b) as the design variables),

∇WL(Y,W,K,b;P) =
1

n

(
−Cobs + S(W,Y(T))

) (
Y(T)

)⊺
+∇WR(W,K(T),b(T)) = 0,

∇KL(Y,W,K,b;P) =−Y(t)
(
P(t)⊙σ ′(K(t)Y(t)+ b(t))

)⊺
(16)

+∇KR(W,K(t),b(t)) = 0,

∇bL(Y,W,K,b;P) =−⟨σ ′(K(t)Y(t)+ b(t)),P(t)⟩F
+∇bR(W,K(t),b(t)) = 0,

for almost every t ∈ (0,T).

In view of (a)–(c), we can use a gradient based solver to find a stationary point to problem equation (12).

Remark 3.1 (Parametric Kernel K(ψ(t))). Throughout our discussion, we have assumed K(t) to be some
unknown linear operator. We remark that a structure can also be prescribed to K(t), parameterized by a stencil
ψ. Then, the kernel is K(ψ(t)), and the design variables now are θ= (W,ψ, b). Consequently, K(ψ(t)) can be
thought of as a differential operator on the feature space, e.g. discrete Laplacian with a five point stencil. It then
remains to compute the sensitivity of the Lagrangian functional w.r.t. ψ to get the design equation. Note that this
approach can further reduce the number of unknowns.

Notice that so far the entire discussion has been at the continuous level and it has been independent of
the number of network layers. Thus, it is expected that if we discretize (in time) the above optimality system,
then the resulting gradient based solver is independent of the number of layers. We shall discretize the above
optimality system in the next section.

4. Discrete fractional deep neural network

We shall adopt the optimize-then-discretize approach. Recall that the first order stationarity conditions for the
continuous problem equation (12) are given by equation (14), equation (15), and equation (16). In order to
discretize this system of equations, we shall first discuss the approximation of Caputo fractional derivative.

4.1. Approximation of Caputo derivative
There exist various approaches to discretize the fractional Caputo derivative. We will use the L1-scheme (see
[49, 62] and the references therein) to discretize the left and right Caputo fractional derivative dγt u(t) and
dγT−tu(t) given in equation (3) and equation (4), respectively.

Consider the following fractional differential equation involving the left Caputo fractional derivative, for
0< γ < 1,

dγt u(t) = f(u(t)), u(0) = u0. (17)

We begin by discretizing the time interval [0,T] uniformly with step size τ ,

0= t0 < t1 < t2 < · · ·< tj+1 < · · ·< tN = T, where tj = jτ.

Then, using the L1-scheme, the discretization of equation (17) is given by: for j= 0, ...,N − 1,

u(tj+1) = u(tj)−
j−1∑
k=0

aj−k (u(tk+1)− u(tk))+ τγΓ(2− γ)f(u(tj)), (18)

where coefficients aj− k are given by,

aj−k = ( j+ 1− k)1−γ − ( j− k)1−γ . (19)

Next, let us consider the discretization of the fractional differential equation involving the right Caputo
fractional operator, for 0< γ < 1,

dγT−tu(t) = f(u(t)), u(T) = uT. (20)

7
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Figure 1. Comparison of the exact solution of equation (22) (blue) with an L1 scheme approximation (red).

Again using L1-scheme we get the following discretization of equation (20): for j=N, ..., 1,

u(tj−1) = u(tj)+
N−1∑
k=j

ak−j (u(tk+1)− u(tk))− τγΓ(2− γ)f(u(tj)), (21)

where coefficients ak− j are given, as before, by ak−j = (k+ 1− j)1−γ − (k− j)1−γ . The example below
illustrates a numerical implementation of the L1-scheme equation (18).

Example 4.1. Consider the linear differential equation

d0.5
t u(t) =−4 u(t), u(0) = 0.5. (22)

Then, the solution to equation (22) is given by, (see [59, section 42], also [55, section 1.2])

u(t) = 0.5 E0.5(−4t0.5),

where Eα, with 0< α ∈ R, is the Mittag Leffler function, see [55, Pg. 17], defined by

Eα(z) = Eα,1(z) =
∞∑
0

zk

Γ(αk+ 1)
.

Figure 1 depicts the true solution and the numerical solution using discretization equation (18) for the above
example with uniform step size τ = 0.005 and final time, T= 1.

4.2. Discrete optimality conditions
Next, we shall discretize the optimality conditions given in equations (14)–(16). Notice that each time-step
corresponds to one layer of the neural network. It is necessary to do one forward propagation (state solve)
and one backward propagation (adjoint solve) to derive an expression of the gradient with respect to the
design variables.

(a) Discrete state equation. We use the L1 scheme discussed in equation (18) to discretize the state
equation (14) and arrive at

Y(tj) = Y(tj−1)−
j−1∑
k=1

aj−k (Y(tk)−Y(tk−1))

+ τγΓ(2− γ)σ(K(tj−1)Y(tj−1)+ b(tj−1)), j= 1, ...,N

Y(t0) = Y0.

(24)

8
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(b) Discrete adjoint equation.Weuse the L1 scheme discussed in equation (21) to discretize the adjoint
equation (15) and arrive at

P(tj) = P(tj+1)+
N−1∑
k=j+1

ak−j−1 (P(tk+1)− P(tk)) j= N− 1, ...,0

− τγΓ(2− γ)
[
−K(tj)

⊺ (P(tj+1)⊙σ ′ (K(tj)Y(tj+1)+ b(tj)
))]

,

P(tN) =−1

n
W

⊺
(−Cobs + S(W,Y(tN))).

(25)

(c) Discrete gradient w.r.t. design variables. For j= 0, . . . ,N− 1, the approximation of the gradient in
equation (16) with respect to the design variables is given by,

∇WL(Y,W,K,b;P) =
1

n

(
−Cobs + S(W,Y(tN))

) (
Y(tN)

)⊺
+∇WR(W,K(tN),b(tN)),

∇KL(Y,W,K,b;P) =−Y(tj)
(
P(tj+1)⊙σ ′(K(tj)Y(tj)+ b(tj))

)⊺
+∇KR(W,K(tj),b(tj)),

∇bL(Y,W,K,b;P) =− ⟨σ ′(K(tj)Y(tj)+ b(tj)),P(tj+1)⟩F
+∇bR(W,K(tj),b(tj)) .

(26)

Whence, we shall create a gradient based method to solve the optimality condition equation
(24)–equation (26). We reiterate that each computation of the gradient in equation (26), requires one state
and one adjoint solve.

5. Fractional-DNN algorithm

Fractional-DNN is a supervised learning architecture, i.e. it comprises of a training phase and a testing phase.
During the training phase, labeled data is passed into the network and the unknown parameters are learnt.
Those parameters then define the trained Fractional-DNN model for that type of data. Next, a testing
dataset, which comprises of data previously unseen by the network, is passed to the trained net, and a
prediction of classification is obtained. This stage is known as the testing phase. Here the true classification is
not shown to the network when a prediction is being made, but can later be used to compare the network
efficiency, as we have done in our numerics. The three important components of the algorithmic structure
are forward propagation, backward propagation, and gradient update. The forward and backward
propagation structures are given in algorithms 1 and 2 and illustrated in figure 2 and figure 3, respectively.
The gradient update is accomplished in the training phase, discussed in section 5.1. Lastly, the testing phase
of the algorithm is discussed in section 5.2.

Algorithm 1 Forward Propagation in Factional-DNN (L1-scheme)

Input: (Y0,Cobs) ,W, {Kj,bj}N−1
j=0 , N, τ, γ

Output: {Yj}Nj=1, PN,
1: Let z0 = 0.
2: for j= 1, · · · ,N do
3: for k= 1, · · · , j− 1 do
4: Compute aj− k: {Use equation (19)}
5: Update zk: zk = zk−1 + aj−k (Yk −Yk−1)
6: end for
7: Update Y j: Yj = Yj−1 − zj−1 +(τ)γ Γ(2− γ)σ(Kj−1Yj−1 + bj−1)
8: end for
9: Compute PN : PN =−(n)−1 W⊺(−Cobs + S(W,YN))

9
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YYN = Y3

Output

(Forward 

Propagation) 

Y1

.

.

. 

YN

K0 , b0 K1 , b1 K2 , b2

Input Layer Hidden Layers

Y0 Y1 Y2

Figure 2. Representation of Forward Propagation in a 3-layer Fractional-DNN. Input data Y0 is used to compute Y1, along with
respective design variables (K0,b0). Next, both Y0 and Y1 (along with (K1,b1)) are used to compute Y2. Finally, Y0, Y1 and Y2

(along with (K2,b2)) are used to compute Y3, which is the last layer of this network. Input transformation at each layer, {Yi}3i=1,
is stored, and passed to backward propagation. YN is used for classification once the network has been trained. Forward
propagation is equivalent to solving the state equation, forward in time. The style of the horizontal arrows (dotted, dashed,
dot-dashed) represents how information from each respective layer is cascading forward. See algorithm 1 for details.

Figure 3. Representation of Backward Propagation in a 3-layer Fractional-DNN. Adjoint variable PN = P3, obtained using YN , is
the input to the backward propagation. The network moves backward in time to compute {P2,P1,P0} using information from all
the preceding layers. Adjoint variable transformation at each layer, {Pi}3i=1, is stored, and used later to compute the gradients
w.r.t. the design variables. Backward propagation is equivalent to solving the adjoint equation, backward in time. The style of the
horizontal arrows (dotted, dashed, dot-dashed) represents how information from each respective layer is cascading backwards.
See algorithm 2 for details.
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Algorithm 2 Backward Propagation in Factional-DNN (L1-scheme)

Input: {Yj}Nj=1, PN, {Kj,bj}N−1
j=0 , N, τ, γ

Output: {Pj}N−1
j=0

1: Let x0 = 0.
2: for j= N− 1, · · · ,0 do
3: for k= j+ 1, · · · ,N− 1 do
4: Compute ak− j− 1: {Use equation (19)}
5: Compute xk: xk = xk−1 + ak−j−1 (Pk+1 − Pk)
6: end for
7: Update Pj: Pj = Pj+1 + xN−1 − (τ)γ Γ(2− γ) [−K⊺

j (Pj+1 ⊙σ ′(KjYj+1 + bj))]

8: end for

5.1. Training phase
The training phase of Fractional-DNN is shown in algorithm 3.

Algorithm 3 Training Phase of Factional-DNN

Input: (Y0,Cobs) , N, τ, γ, m1,m2

Output:W, {Kj,bj}N−1
j=0 , Ctrain,αtrain,

1: InitializeW,{Kj,bj}N−1
j=0

2: for i= 1, · · · ,m1

3: Let (Ŷ0, Ĉobs)⊂ (Y0,Cobs) {Randomly select a mini-batch and apply BN using equation (27)}
4: FORWARD PROPAGATION {Use algorithm 1 to get {Ŷj}Nj=1, PN}.
5: BACKWARD PROPAGATION {Use algorithm 2 to get {Pj}N−1

j=0 }.

6: GRADIENT COMPUTATION
7: Compute∇WL, {∇KL}, {∇bL}

∇WL = (n)−1
(
−Cobs + S(W, ŶN)

)
(ŶN)

⊺ +∇WR(W,Kj,bj)
∇KL = −Ŷj

(
Pj+1 ⊙σ ′(KjŶj + bj)

)⊺
+∇KR(W,Kj,bj)

∇bL = −tr
(
σ ′(KjŶj + bj) Pj+1

)
+∇bR(W,Kj,bj)

8: Pass∇WL, ∇KL, ∇bL to gradient based solver withm2 max iterations to updateW,{Kj,bj}N−1
j=0 .

9: Compute Ĉtrain = S(W, ŶN)

10: Compare Ĉtrain to Ĉobs to compute αtrain

11: end for

5.2. Testing phase
The testing phase of Fractional-DNN is shown in algorithm 4.

Algorithm 4 Testing Phase of Fractional-DNN

Input:
(
Ytest
0 ,Cobs,test

)
, W, {Kj,bj}N−1

j=0 , N, τ, γ

Output: Ctest,αtest

1. Let Y0 = Ytest
0 {Apply BN using equation (27)}

2. FORWARD PROPAGATION {Use algorithm 1 to get {Yj}Nj=1}.
3. Compute Ctest = S(W,YN)
4. Compare Ctest to Cobs,test to compute αtest

Remark 5.1 (Backward Propagation and Gradient Computation).We remark that, unlike traditional machine
learning architectures, the backward propagation in Fractional-DNN (algorithm 2) does not specifically compute
the gradients of the loss function w.r.t. the unknowns (K, b). It instead computes the adjoint variable P, in the
spirit of an optimization algorithm. Information from forward and backward propagation is then used to
compute the gradients∇KL and∇bL. From practical implementation point of view,∇KL and∇bL can be
computed inside the backward propagation routine for efficiency, where all the required information is available.

5.3. Computational cost and storage
Recall that each iteration of the optimization solver (line 2, algorithm 3) calls for a forward propagation
(algorithm 1) and backward propagation (algorithm 2), i.e. state and adjoint equation solve, to update the
optimization variables. The fractional-DNN algorithm incurs the cost of solving a Fractional ODE instead of
a standard time ODE, which is the cost incurred by the standard RNN [47].
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Furthermore, similar to a classical RNN, fractional-DNN algorithm requires storage of Y and P from all
layers in the network. The only difference between the two is the amount of information that needs to be
accessed at each layer. During forward (or backward) propagation, a classical RNN only utilizes information
from one previous layer, whereas the fractional-DNN uses information from all precedent layers in a
cascading manner. This memory-laden architecture is in fact the unique feature of the fractional-DNN,
which allows the algorithm to make more informed decisions as information propagates through layers in
the network.

6. Numerical experiments

In this section, we present several numerical experiments where we use our proposed Fractional-DNN
algorithm from section 5 to solve classification problems for two different datasets. We recall that the goal of
classification problems, as the name suggests, is to classify objects into pre-defined class labels. First we
prepare a training dataset and, along-with its classification, pass it to the training phase of Fractional-DNN
(algorithm 3). This phase yields the optimal set of unknown parameters learned from the training dataset.
They are then used to classify new data points from the testing dataset during the testing phase of
Factional-DNN (algorithm 4). We compare the results of our Fractional-DNN with the classical RNN, see
equation (9).

The rest of this section is organized as follows: First, we discuss some data preprocessing and
implementation details. Then we describe the datasets being used, and finally we present the experimental
results.

6.1. Implementation details
(a) Batch normalization. During the training phase, we use the batch normalization (BN) technique

[63]. At each iteration we randomly select a mini-batch, Ŷ0 ⊂ Y0, which comprises of 50% of the
training data. We then normalize the mini-batch to have a zero mean and a standard deviation of
one, i.e.

Ŷ0 =
Ŷ0 −µ(Ŷ0)

s(Ŷ0)
, (27)

where µ is themean and s is the standard deviation of themini-batch. The normalizedmini-batch is
then used to train the network for that iteration. At the next iteration, a newmini-batch is randomly
selected. This process is repeated m2 times. Batch normalization prevents gradient blow-up, helps
speed up the learning and reduces the variation in parameters being learned.
Since the design variables are learnt on training data processed with BN, we also process the

testing data with BN, in which case the mini-batch is the whole testing data.
(b) Activation function. For our experiments we use the hyperbolic tangent function as the activation

function, for which,

σ(x) = tanh(x), and σ′(x) = 1− tanh2(x).

(c) Regularization. For our experiments we use the following regularization,

R(W,K,b) :=
ξW
2
∥W∥2F +

ξK
2 N

∥(−∆)hK(t)∥2F +
ξb
2 N

∥b(t)∥22,

where (−∆)h is the discrete Laplacian, and ξW, ξK, ξb are the scalar regularization strengths, and
∥ · ∥F is the Frobenius norm. It is well-known that a regularization helps to make the inverse prob-
lems well-posed. Notice that we have not carried out a rigorous analysis here, but in our numerical
experiments, we observe that the performance of projected BFGS improves with regularization. The
discrete Laplacian is approximated using the five-point stencil finite-difference method on a uni-
form grid, see, for instance, [64, section 3.2].
Notice that with the above regularization, we are enforcing Laplacian-smoothing on K. For a

more controlled smoothness, one could also use the fractional Laplacian regularization introduced
in [44], see also [2, 45].

(d) Order of fractional time derivative. For our computations, we choose γ heuristically. We remark
that this fractional exponent on time derivative can be learnt in a similar manner as the fractional
exponent on Laplacian is learnt in [2], or as the authors do in [31].
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Figure 4. Comparison of discretized gradients with finite difference approximations. Note that the expected rate of convergence is
obtained.

(e) Optimization solver and Xavier initialization. The optimization algorithm we use is the BFGS
method with Armijo line search [65]. The stopping tolerance for the BFGS algorithm is set to
1× 10−6 or maximum number of optimization iterationsm2, whichever is achieved first. However,
in our experiments, the latter is achieved first inmost cases. The design variables are initialized using
Xavier initialization [11], according to which, the biases b are initialized as 0, and the entries of W

and K j are drawn from the uniform distribution U[−a, a]. We consider a=
√

3
nf
for the activation

function σ(·)= tanh(·), and a= 1√
nf
for other activation functions.

(f) Network layers vs. the final time. For our experiments, we heuristically choose the number of layers
N, and the discretization step-length for forward and backward propagation as τ = 0.2. Thus our
final time is given by, T= tN =Nτ .

(g) Classification accuracy. We remark that when we calculate Ctrain = S(W,YN), we obtain a prob-
ability distribution of the samples belonging to the classes. We consider the class with the highest
probability as the predicted class. Then, we use a very standard procedure to compare Ctrain with
Cobs.

ncor,train :=No. of correctly identified labels= n− 1

2
∥Cobs −Ctrain∥2F,

training error= 1− ncor,train
n

, and αtrain =
ncor,train

n
× 100.

The same procedure is used to compute Ctest and αtest .
(h) Gradient test. To verify the gradients in equation (26), we perform a gradient test by comparing

them to a finite difference gradient approximation of system in equation (12). In figure 4 we show
that the two conform and we obtain the expected order of convergence for all the design variables.

(i) Computational platform. All the computations have been carried out in MATLAB R2015b on a
laptop with an Intel Core i7-8550U processor.
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6.2. Experimental datasets
We describe the datasets we have used to validate our proposed Fractional-DNN algorithm below.

(a) Dataset 1: Coordinate to Level Set (CLS). This data comprises of a set of 2D coordinates, i.e. Y0 :=
{(xi,yi) | i= 1, · · · ,n; (xi,yi) ∈ R2([0,1])}. Next, we consider the following piecewise function,

v(x,y) =

{
1 ∀ x≤ y

0 ∀ x> y
∀ x,y ∈ [0,1]. (28)

The coordinates are the features in this case, hence nf = 2. Further, we have nc = 2 classes, which are

the two level sets of v(x, y). Thus, for the ith sample Y(i)
0 , C

(i)
obs ∈ Rnc is a standard basis vector which

represents the probability that Y(i)
0 belongs to the class label {1, 2}.

(b) Dataset 2: Perfume Data (PD) [66, 67]. This dataset comprises of odors of 20 different perfumes
measured via a handheld meter (OMX-GR sensor) every second, for 28 seconds. For this data, Y0 :=
{(xi,yi) | i= 1, · · · ,n; xi,yi ∈ Z+}, thus nf = 2. The classes, nc = 20, pertain to 20 different perfumes.
we construct Cobs in the same manner as we did for Dataset 1.

6.3. Forward propagation as a dynamical system
In the introduction we mentioned the idea of representing a DNN as an optimization problem constrained
by a dynamical system. This has turned out to be a strong tool in studying the underlying mathematics of
DNNs. In figure 5, we numerically demonstrate how this viewpoint enables a more efficient strategy for
learning to distinguish between the classes. First we consider the perfume data, which has two features,
namely the (x, y) coordinates, and let it flow, i.e. forward propagate. When this evolved data is presented to
the classifier function (e.g. softmax function in our case), a spatially well-separated data is easier to classify.

We illustrate this evolution in figure 5. We plot the input data Y0 as well as the evolved data YN . The 20
different colors correspond to the 20 different classes of the Perfume Data, which help us visually track the
evolution from Y0 to YN . The evolution under standard RNN is shown in the bottom left plot, and that under
Fractional-DNN is shown in the bottom right plot. The configuration for these plots is the same as discussed
in section 6.5 below and pertains to the trained models. Notice that at the bottom right corner of the
standard RNN evolution plot, the purple, pink and red data points are overlapping which pose a challenge
for the classifier to distinguish among the classes. In contrast, Fractional-DNN has separated out those points
quite well.

We remark that this separation also gives some intuition regarding the number of layers needed in a
network. We need enough number of layers which would let the data evolve enough to be easily separable.
However, this intuition via visualization can get restricted to nf≤ 3. Therefore for data with nf > 3, it may be
challenging to get a sense of minimum number of layers needed to make the data separable-enough.

6.4. Vanishing gradient issue
In earlier sections, we remarked that Fractional-DNN handles the vanishing gradient issue in a better way.
The vanishing gradient issue arises when the gradients w.r.t. the design variables vanishes across the layers as
the network undergoes backward propagation, see [68] and references therein. As a consequence, feature
extraction in the initial layers gets severely affected, which in turn affects the learning ability of the whole
network. We illustrate this phenomenon for the networks under discussion in figure 6. In the left plot of
figure 6, we compare the ∥ · ∥2 of the gradient w.r.t. the design variables θ= (K, b) against optimization solver
(steepest descent in this case) iterations for standard DNN (which does not have any skip connection) in
magenta, classical RNN equation (9) in black, and Fractional-DNN with L1-scheme approximation from
algorithm 3 in red. In the right plot of figure 6 we have omitted the standard DNN plot to take a closer look
at the other two. Observe that as gradient information propagates backward, i.e. from layer N − 1 to 0, its
magnitude reduces by one order in the case of standard RNN. This implies that enough information is not
being passed to initial layers relative to the last layer. In contrast, the Fractional-DNN is carrying significant
information back to the initial layers while maintaining a relative magnitude. This improves the overall
health of the network and improves learning. This test is performed on Perfume Data (Dataset 2) with 70
layers and regularization turned off.

6.5. Experimental results
We now solve the classification problem equation (12) for the datasets described in section 6.2 via our
proposed Fractional-DNN algorithm, presented in section 5. We then compare it with the standard RNN
architecture given by system in equation (9). The details and results of our experiments are given in table 2.
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Figure 5. Forward propagation of perfume data from Y0 (Row 1) to YN via standard RNN (Row 2, left) and Fractional-DNN (Row
2, right). Note that the data is more linearly separable for Fractional-DNN. The various colors represent the respective classes.

Figure 6. Demonstration of the gradient norm of θ= (K, b) at the first layer (dotted line) and last layer (solid line) of the network
for various algorithms, namely standard DNN (magenta), RNN (black), and Fractional-DNN with L1 scheme approximation
(red). The figure on the right is the zoomed in version of figure on the left. Note the improvement in relative gradient propagation
across layers for Fractional-DNN which leads to better learning ability and improves the vanishing gradient issue.

Note that the results obtained via Fractional-DNN are either comparable to (e.g. for CLS data) or
significantly better than (e.g. for PD) the standard RNN architecture.

We remark that while CLS data (Dataset 1) is a relatively simpler problem to solve (two features and two
classes), the Perfume Data (Dataset 2) is not. In the latter case, each dataset comprises of only two features,
and there are 20 different classes. Furthermore, the number of available samples for training is small. In this
sense, classification of this dataset is a challenging problem.

There have been some results on classification of perfume data using only the training dataset (divided
between training and testing) [67], but to the best of our knowledge, classification on the complete dataset
using both the training and testing sets [66] is not available.
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Table 2. Comparison of classification accuracy for various datasets using the standard RNN equation (9) with our proposed
Fractional-DNN equation (11) with L1 scheme approximation. Note the improvement in results due to Fractional-DNN.

Dataset CLS CLS PD PD
Time Derivative Standard Frac-L1 Standard Frac-L1

γ – 0.1 – 0.9
ntrain 10000 10000 560 560
ntest 10000 10000 532 532
N 5 5 35 35
m1 6 6 567 567
m2 30 30 15 15
ξW 1× 10−1 1× 10−1 1× 10−8 1× 10−8

ξK 1× 102 1× 102 0 0
ξb 1× 10−2 1× 10−2 0 0
αtrain 99.76% 99.82% 52.86% 70.36%
αtest 99.79% 99.79% 45.49% 84.21%

In our experiments, we have also observed that Fractional-DNN algorithm needs lesser number of
Armijo line-search iterations than the standard RNN. This directly reflects an improvement in the learning
rate via Fractional-DNN. We remark that in theory, Fractional-DNN should use memory more efficiently
than other networks, as it encourages feature reuse in the network.

7. Discussion

There is a growing body of research which indicates that deep learning algorithms, e.g. a residual neural
network, can be cast as optimization problems constrained by ODEs or PDEs. In addition, thinking of
continuous optimization problems can make the approaches machine/architecture independent. This opens
a plethora of tools from constrained optimization theory which can be used to study, analyze, and enhance
the deep learning algorithms. Currently, the mathematical foundations of many machine learning models are
largely lacking. Their success is mostly attributed to empirical evidence. Hence, due to the lack of
mathematical foundation, it becomes challenging to fix issues, like network instability, vanishing and
exploding gradients, long training times, inability to approximate non-smooth functions, etc. when a
network does not perform as expected.

In this work we have developed a novel continuous model and stable discretization of deep neural
network that incorporate history. In particular, we have developed a fractional deep neural network
(Fractional-DNN) which allows the network to admit memory across all the subsequent layers. We have
established this via an optimal control problem formulation of a deep neural network bestowed with a
fractional time Caputo derivative. We have then derived the optimality conditions using the Lagrangian
formulation. We have also discussed discretization of the fractional time Caputo derivative using L1-scheme
and presented the algorithmic framework for the discretization.

We expect that by keeping track of history in this manner improves the vanishing gradient problem and
can potentially strengthen feature propagation, encourage feature reuse and reduce the number of unknown
parameters. We have numerically illustrated the improvement in the vanishing gradient issue via our
proposed Fractional-DNN. We have shown that Fractional-DNN is better capable of passing information
across the network layers which maintains the relative gradient magnitude across the layers, compared to the
standard DNN and standard RNN. This allows for a more meaningful feature extraction to happen at each
layer.

We have shown successful application of Fractional-DNN for classification problems using various
datasets, namely the Coordinate to Level Set (CLS dataset) and Perfume Data. We have compared the results
against the standard-RNN and have shown that the Fractional-DNN algorithm yields improved results.

Fractional-DNN has a rigorous mathematical foundation and algorithmic framework which establishes a
deeper understanding of deep neural networks with memory. This enhances their applicability to scientific
and engineering applications.

We remark that code optimization is part of our forthcoming work. This would involve efficient Graphic
Processing Unit usage and parallel computing capabilities. We also intend to develop a python version of this
code and incorporate it into popular deep learning libraries like TensorFlow, PyTorch etc. We are also
interested in expanding the efficiency of this algorithm to large-scale problems suitable for High
Performance Computing.
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