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Abstract
We present a comparison of methods for uncertainty quantification (UQ) in deep learning
algorithms in the context of a simple physical system. Three of the most common uncertainty
quantification methods—Bayesian neural networks (BNNs), concrete dropout (CD), and deep
ensembles (DEs) — are compared to the standard analytic error propagation. We discuss this
comparison in terms endemic to both machine learning (‘epistemic’ and ‘aleatoric’) and the
physical sciences (‘statistical’ and ‘systematic’). The comparisons are presented in terms of
simulated experimental measurements of a single pendulum—a prototypical physical system for
studying measurement and analysis techniques. Our results highlight some pitfalls that may occur
when using these UQ methods. For example, when the variation of noise in the training set is
small, all methods predicted the same relative uncertainty independently of the inputs. This issue is
particularly hard to avoid in BNN. On the other hand, when the test set contains samples far from
the training distribution, we found that no methods sufficiently increased the uncertainties
associated to their predictions. This problem was particularly clear for CD. In light of these results,
we make some recommendations for usage and interpretation of UQ methods.

1. Introduction

Methods in machine learning—and more specifically deep learning—are increasingly utilized in modeling,
analysis, and control procedures in the physical sciences (for a review, see Mehta et al 2019). In those fields, it
is critical for every result to be accompanied by a quantification of the uncertainty. Therefore, confidence in
uncertainties reported for machine learning model predictions is a necessity before a widespread adoption of
these novel methods by the community. Even though many uncertainty quantification (UQ) methods for
deep learning have been put forth in recent years, uncertainties are often presented in terms of concepts
unfamiliar to those working in the physical sciences, such as ‘epistemic’ and ‘aleatoric’ uncertainties. In
addition, while there have been a number of comparisons between the results of different methods, they are
often presented in the context of a very technical task or one that has complex data structures, making
generalizations to other tasks less accessible (Hortua et al 2019, Snoek et al 2019, Scalia et al 2019, Tran et al
2020).

We aim this work to serve as part of a bridge between the scientific communities which use these
algorithms as tools and the statistics and computer science communities developing the algorithms. We
present a comparison of multiple UQ methods in a relatively simple physics setup—a single pendulum
experiment. The regression task undertaken is a calculation that is typically asked of a student in the setting
of an undergraduate physics laboratory classroom—given enough measurements to characterize the motion
of a pendulum, calculate the gravitational acceleration g.

A crucial element in our setup is the ability to introduce different types of noise in the input data and to
propagate that noise into an uncertainty in the resulting prediction that is independent of the method used.
We then observe the results from UQmethods and assess how they reflect the different sources of uncertainty
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that are injected into the generated data. We also aim to present the methods in a framing that is readily
accessible for practitioners in the physical sciences. While we aim to set the stage for more widespread usage
in science of the UQ methods summarized here, we do not claim to present a definitive comparison of those
methods directly applicable to all situations.

2. Methods: experimental setup and uncertainty analysis

Below, we describe the physical system for the computational experiment, metrics for UQ in both the
machine learning and physical sciences domains, and the methods of UQ in deep learning that are analyzed
in this work.

2.1. Uncertainty quantificationmetrics: aleatoric and epistemic; statistical and systematic
First, we need to create a mapping between different conceptualizations or descriptions of uncertainty. In
machine learning and statistical contexts, aleatoric uncertainty originates in corruptions of the input data,
such as detector noise or the point spread function in an astrophysical context. Regardless of the quality of a
model or the quantity of training data, this uncertainty can never be evaded or reduced. Epistemic
uncertainties describe the fidelity of the model in its representation of the data—barring aleatoric
uncertainties. Epistemic uncertainties decrease as the training data size increases. In fields like decision
analysis, these two types of uncertainty are called ‘risk’ and ‘uncertainty,’ respectively. Longer reviews of these
concepts can be found in Gal (2016), section 1.2; Hüllermeier and Waegeman (2019).

Precise definitions of what physicists refer to as ‘statistical’ and ‘systematic’ uncertainty are somewhat
elusive, and there appears to be no definitive community-wide standard in the literature. We follow
conventions from JCGM/WG1 (2008), which advocates for the terminology of ‘Type A’ (also known as
‘statistical’) and ‘Type B’ (also known as ‘systematic’) uncertainties. In this work we will use the terms
statistical and systematic, as they are more common. Statistical uncertainty describes errors that can be
quantified by statistical analysis of a series of experimental measurements—i.e. a standard deviation of a
random variable sampled by repeated measurements under the same conditions. Systematic uncertainties are
quantified by any other means—e.g. originating in a model, drawn from statistical uncertainties in
measurements performed by a different experiment, and theoretical uncertainties. Systematic uncertainties
include those which cannot be reduced by an increase in data from the same experiment. It should be noted
that a systematic uncertainty here still corresponds to a standard deviation on the distribution of a
measurement value. This is distinct—and does not include—a systematic bias making the measurement
consistently too high or too low which can be corrected before quoting a final measurement value.

From the definitions above, we summarize that (a) epistemic errors are always systematic, and statistical
errors are always aleatoric and never epistemic; and (b) aleatoric uncertainties can be systematic. There are,
then, three types of relevant uncertainties: aleatoric systematic, aleatoric statistical, and epistemic systematic.
We will provide explicit examples of these uncertainties in the context of the pendulum in section 2.3.

2.2. Physical system: single pendulum
The physical system for this experiment was chosen to meet the following qualifications:

(a) The physical processes, calculations, and sources of uncertainty should be readily understandable by any
physicist or machine learning scientist.

(b) There are statistical and systematic sources of uncertainty, and we can quantify them for each example
to compare the results to those of the machine learning algorithms.

An appealing scenario that meets these requirements is the single-pendulum experiment, which is
common in an undergraduate physics laboratory setting and is analytically well modeled by

g= 4π 2 L

T2
, (1)

where g is the gravitational acceleration, L is the length of the pendulum arm, and T is the period of
oscillation. For each pendulum instance, we simulate mock measurements like those one might take in a
pendulum experiment, including a massm for the pendulum, the maximum oscillation angle θ, length of the
pendulum arm L, and ten independent measurements of the period T. In summary, we will train machine
learning models to model the acceleration g from 13 inputs.

Note that g is independent ofm and θ, but we include them in the inputs in order to simulate the full set
of measurements one might make in a laboratory setting. Though we will not do so here, these could be used
to introduce additional systematic uncertainties. For instance, we train the model using 1, which is valid only
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Table 1. Types of uncertainties in the cross-over between machine learning (ML in the columns) and physics (rows). Examples specific
to the experiment done here are shown in parentheses.
PPPPPPPPhysics

ML
Aleatoric Epistemic

Statistical Noise in data, stdev of measurements (noise in period T) —

Systematic Noise in data, not stdev of measurements (noise in length L) Model fidelity, not stdev of
measurements (far from training
set)

for small θ. Moving away from the range of validity of 1 should come with an increased uncertainty in
the result.

2.3. Sources of uncertainty andmetrics for comparison
In our computational experiments, we seek to distinguish how types of uncertainty quantification are
reflected in the outputs of each model. In section 2.1 we outlined three different types of uncertainty. We can
inject each of them into the data-generation process outlined in section 2.2 as follows.

• Aleatoric statistical uncertainty can be included by adding noise in the 10 measurements of the period, T.
For each data point in the training set, we draw the amount of measurement noise ν uniformly in some
range, and then draw each measurement of the period from a normal distribution with standard deviation
νT. The choice of the range for ν in the training set merits a longer discussion in section 3.

• Aleatoric systematic uncertainty exists if the singlemeasurement of L also contains noise, as this is a source of
uncertainty that cannot be statistically determined from the single measurement of L. Note that since there
is no statistical way to determine this noise from the input data alone, the uncertainty must be determined
from the typical noise seen in training. In our training and test sets, all measurements of L are drawn from
a normal distribution with standard deviation 0.02 L.

• Epistemic systematic uncertainty reflects how uncertain the model is of its predictions. One way to test this
is by looking at predictions far from the training set manifold. In this experiment, we train networks with
g ∈ (5, 15)m s−2, and L∈ (0.2, 0.8) m. Either of these can bemoved outside that range, and we will consider
both cases below.

We investigate several ways of comparing different UQ methods. For the two aleatoric uncertainty
sources, we calculate the uncertainty in the output analytically using standard uncertainty propagation. This
means that we use 1 to propagate the effect of noise in each input variable to the acceleration g. We then
compare the aleatoric uncertainties found by the machine learning algorithms to the analytic estimate. This
permits a direct comparison with which to examine deep learning methods: standard uncertainty
propagation produces an uncertainty that is considered ‘truth.’4 For the epistemic uncertainty, we do not
perform an analytic estimate, but investigate how this deep learning uncertainty changes as the test data
move away from the training distribution. The expectation is that it should increase with distance of the test
data from the training data. Finally, we analyze the prediction intervals from each deep learning-based
method: the reliability diagram (also called ‘calibration curve’) compares the proportion of samples that fall
within a prediction interval to the expectation for that proportion if the uncertainty represents a standard
deviation of a normal distribution.

Please see table 1 for a concise summary of the correspondences in these uncertainty conceptualizations,
as well as examples for this particular physics model.

2.4. Uncertainty quantificationmethods for deep learning models
We will include three uncertainty quantification methods: deep ensembles (DEs), Bayesian neural networks
(BNNs), and concrete dropout (CD). For all these methods, epistemic uncertainty is estimated by looking at
an ensemble of trained models, though the method of sampling from the set of possible models varies from
method to method. The spread of predictions between different models is used as an estimate of
model-related (i.e. epistemic) uncertainty. Aleatoric uncertainty, on the other hand, can be predicted by a
single model as it is related to the amount of observation noise in a given region of the input space. The effect
of that noise on the result is estimated by fitting both the mean and standard deviation of a normal

4 Strictly, the uncertainty estimate used here is a linear approximation. The error in that approximation is small in the ranges considered
in this work.
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distribution to maximize the log likelihood of the data. The standard deviation obtained is an estimate of
aleatoric uncertainty. A review of this distinction can be found in Kendall and Gal (2017).

For each model and experiment, then, we will obtain N = 10 estimates of the prediction mean and
aleatoric uncertainty, (µi,σi). We combine the N estimates as a mixture of Gaussians, and obtain the
following predictions:

ĝ=
1

N

N∑
i=1

µi =mean(µi) (gravitational constant mean), (2)

σal =

√√√√ 1

N

N∑
i=1

σ2
i =

√
mean(σ2

i ) (aleatoric uncertainty), (3)

σep =

√√√√ 1

N

N∑
i=1

µ2
i − ĝ2 = stdev(µi) (epistemic uncertainty), (4)

σpr =
√
σ2
al +σ2

ep (total predictive uncertainty). (5)

2.4.1. Bayesian neural networks
Bayesian neural networks (BNNs) are a class of neural networks in which the weights of each layer form a
valid probability distribution (Graves 2011). The training process then consists of approximate Bayesian
inference on these probability distributions, given the data. Exact inference on the network parameters is an
intractable problem, we approximate it by the evidence lower bound (ELBO). In practice, this consists of a
sum of the negative log likelihood of the data with the Kullback–Leibler (KL) divergence between the weight
distribution and the weight prior.

There have been several methods proposed to efficiently sample from the weight distributions in the
training process while keeping the parallelization techniques available to usual neural networks. In this work,
we make use of flipout (Wen et al 2018), as implemented in the TensorFlow Probability library (Dillon et al
2017). Following Snoek et al (2019), we found a large improvement in predictions after scaling the KL
divergence term in the loss by 1/n, where n is the number of training examples. We also attempted replacing
KL divergence with maximum mean discrepancy, as advocated by Pomponi et al (2020). The results did not
change appreciably, so we use KL in the experiments shown. With BNN, we can evaluate epistemic
uncertainties by looking at the different outputs produced when we sample multiple times from the posterior
weight distributions.

2.4.2. Deep ensembles
Deep ensembles (DEs), introduced as a simpler alternative to Bayesian methods in Lakshminarayanan et al
(2016), are attractive because of their conceptual simplicity: we simply need to retrain the same network
many times with different initializations. The randomness inherent in the initializations and in the training
process then provides different samples of trained network parameters. If we optimize the networks to
minimize the mean squared error loss, this provides only a measure of epistemic uncertainty. On the other
hand, as outlined above, we can optimize the data log likelihood and then we estimate both aleatoric and
epistemic uncertainties. A related technique is bagging, short for ‘bootstrap aggregating.’ This adds another
source of randomness by training each network with a different random draw with replacement from the
training set. Lakshminarayanan et al (2016) observed a performance deterioration when using bagging, and
we have seen no improvement when bagging is added.

2.4.3. Concrete dropout
Dropout was first introduced as a form of regularization in neural networks (Hinton et al 2012). The
technique consists of omitting a certain percentage of neurons at each layer, with the omitted neurons chosen
at random for each pass. As a regularization technique, dropout is only used during training. It was later
understood that keeping dropout during the testing phase could also provide a way to obtain a distribution
of possible models (Gal and Ghahramani 2016). Methods were then developed to optimize the dropout
probability at each layer during training (Gal et al 2017), and this technique is called concrete dropout (CD).
To estimate epistemic uncertainties with CD, we simply drop a different set of neurons on each pass and look
at the distribution of results obtained.
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Table 2. In this table we report the mean results of six independent runs along with the uncertainties on the last significant digits of
those means. On the first three columns, we evaluate how correlated the aleatoric uncertainty estimates are with the analytic uncertainty
estimate, in all situations studied in figure 1. When the aleatoric uncertainty estimate is constant, we obtain an approximately null
correlation coefficient. In all other situations, we find roughly comparable results, with DE edging the other methods. Then we evaluate
the calibration of each method in the three situations described in the text. Miscalibration is defined as the area between the 1–1 line and
the calibration lines in figure 3. Perfect calibration corresponds then to 0, while 0.5 is the worst possible value. As we saw in the graphs,
CD is slightly better calibrated in training distribution, but its performance quickly degrades as we move from it. Farther from the
training distribution, DE clearly beats the other methods. Though we did not focus on prediction quality in this manuscript, we present
also the mean squared error in the in-training-distribution test set. The performance of all methods is close, but DE once again is the
winner. We highlight the best performance in each column.

Correlation to analytic, T noise: Miscalibration, L range:

1–5% 1–10% 1–20% (0.2, 0.8) m (0.8, 1.2) m (1.2, 1.6) m MSE

DE 0.001 5(3) 0.810(6) 0.838(3) 0.026(3) 0.017 0(18) 0.035(8) 0.490 7(2)
CD 0.08(4) 0.74(5) 0.822(11) 0.019(4) 0.07(3) 0.21(6) 0.501 4(19)
BNN 0.003(5) −0.014 3(19) 0.72(3) 0.035(3) 0.026(6) 0.067(19) 0.501 8(15)

2.5. Network architecture and training
For all methods, we train fully-connected networks with three hidden layers and 100 nodes on each hidden
layer. A ReLU activation function is used in the hidden layers, and identity activation function on the final
layer. As the structure of the neural network is not changed, the epistemic uncertainty here does not include
how predictions may vary if we change the architecture. The contribution of such a term should be negligible
in this problem, as the models utilized have sufficient capacity to reach an optimal solution.

We use the Adam optimizer with learning rate 10−3 for all models except BNN, where a lower learning
rate of 10−4 was necessary for convergence (Kingma and Ba 2015). Networks are trained for 200 epochs in
the case of CD and BNN, and 40 epochs for DE, on 90 000 training points. All networks were implemented
on TensorFlow 2 and trained on a desktop with two RTX 2080 Ti GPUs (Abadi et al 2015). Training of each
model takes roughly 100 minutes for all UQ methods considered. The results presented in our plots refer to
the results of a single run, but six full runs were made and the results did not change qualitatively. Table 2
summarizes the results of all six runs.

All code necessary to reproduce the results of this project, and run more experiments using the same data
generator, can be found at https://github.com/deepskies/DeeplyUncertain-Public.

3. Results

Recall that we insert Gaussian noise in the measurements of the period T, with the relative amount of noise
for each point drawn uniformly from a range. From the spread of T measurements, we calculated an analytic
estimate of the uncertainty coming from the noise in the data by standard error propagation methods, and
compare that estimate to the aleatoric uncertainty predicted by the deep learning UQ methods discussed in
section 2.4.

We performed this for three ranges of noise T and the results are shown in figure 1. In our initial
experiments, noise was sampled from the range between 1% and 5%. All three UQ methods predict the same
relative uncertainty for all points in the test set, independent of the noise in that particular data point. We
then increased the range of noise present in measurements to be sampled between 1% and 10%. Estimates
from CD and DE now follow the trend of analytic estimate well. However, the BNN continued to predict a
constant relative uncertainty for all points. Finally, when we increase the range of noise in T to be between
1% and 20%, all methods now follow the trend of the analytic estimates to some degree, as we can see in the
right panel of figure 1.

The shape of these predictions reflects a tendency that is well-known for predictions of machine learning
algorithms (e.g. Ntampaka et al 2020, appendix), but we believe has not been documented for uncertainty
predictions: after an initial stage of training, models will often predict the mean value of the training set
independently of inputs. The model will only then learn to differentiate different data points, but this may
never happen if the training set does not contain enough variation. This failure mode is less visible for
uncertainty predictions, since in a typical problem we do not have an analytic estimate of what the
uncertainty should be for each point. It should be noted that some metrics to evaluate UQ methods, such as
reliability diagrams, may give very good results for a model that gives a constant relative uncertainty. In
conclusion, this issue may go undetected if care is not taken to avoid it.

All results shown from this point forward will make use of the networks trained on a noise range between
1% and 20%. We note that aleatoric systematic uncertainty was included in the experiments above and
well-modeled by all the methods in all experiments, and therefore we always include 2% Gaussian noise in
the measurements of L. It should also be noted that in figure 1, uncertainty is overestimated for most samples
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Figure 1. Comparison of the relative aleatoric statistical uncertainty in g to the relative analytic uncertainty estimate of g for each
method, with increasing ranges of noise in T. The relative uncertainty is the ratio of the uncertainty and the value of g predicted.
To make this plot, the x-axis was divided into equal-sized bins. The lines correspond to the median prediction in each bin, while
the shaded area denotes the interval between the 16th and 84th percentiles. For the narrowest range of noise in training (left), the
deep learning-based UQ methods fail to correlate with the analytic method: they reproduce average noise in the training set, but
not the variation. For larger values of noise in T (middle), DE and CD correlate better with the analytic estimate, but they
overestimate low analytic uncertainties, and underestimate high analytic uncertainties. BNNs still fail to correlate with the
analytic estimate. For much larger values of noise in T (right): all methods follow a similar trend to the analytic estimate. This
flags an issue that one should be aware of when training deep learning methods with a negative log-likelihood objective.

Figure 2. Epistemic uncertainty for various values of the output prediction g and the input value L. The dashed line shows the
training range for the given parameter. As the test data moves away from the training range, epistemic uncertainty estimates rise
slowly both for DE (blue) and BNN (red), potentially enabling a classifier to flag out-of-distribution inputs. In this experiment,
CD (purple) always gave zero epistemic uncertainty for a wide majority of inputs. To make this plot, the x-axis was divided into
equal-sized bins. The lines correspond to the median prediction in each bin, while the shaded area denotes the interval between
the 16th and 84th percentiles.

of the left half of the plots, and underestimated on the right. The trend is also more closely followed on the
lower range of relative uncertainties. We believe this is caused by an unequal sample of relative uncertainty in
the training set: our recipe to build the training set creates a distribution of relative uncertainties which is
asymmetric with a longer right tail. This is a common phenomenon of predictions in machine learning.

We next explore epistemic uncertainties by performing experiments with test sets far from the training
distribution: the predictions for this uncertainty should increase the farther the input data is from the
training distribution. This is a minimal reasonable requirement for any epistemic uncertainty estimate, as the
model should be more uncertain about its prediction in a region where it was not trained. This could
potentially be used to classify certain inputs as out-of-distribution.

The results of this experiment are shown in figure 2. The expected trend is present for both DE and BNN
to varying degrees. However, CD epistemic uncertainty is very small for a large majority (though not all) of
the points in the test sets presented here, even with increasing distance from the training distribution. This is
because the dropout probabilities at each layer are very small—smaller than 10−4 for all layers—and
therefore few if any neurons are dropped at each pass. Since our training set is large and the task at hand is
not very complex, it is not unreasonable for epistemic uncertainties to be very low inside the training
manifold. However, one should be aware that when that is the case, CD may be overconfident as we move
away from that manifold.

For DE and BNN, we may ask if the rise in epistemic uncertainty is enough to compensate the predictable
decrease in accuracy as we move away from the training set. As g moves away from the training distribution,
all models tested here made predictions near the high-end of that training distribution, but never higher,
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Figure 3. Calibration curves for all UQ methods. The horizontal axis denotes the fraction of the prediction interval derived
assuming a normal distribution of residuals with standard deviation equal to the predictive uncertainty. The vertical axis denotes
the derived fraction of points that fall within that prediction interval. The dashed line (1–to–1) denotes perfect coverage. Left:
Performance of methods in the range where they were trained, L∈ (0.2, 0.8) m. Middle: Performance of methods slightly out of
training range, L∈ (0.8, 1.2) m. Right: Performance of methods farther out of training range, L∈ (1.2, 1.6) m. Within the training
distribution, the calibration is not far from the 1–1 line for all methods in the training distribution. Moving rightward, all
methods increasingly underestimate the error.

despite the fact that this is not enforced by the network architecture. The epistemic uncertainty severely
underestimates the magnitude of the errors made as the input moves farther above 15 m s−2.

A somewhat simpler ask is to test if the epistemic uncertainties are accurate as the inputs move far from
the training manifold, while keeping the outputs inside the training distribution. We do this by moving L
and T together while g remains between 5 and 15 m s−2. For this experiment, the reliability diagrams for
different ranges of L are shown in figure 3. In the left panel, we see that when L is in the training range,
predictive uncertainties are well-calibrated for all methods presented. As Lmoves out of distribution
(middle panel), CD predictive uncertainties become grossly underestimated, because the epistemic
uncertainty predictions do not rise accordingly. If L is far enough away from the training distribution, as in
the right-hand panel, all methods give underestimated uncertainty predictions.

The results of our experiments are summarized in table 2, which contains the average performance over 6
independent runs on the same data. We note that when the deep learning models come out of the mode
where the relative uncertainty predicted is constant, they all achieve roughly comparable correlations with
the analytic uncertainty estimates, though the correlation achieved by DE is higher.

4. Conclusion and outlook

The results outlined above allow us to make some recommendations for usage of these UQ methods. In
order to obtain an accurate estimate of aleatoric statistical uncertainty, care must be taken to have a
wide-enough variation in the noise present in the training set, so the model does not become stuck
predicting the same relative uncertainty for all points. This pitfall was particularly hard to come out of in the
case of BNN. In a typical situation (i.e. where no analytic uncertainty estimates are available), one should
always check whether the aleatoric uncertainty estimates vary from point to point. If they do not, the training
set should be augmented with examples including a higher amount of noise. This can be done by collecting
additional data with more noise, or by creating a bigger training set including both the original samples and
a modification of those samples with added artificial noise. This data augmentation technique is also used in
contexts unrelated to uncertainty quantification.

Aleatoric systematic uncertainties are well-modeled in our experiments, though once again we must
make sure the training set is representative. For systematic uncertainties, it is important to keep in mind that
the model can only infer the typical uncertainty in each region of inputs from the training set, as the
uncertainty cannot be statistically derived from the inputs.

For epistemic uncertainties, all methods failed to detect how far the inputs had moved from the training
distribution. Even for methods that give a rising uncertainty estimate as the input moves away from the
training set, that value very quickly becomes an underestimate when compared to the errors made by the
networks. In particular, CD converged to a very low dropout probability in training, causing it to predict very
low epistemic uncertainties in all situations. While DE and BNN could be used to detect out-of-distribution
examples, their quantitative estimates of epistemic uncertainty are not reliable in that situation.

Putting all the results together, we recommend DE. DE results are the best or comparable to the best in all
tests made here, and DE has the advantage of having the smallest conceptual load: one simply needs to train
the network several times. This agrees with the conclusions of earlier comparisons including DE (Snoek et al
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2019, Scalia et al 2019), although our set up and variable noise in the training set allow us to make novel
recommendations. In the revision stages of this manuscript, we became aware of new methods developed to
create ensembles without requiring the training of multiple networks (Madras et al 2019, Ashukha et al
2020). It would be worthwhile to test them against the benchmark presented here.

It would also be valuable to extend the analysis in this manuscript to different neural networks, namely
convolutional neural networks. An equally natural extension would be to move towards more complex data
and sources of uncertainty, better reflecting what is needed for specific applications. With publication we are
releasing the code we used to run the experiments described here. We hope this simple experiment may
provide a valuable testbed and benchmark for deep learning UQ methods.
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