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Abstract
We prove the existence of mild solutions of fractional integrodifferential equations with nonlocal
conditions in Banach spaces. Sufficient conditions for controllability of fractional integrodifferential
systems are established. The results are obtained by using resolvent operators and Schauder fixed
point theorem. An example is provided to illustrate our results.
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1 Introduction
The nonlocal condition, which is a generalization of the classical condition, was motivated by physical
problems. The pioneering work on nonlocal conditions is due to Byszewski [4]. In the last few years
several papers have been devoted to the study of existence and uniqueness of solutions to nonlinear
differential equations with nonlocal conditions. Among others, we refer to the papers of Balachandran
and Chandrasekarn [6], Balachandran and Illamaran [5], Byszewski [3] and Ntouyas and Tsamatos
[20]. Recently, there has been an increasing interest in studying the problem of controllability of
integrodifferential systems (see [7-10]). On the other hand, there is also an increasing interest in
the recent years related to dynamical fractional systems oriented towards the field of control theory
concerning heat transfer, lossless transmission lines ( see [24], [11], the use of discretizing devices
supported by fractional calculus. Controllability results for linear fractional differential equations have
been considered by a few authors (see [1], [2], [14], [17], [23], [25], [26], [27], [28],).
In this paper we study the existence of mild solution and controllability of the fractional integrodifferen-
tial equation with nonlocal condition in the following form

dαx(t)

dtα
= A[x(t)+

∫ t

0

F (t−s)x(s)ds]+f(t, x(t))+

∫ t

0

g(t, s, x(s), Q(s))ds, t ∈ [0, T ] = J, (1.1)
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x(0)+h(x(t1), ..., x(tp)) = x0 (1.2)

where 0 < α < 1 and

Q(s) =

∫ s

0

k(s, τ, x(τ))dτ.

Here A generates a strongly continuous semigroup in a Banach space X, F (t) is a bounded operator
for t ∈ J, and f : J × X → X, k : ∆ × X → X, g : ∆ × X × X → X and h : Xp → X are given
functions. Here also ∆ = {(t, s) : 0 ≤ s ≤ t ≤ T}, F (t) ∈ B(X), t ∈ J, F (t) : Y → Y and for x(·)
continuous in Y, AF (·)x(·) ∈ L1(J,X). For x ∈ X, F ′(t)x is continuous in t ∈ J, where B(X) is the
space of all linear and bounded operators on X, and Y is the Banach space formed from D(A), the
domain of A, endowed with the graph norm .

This type of research has been considered in Balachandran and Park [10], when the equation (1.1)-
(1.2) is given with conventional (classical) derivatives, also as several works; see for example [ 15,
16] and reference listed therein.

2 Preliminaries
In this section we give some basic definitions.

Definition 2.1 (see [21, 22]). The fractional integral of order α > 0 with the lower limit zero for a
function f can be defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α ds, t > 0

provided the right-hand side is pointwise defined on [0,∞), where Γ is the gamma function.
Definition 2.2 (see [21, 22]). The Caputo derivative of order α with the lower limit zero for a function
f can be written as

cDαf(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n ds = In−αf (n)(t), t > 0, 0 ≤ n− 1 < α < n.

Definition 2.3. A resolvent operator for problem (1.1)-(1.2) is a bounded operator valued function
R(t) ∈ B(X) for t ∈ J having the following properties (see [13, 18]:
(a) R(0) = I(the identity operator on X),
(b) for all x ∈ X, R(t)x is continuous for t ∈ J,
(c) R(t) ∈ B(Y ), t ∈ J. For y ∈ Y, R(t)y ∈ C([0, T ], X) ∩ C([0, T ], Y ) and

dα

dtα
R(t)y = A[R(t)y +

∫ t

0

F (t− s)R(s)yds]

= R(t)Ay +

∫ t

0

R(t− s)AF (s)yds, t ∈ J.

Definition 2.4. According to ([12, 29]), a continuous solution x(t) of the integral equation

x(t) = Sα(t)[x0−h(x(t1), ...., x(tp))]+

∫ t

0

(t−s)α−1Tα(t−s)[f(s, x(s))+

∫ s

0

g(s, τ, x(τ), Q(τ))dτ ]ds (2.1)

is called mild solution of the problem (1.1)-(1.2) where

Sα(t)x =

∫ ∞
0

ξα(θ)R(tαθ)xdθ, Tα(t)x = α

∫ ∞
0

θξα(θ)R(tαθ)xdθ
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with ξα being a probability density function defined on (0,∞), that is
ξα(θ) ≥ 0, θ ∈ (0,∞) and

∫∞
0
ξα(θ)dθ = 1.

Remark.
∫∞

0
θξα(θ)dθ = 1

Γ(1+α)
.

Let Y = C(J,X) and define the sets

Xr = {x ∈ X : ‖x‖ ≤ r}, Yr = {y ∈ Y : ‖y‖ = sup
t∈J
‖y(t)‖ ≤ r}, (2.2)

where r, positive constant, is defined by r = M1‖x0‖+HM1 + M1T
α

Γ(α+1)
(M2 +M3T ).

Further we assume the following hypotheses:
(i) The resolvent operator R(t) is compact and there exists a constant M1 > 0
such that ‖R(t)‖ ≤M1.
(ii) The nonlinear operators f : J ×X → X, g : ∆×X×X → X, and k : ∆×X → X are continuous
and there exist constants M2 > 0, M3 > 0 such that
‖f(t, x(t))‖ ≤M2 for t ∈ J, x ∈ Xr, ‖g(t, s, x(s), y(s))‖ ≤M3 for (t, s) ∈ ∆, x, y ∈ Xr.
(iii) The operator h : Xp → X is continuous and there exists a constant H > 0 such that
‖h(x(t1), ..., (x(tp)))‖ ≤ H for x ∈ Yr,
h(λx(t1) + (1−λ)y(t1), ..., λx(tp) + (1−λ)y(tp)) = λh(x(t1), ..., x(tp)) + (1−λ)h(y(t1), ..., y(tp)) for
x, y ∈ Yr.
(iv) The set {y(0) : y ∈ Yr, y(0) = x0 − h(y(t1), ..., y(tp))} is precompact in X.
Lemma 2.1. ( see [29]). The operators Sα(t) and Tα(t) have the following properties:
(I) For any fixed x ∈ X, ‖ Sα(t)x ‖≤M1 ‖ x ‖, ‖ Tα(t)x ‖≤ αM1

Γ(α+1)
‖ x ‖;

(II) {Sα(t), t ≥ 0} and {Tα(t), t ≥ 0} are strongly continuous;
(III) For every t > 0, Sα(t) and Tα(t) are also compact operators if R(t), t > 0 is compact.

3 Existence of Mild Solutions

In this section, we can prove the existence of mild solution.

Theorem 3.1. Let hypotheses (i), (ii), (iii)and (iv) be satisfied. Then problem (1.1)-(1.2) has a mild
solution on J.
Proof. We define the set Y0 in Y by
Y0 = {x ∈ Y : x(0) + h(x(t1), ..., x(tp)) = x0, ‖x(t)‖ ≤ r for 0 ≤ t ≤ T}.
Clearly, Y0 is a bounded closed convex subset of Y. Define a mapping Ψ : Y → Y0 by

(Ψx)(t) = Sα(t)[x0−h(x(t1), ...., x(tp))]+

∫ t

0

(t−s)α−1Tα(t−s)[f(s, x(s))+

∫ s

0

g(s, τ, x(τ), Q(τ))dτ ]ds.

Since

‖(Ψx)(t)‖ ≤ ‖Sα(t)x0‖+ ‖Sα(t)h(x(t1), ..., x(tp))‖

+

∫ t

0

(t− s)α−1‖Tα(t− s)‖[‖f(s, x(s))‖+

∫ s

0

‖g(s, τ, x(τ), Q(τ))‖dτ ]ds

≤M1‖x0‖+HM1 +
M1T

α

Γ(α+ 1)
(M2 +M3T ) = r,

then Ψ maps Y0 into Y0. Further, the continuity of Ψ from Y0 into Y0 follows from the fact that f, g, , k
and h are continuous. Moreover Ψ maps Y0 into a precompact subset of Y0.
We prove that the set
Y0(t) = {(Ψx)(t) : x ∈ Y0} is precompact in X, for every fixed t, 0 ≤ t ≤ T.
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For t = 0, the set Y0(0) is precompact in X.
Let t > 0 be fixed. Define, for 0 < ε < t,

(Ψεx)(t) = Sα(t)[x0−h(x(t1), ...., x(tp))]+

∫ t−ε

0

(t−s)α−1Tα(t−s)[f(s, x(s))+

∫ s

0

g(s, τ, x(τ), Q(τ))dτ ]ds.

Since R(t) is compact for every t > 0, the set Yε(t) = {(Ψεx)(t) : x ∈ Y0} is precompact in X for
every ε, 0 < ε < t.
Further, for x ∈ Y0, we have

‖(Ψx)(t)− (Ψεx)(t)‖ ≤ ‖
∫ t

t−ε
(t− s)α−1Tα(t− s)[f(s, x(s)) +

∫ s

0

g(s, τ, x(τ), Q(τ))dτ ]ds‖

≤ M1ε
α

Γ(α+ 1)
(M2 +M3T ),

which implies that Y0(t) is totally bounded, that is Y0(t) is precompact in X.
We will show that Ψ(Y0) = S = {(Ψx) : x ∈ Y0} is an equicontinuous family of functions. For
0 ≤ t ≤ s, we have

‖(Ψx)(t)−(Ψx)(s)‖ ≤ ‖(Sα(t)−Sα(s))x0‖+‖(Sα(t)−Sα(s))h(x(t1), ..., x(tp))‖

+‖
∫ t

0

(t−τ)α−1Tα(t−τ)−(s−τ)α−1Tα(s−τ)[f(τ, x(τ))+

∫ τ

0

g(τ, ν, x(ν), Q(ν))dν]dτ‖

+ ‖
∫ s

t

(s− τ)α−1Tα(s− τ)[f(τ, x(τ)) +

∫ τ

0

g(τ, ν, x(ν), Q(ν))dν]dτ‖

≤ ‖Sα(t)−Sα(s)‖(‖x0‖+H)+(M2+TM3)

∫ t

0

‖(t−τ)α−1Tα(t−τ)−(s−τ)α−1Tα(s−τ)‖dτ

+
M1(s− t)α

Γ(α+ 1)
(M2 + TM3).

The right hand side of the above inequality is independent of x ∈ Y0 and tends to zero as s → t. It
is also clear that S is bounded in Y. Thus by Arzela-Ascoli’s theorem, S is precompact. Hence by the
Schauder fixed point theorem, Ψ has a fixed point in Y0 and any fixed point Ψ is a mild solution of the
nonlocal Cauchy problem (1.1)-(1.2).

4 Controllability Results
In this section, we will establish a set of sufficient conditions for controllability of semilinear fractional
integrodifferential system with nonlocal condition in the following form

dαx(t)

dtα
= A[x(t)+

∫ t

0

F (t−s)x(s)ds]+(Bu)(t)+f(t, x(t))+

∫ t

0

g(t, s, x(s), Q(s))ds, t ∈ [0, T ] = J, (4.1)

x(0)+h(x(t1), ..., x(tp)) = x0, (4.2)

where the state x(·) takes values in the Banach space X and the control function u(·) is given in
L2(J, U), a Banach space of admissible control functions with U as a Banach space. Here B is a
bounded linear operator from U into X. For system (4.1), there exists a mild solution of the following
form

x(t) = Sα(t)[x0 − h(x(t1), ..., x(tp))] +

∫ t

0

(t− s)α−1Tα(t− s)[(Bu)(s)

+ f(s, x(s)) +

∫ s

0

g(s, τ, x(τ), Q(τ))dτ ]ds. (4.3)
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Definition 4.1. System (4.1) is said to be controllable with nonlocal condition (4.2) on the interval J
if, for every x0, xT ∈ X, there exists a control function u ∈ L2(J, U) such that the mild solution x(.)
of (4.1) satisfies

x(0) + h(x(t1), ..., x(tp)) = x0, x(T ) = x1.

To establish the result, we need the following additional hypothesis
(v) The linear operator W from L2(J, U) into X, defined by

Wu =

∫ T

0

(T − s)α−1Tα(T − s)Bu(s)ds, u ∈ L2(J, U) (4.4)

induces an inverse operator W−1 defined on L2(J, U)/kerW, and there exists a constant M4 > 0

such that ‖BW−1‖ ≤M4.

Theorem 4.1. If the hypotheses (i)-(v) are satisfied, then the system (4.1)-(4.2)

is controllable on J.
Proof. Using the hypothesis (v), for an arbitrary function x(·), define the control

u(t) = W−1{xT − Sα(T )[x0 − h(x(t1), ...., x(tp))]

−
∫ T

0

(T − s)α−1Tα(T − s)[f(s, x(s)) +

∫ s

0

g(s, τ, x(τ), Q(τ))dτ ]ds}(t). (4.5)

Now we will show that, when using this control, the operator, defined by

(Φx)(t) = Sα(t)[x0 − h(x(t1), ..., x(tp))] +

∫ t

0

(t− s)α−1Tα(t− s)[(Bu)(s)

+ f(s, x(s)) +

∫ s

0

g(s, τ, x(τ), Q(τ))dτ ]ds, (4.6)

has a fixed point. This fixed point is then a solution of (4.1). Clearly (Φx)(T ) = xT , which
means that the control u steers the semilinear fractional integrodifferential system from the
initial state x0 to final state xT in time T provided we can obtain a fixed point of the nonlinear
operator Φ.

Let Y0 = {x ∈ Y : x(0) + h(x(t1), ..., x(tp)) = x0, ‖x(t)‖ ≤ r′, for t ∈ J} (4.7)
where r′ is the positive constant. Then Y0 is clearly a bounded, closed and convex subset
of Y .
Define a mapping Φ : Y → Y0 by

(Φx)(t) = Sα(t)[x0−h(x(t1), ..., x(tp))]+

∫ t

0

(t−η)α−1Tα(t−η)BW−1{xT−Sα(T )[x0−h(x(t1), ...., x(tp))]

−
∫ T

0

(T − s)α−1Tα(T − s)[f(s, x(s)) +

∫ s

0

g(s, τ, x(τ), Q(τ))dτ ]ds}(η)dη

+

∫ t

0

(t− s)α−1Tα(t− s)[f(s, x(s)) +

∫ s

0

g(s, τ, x(τ), Q(τ))dτ ]ds.

Consider

‖(Φx)(t)‖ ≤ ‖Sα(t)‖[‖x0‖+H]+

∫ t

0

(t−η)α−1‖Tα(t−η)‖‖BW−1‖{‖xT ‖+‖Sα(T )‖[‖x0‖+H]
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+

∫ T

0

(T − s)α−1‖Tα(T − s)‖[‖f(s, x(s))‖+ ‖
∫ s

0

g(s, τ, x(τ), Q(τ))dτ‖]ds}(η)dη

+

∫ t

0

(t− s)α−1‖Tα(t− s)‖[‖f(s, x(s))‖+ ‖
∫ s

0

g(s, τ, x(τ), Q(τ))dτ‖]ds

≤M1(‖x0‖+H)+
M1M4T

α

Γ(α+ 1)
[‖xT ‖+M1(‖x0‖+H)+

M1T
α

Γ(α+ 1)
(M2+M3T )]+

M1T
α

Γ(α+ 1)
(M2+M3T ) = r′.

Since f and g are continuous and ‖(Φx)(t)‖ ≤ r′, it follows that Φ is continuous and maps
Y0 into itself. Moreover, Φ maps Y0 into a precompact subset of Y0. To prove this, we first
show that every fixed t ∈ J, the set Y0(t) = {(Φx)(t) : x ∈ Y0} is precompact in X. This is
clear for t = 0 since Y0(0) is precompact by assumption (iv).
Let t > 0 be fixed and for 0 < ε < t, define

(Φεx)(t) = Sα(t)[x0−h(x(t1), ...., x(tp))]+

∫ t−ε

0

(t−η)α−1Tα(t−η)BW−1{xT−Sα(T )[x0−h(x(t1), ..., x(tp))]

−
∫ T

0

(T − s)α−1Tα(T − s)[f(s, x(s)) +

∫ s

0

g(s, τ, x(τ), Q(τ))dτ ]ds}(η)dη

+

∫ t

0

(t− s)α−1Tα(t− s)[f(s, x(s)) +

∫ s

0

g(s, τ, x(τ), Q(τ))dτ ]ds.

Since R(t) is compact for every t > 0, the set Yε(t) = {(Φεx)(t) : x ∈ Y0} is precompact in
X for every ε, 0 < ε < t. Furthermore, for x ∈ Y0, we have

‖(Φx)(t)−(Φεx)(t)‖ ≤
∫ t

t−ε
(t−η)α−1‖Tα(t−η)‖‖BW−1‖{‖xT ‖+‖Sα(T )‖[‖x0‖+H]

+

∫ T

0

(T−s)α−1‖Tα(T−s)‖[‖f(s, x(s))‖+‖
∫ s

0

g(s, τ, x(τ), Q(τ))dτ‖]ds}(η)dη

+

∫ t

t−ε
(t− s)1−α‖Tα(t− s)‖[‖f(s, x(s))‖+ ‖

∫ s

0

g(s, τ, x(τ), Q(τ))dτ‖]ds

≤ M1M4ε
α

Γ(α+ 1)
[‖xT ‖+M1(‖x0‖+H)+

M1T
α

Γ(α+ 1)
(M2+M3T )]+

M1ε
α

Γ(α+ 1)
(M2+M3T )

which implies that Y0(t) is totally bounded, that is, precompact in X.
We want to show that Φ(Y0) = {Φx : x ∈ Y0} is an equicontinuous family of functions. For
that, let t2 > t1 > 0.

‖(Φx)(t1)−(Φx)(t2)‖ ≤ ‖Sα(t1)−Sα(t2)‖[‖x0‖+H]+‖
∫ t1

0

(Tα(t1−η)(t1−η)α−1−Tα(t2−η)(t2−η)α−1)BW−1

× {xT − Sα(T )[x0 − h(x(t1), ..., x(tp))]

−
∫ T

0

Tα(T − s)(T − s)α−1[f(s, x(s)) +

∫ s

0

g(s, τ, x(τ), Q(τ))dτ ]ds}(η)dη

−
∫ t2

t1

Tα(t2 − η)(t2 − η)α−1BW−1{xT − Sα(T )[x0 − h(x(t1), ..., x(tp))]
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−
∫ T

0

Tα(T − s)(T − s)α−1[f(s, x(s)) +

∫ s

0

g(s, τ, x(τ), Q(τ))dτ ]ds}(η)dη‖

+‖
∫ t1

0

(Tα(t1−s)(t1−s)α−1−Tα(t2−s)(t2−s)α−1)[f(s, x(s))+

∫ s

0

g(s, τ, x(τ), Q(τ))dτ ]ds

−
∫ t2

t1

Tα(t2 − s)(t2 − s)α−1[f(s, x(s)) +

∫ s

0

g(s, τ, x(τ), Q(τ))dτ ]ds‖

≤ ‖Sα(t1)−Sα(t2)‖(‖x0‖+H) +

∫ t1

0

‖Tα(t1−η)(t1−η)α−1−Tα(t2−η)(t2−η)α−1‖

×M4[‖xT ‖+M1(‖x0‖+H) +
M1T

α

Γ(α+ 1)
(M2 +M3T )]dη

+
M1(t2 − t1)α

Γ(α+ 1)
‖M4[‖xT ‖+M1(‖x0‖+H) +

M1T
α

Γ(α+ 1)
(M2 +M3T )]

+

∫ t1

0

‖Tα(t1−s)(t1−s)α−1−Tα(t2−s)(t2−s)α−1‖(M2+M3T )ds+
M1(t2 − t1)α

Γ(α+ 1)
(M2+M3T ). (4.8)

The compactness of R(t), t > 0, implies that R(T ) is continuous in the uniform operator
topology for t > 0. Thus, the right hand side of (4.8), which is independent of x ∈ Y0, tends
to zero as t2 → t1. So Φ(Y0) is equicontinuous family of functions. Also Φ(Y0) is bounded
in Y, and so by Arzela- Ascoli theorem, Φ(Y0) is precompact. Hence, from the Schauder
fixed-point theorem, Φ has a fixed point in Y0. Any fixed point of Φ is a mild solution of (4.1)
on J satisfying (Φx)(t) = x(t) ∈ X. Thus, system (4.1) is controllable on J .

5 Example

Consider a control system governed by the following fractional partial differential equation
with nonlocal condition

∂αt z(t, x) = ∂2x[z(t, x)+

∫ t

0

b(t−s)z(s, x)ds]+Bu(t)+P (t, z(t, x))+

∫ t

0

q(t, s, z(s, x),

∫ s

0

e(s, τ, z(τ, x))dτ)ds,

z(0, t) = z(1, t) = 0, x ∈ I = (0, 1), t ∈ J (5.1)

z(x, 0)+

p∑
i=0

ciz(x, ti) = z0(x), x ∈ I

where ∂αt is the Caputo fractional partial derivative of order 0 < α < 1, ci, (i = 1, ..., p) is
given positive constant, b is continuous and bounded.
Here B : U → X is a linear operator such that there exists an inverse operator W−1 on
L2(J ;U)/kerW is defined by

Wu = α

∫ T

0

∫ ∞
0

θ(T − s)α−1ξα(θ)R((T − s)αθ)Bu(s)dθds. (5.2)

The resolvent operator R(t) is compact (see [19]) and P : J ×X → X, e : ∆×X → X and
q : ∆×X ×X → X are all continuous and uniformly bounded.
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To write the above system into the abstract form of (4.1), let X = U = L2(J,R) and
Aw = wxx with domain D(A) = {w ∈ X : wxx ∈ X,w(0) = w(1) = 0}.
Let f(t, w)(x) = P (t, w(x)), (t, w) ∈ J ×X,
k(t, s, w)(x) = e(t, s, w(x)),
g(t, s, w, σ)(x) = q(t, s, w(x), σ(x)), x ∈ I.
Therefore, with the above choices, the system (5.1) can be written to the abstract form
(4.1)− (4.2) and all conditions of theorem 4.1 are satisfied. Thus by theorem 4.1, fractional
control system is controllable on J.

6 Conclusion

In this paper, we have presented, by using resolvent operators and Schauder fixed point theorem,
the existence of mild solutions of fractional integrodifferential equations with nonlocal conditions in
Banach spaces. Sufficient conditions for controllability of fractional integrodifferential systems are
established. we provided example to illustrate our results.
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