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Pixel-Wise Defect Detection by CNNs without Manually
Labeled Training Data
M. Haselmann and D. P. Gruber

Polymer Competence Center Leoben GmbH, Leoben, Austria

ABSTRACT
In machine learning driven surface inspection one often faces
the issue that defects to be detected are difficult to make
available for training, especially when pixel-wise labeling is
required. Therefore, supervised approaches are not feasible in
many cases. In this paper, this issue is circumvented by inject-
ing synthetized defects into fault-free surface images. In this
way, a fully convolutional neural network was trained for pixel-
accurate defect detection on decorated plastic parts, reaching
a pixel-wise PRC score of 78% compared to 8% that was
reached by a state-of-the-art unsupervised anomaly detection
method. In addition, it is demonstrated that a similarly good
performance can be reached even when the network is trained
on only five fault-free parts.

Introduction

The decision whether to buy a product or not depends strongly on its quality
impression. An important criterion for perceived “high quality” is a flawless
product surface. The industry’s efforts to meet these requirements are corre-
spondingly high. Often every single fabricated component needs to be
inspected, especially for high-priced products. This can be done either
manually or automatically. A manual inspection line can be set up without
great technical effort. However, it is accompanied by significant costs per
fabricated part. Moreover, since manual inspection over an extended period
of time is an extremely monotonous task, defects can be overlooked. In
addition, the assessment of whether visual surface deviations are still within
limits or constitute a defect is highly subjective. For these reasons, the
industry’s ambitions are high to automate surface inspection.

The process of surface inspection can be divided into three steps. First, the
acquisition of surface images, which includes appropriate part handling and
surface illumination to ensure that occurring defects become visible in the
surface images. Second, the detection and localization of anomalies in the
acquired images. Third, the assessment of the visual perceptibility of each
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detected defect. The focus of this work is on the second step. The challenge of
detecting defects on surface images strongly depends on the appearance of
the fault-free surface images. While for homogeneous, non-patterned sur-
faces, defective patterns can be directly segmented from fault-free regions by
(adaptive) thresholding, there is far more effort needed for surfaces that show
a complex normal appearance such as patterned or decorated surfaces. In this
regard, algorithms need to distinguish allowed structures from non-allowed
or defective ones. A particular challenge are images of patterned surfaces that
show significant sample-to-sample variations, such as those in Figure 1. Such
types of surface images are treated in this work. Since in this case every
instance is unique, no single part can be used as a “golden sample”. Rather,
the entire range of permitted variations must be covered by the method to
enable differentiation between allowed variations and defects.

The detection of defects in surface images can be considered as the
detection of local visual anomalies. Anomaly detection means the detection
of patterns that deviate from the expected appearance, which in case of
surface inspection, can be indirectly defined by a set of samples that are
classified as fault-free by a human. Anomaly detection is closely related to
novelty detection, which focuses on the detection of previously unseen
patterns (Chandola, Banerjee, and Kumar 2009). In both cases, after
a model is built from normal (fault-free) data, it is used to detect anomalous

Figure 1. Surface images of two different samples used in the case study. Note that although the
two images show the exact same sample region, significant appearance variations are recogniz-
able. The reason is variations in the pattern primitives and slightly changed global pattern
distortion and positioning. The right image shows a pixel-wise annotated defect.
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or novel instances in the test data. Regarding surface inspection, small and
weakly contrasted anomalies are a particular challenge, since they do not
change the overall semantic of an image and are often obscured by allowed
appearance variations.

Machine learning defect detectionmodels that are trained in a purely supervised
manner usually perform better than unsupervised one-class approaches. However,
in addition to normal instances, they also require faulty ones for training. For
surface inspection, however, it is difficult to provide a substantial number of faulty
instances. One reason is that certain defect types simply occur very rarely, which
requires extensive manual image assessment in order to acquire a sufficient num-
ber of examples. Furthermore, the effort for the pixel-wise annotation of defects on
a multitude of images is huge. In this paper, this issue is circumvented by
synthesizing defects, which are then injected into fault-free image patches. One-
class (fault-free) data is thereby transformed into two class data, on which
a supervised model can be trained. This way, the performance of supervised
approaches can be utilized without the need for manually labeled multi-class data.

Related Work

There exist several reviews about anomaly detection, novelty detection and
texture analysis that refer to methodologies that are suitable for surface
inspection (Chandola, Banerjee, and Kumar 2009; Huang and Pan 2014;
Kwon et al. 2017; Neogi, Mohanta, and Dutta 2014; Pimentel et al. 2014;
Xie 2008), some of which are domain-specific and can not easily be applied
under different circumstances. Regarding patterned surface images, Tsai,
Chuang, and Tseng (2007) used filters in the frequency domain to remove
periodic structural patterns for automatic defect inspection of TFT-LCD
panels. With this approach, however, false alarms are unavoidable if random
distortions in the pattern are allowed. Another possibility when facing
randomly distorted patterns is to compute a virtual golden sample for
every inspected surface image by replacing every single pattern primitive by
its neighbors in consideration of the local distortion (Haselmann and Gruber
2016). This, however, is limited to regularly arranged patterns that do not
exceed distortions that would result in a non-linear warping between neigh-
bored pattern primitives. There also exist methods that are designed for
detecting anomalies in more irregular patterns. For example, Alimohamadi,
Ahmadyfard, and Shojaee (2009) and Ralló, Millán, and Escofet (2009) used
methods based on Gabor filtering to detect defects in textiles. The focus in
these cases is on rather pronounced defects and not on very weak ones, such
as the ones treated in the present work. Another category of surface inspec-
tion methodology is based on statistical features such as histogram analysis
(Iivarinen 2000; Ng 2006) or co-occurrence matrices (Bodnarova et al. 1997;
Choudhury and Dash 2018; Iivarinen, Rauhamaa, and Visa 1996).
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Learning-based methods are of particular interest in complex inspection
tasks. Although corresponding models are trained with domain-specific exam-
ples, the underlying architecture of the models can still be used without major
changes for other application domains. However, this assumes that no hand-
crafted, domain-specific features are used. Since the rise of deep learning,
however, manually engineered features are no longer necessarily an advantage.
In fact, modern deep learning architectures surpass conventional ML-learning
methods in the majority of pattern recognition tasks and even achieve superhu-
man performance in some of themwithout using any handcrafted features.With
regard to defect detection, however, the main problem with supervised deep
learning is the large number of normal and faulty samples necessary for training.
There exist strategies to attenuate this problem, such as transfer learning and
extensive virtual data augmentation. Nevertheless, in many scenarios, where
only a few faulty image patches are available alongside thousands of normal
ones, supervised training remains a challenge.

One way to avoid the issue of providing a sufficient number of positive
samples is machine learning methods that are trained in an unsupervised way
on exclusively normal data. For example, Zhang et al. (2017) used
a convolutional neural network (CNN) as a one-class classifier to map
instances into a certain feature space, in which the mapped instances were
clustered within a hypersphere. While this approach worked well for the
detection of instances that semantically strongly deviated from the normal
ones, weakly deviating instances were often misclassified. Kholief, Darwish,
and Fors (2017) experimented with autoencoders for defect detection on steel
surfaces. Xu et al. (2016) worked with stacked sparse autoencoders to detect
nuclies on breast cancer histopathology images. Mei, Wang, and Wen (2018)
investigated convolutional denoising autoencoders for automatic fabric
defect detection. Another recent approach was proposed by Schlegl et al.
(2017), where generative adversarial networks are trained on normal
instances. The generative network is then used to generate an instance that
looks as similar as possible to the inspected image patch. The (pixel-wise)
similarity between the two images is used as an (pixel-wise) anomaly score.

Regarding synthetized data, research is conducted in various image pro-
cessing related areas. Theiler and Cai (2003) used a resampling scheme to
produce a “background class” from multispectral landscape images where
binary classification is then used to distinguish the original training instances
from the background. In a more recent example, a large data set with
accurate pixel-level labels was generated with the help of computer games
(Richter et al. 2016). The injection of local anomalies into fault-free patterned
surface images has recently been demonstrated, whereby a convolutional
neural network could then be trained to detect real defective image patches
(Haselmann and Gruber 2017). The corresponding defect synthetization
algorithm is slightly modified and used in the present paper, where instead
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of patch-wise classification, pixel accurate defect detection is demonstrated.
On the considered surface images, the proposed method clearly surpasses the
tested state of the art unsupervised anomaly detection method.

Methodology

Pre- and Post Processing Pipeline

The raw input data fed into the image processing pipeline are high-resolution
surface images with up to 2448� 2050 pixels, each showing certain areas of
a fabricated part. Multiple pre-defined viewing directions are necessary to cover
the whole surface of the free-formed plastic parts (for details see section 4.1). For
each viewing direction, the parts are placed in the same position, with the
exception of small variations caused by the handling system. In addition to
these small positioning variations, the detail characteristic of the surface decora-
tion may vary from part to part. For each pre-defined (high-resolution) viewing
direction, a mask is defined that separates the visible part surface from occurring
background. The visible background in the acquired surface images is blackened
with the help of these defined masks.

In order to prepare the raw input data for a typical convolutional neural
network, patches of size 64� 64 are extracted from the high-resolution
surface images. In addition, 64� 64 patches are extracted from the corre-
sponding high-resolution masks and used as additional network input. In the
next step, synthetic defects (Haselmann and Gruber 2017) (discussed in
section 3.2) are injected into 50% of the raw patches, which are considered
as fault-free by definition. Since the synthetization algorithm considers only
one image channel, RGB input images have to be processed separately for
each color channel. This is followed by data augmentation including rotation,
zooming, shear, etc. This, however, can lead to unwanted border effects,
which is avoided by initially extracting auxiliary patches of size 100� 100.
After applying transformations for data augmentation, the patches are cen-
ter-cropped to the target size of 64� 64. Due to the injection of artificial
defects, for each preprocessed patch the pixel-wise ground truth (the pixel-
wise location of the injected defects) is known. As a consequence, supervised
learning models can be trained to detect defects with pixel accuracy, which is
an image processing task generally known as image segmentation.

During the training phase, the preprocessing pipeline is performed in real time
in order to maximize the variations between training patches in three respects:

● Every possible raw patch is extracted from the input training images
considering shifts of the extraction window pixel by pixel. There is
a very large number of possible extraction window locations (figures
regarding both tested data sets are provided in section 4.1). During each
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training cycle, all possible locations are extracted in random order.
Although the resulting patches are strongly correlated, this can be
considered as a form of data augmentation (besides the additional data
augmentation at the end of the preprocessing pipeline).

● Every injected synthetic defect is newly generated by a stochastic process
(Haselmann and Gruber 2017) (discussed in section 3.2) with the aim to
achieve high defect variability.

● The random data augmentation is performed independently for each
processed patch.

By these techniques, the neural network almost certainly never sees two
identical patches.

For the validation data, a fixed set of patches is extracted from unseen
fault-free samples at random positions. Similarly, as for the training set,
synthetic defects are injected into 50% of the extracted patches. Because no
real defects are annotated, it is not possible with this data set to fully evaluate
the generalization capability of a fitted model. However, it can be tested
whether the model generalizes well to unseen surface images including
unseen decorative features.

The test set is based on an unseen set of images where occurring real
defects are manually labeled on pixel level. Patches are extracted according to
a grid with a space interval of 20 pixels. Such an interval results in each
surface section being seen multiple times, except for some corner regions.
After inference, the predictions are merged again according to the grid,
wherein overlapping regions the predicted maximum probability is selected
for each pixel.

Synthetization of Artificial Defects

For the synthetization of artificial defects, the algorithm of an earlier work
(Haselmann and Gruber 2017) is used in a slightly modified version in the
given paper. The algorithm synthesizes defects with a large variety (see Figure 2).
The purpose of such a wide distribution of artificial defects is that they are likely
to cover most of the occurring real defects.

The defect synthetization algorithm can be roughly divided into four steps.
First, a random binary defect skeleton is generated by means of a stochastic
process that resembles a random walk with momentum. In the second step,
a random texture is generated on basis of the skeleton. For this purpose, the
skeleton points are first replaced by gray values. Afterward, the image is
blurred to obtain a thicker defect morphology. In the third step, the randomly
generated defect texture is used to modify a (fault-free) image patch of the one-
class training data. Each of these first three steps of the algorithm is subject to
several random variables (Haselmann and Gruber 2017), which helps to
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achieve high variability of artificial defects. This not only leads to very diverse
defect morphologies (skeletons that are straight, restless, jagged, curved, angu-
lar, circular, bulky, or various mixtures thereof) but also to different defect
characteristics in terms of contrast and intensity progression. For example,
a bright–dark transition in the normal structure can (controlled by a random
variable) lead to an interruption of the artificial defect in some cases.

The distribution of each random variable of the defect synthetization algo-
rithm is determined by several hyperparameters (Haselmann and Gruber 2017),
which can be adjusted according to the specific defect detection task. For
example, a model can be trained to distinguish line-like defects from bulky
defects by using two sets of hyperparameters that result in two different groups
of morphologies. In this work, however, no differentiation between defect types
has been pursued. In order to achieve a high variability of defects, a rather broad
distribution for each random variable has been chosen (see Figure 2).

In the fourth step, the visibility of the synthesized defects is analyzed. For
some realizations of the random variables, the generated artificial defects are
barely visible or not visible at all. Those image patches are discarded accord-
ing to a predefined visibility limit. Furthermore, in the fourth step, the defect
visibility is analyzed pixel-wise to generate pixel-level labels for the con-
ducted experiments.

Network Architecture

A fully convolutional network (FCN) according to Jonathan Long,
Shelhamer, and Darrell (2015) was used for defect segmentation (see
Figure 3).

Figure 2. Stepwise injection of synthetic defects on fault-free image patches. The first image row
shows the fault-free image patch to be manipulated. The second shows randomly generated
defect skeletons. The third row shows the random textures created on this basis. The fourth row
shows the query image with the injected artificial defect. The fifth shows the difference image
between the query and its manipulated version. The sixth row shows the ground truth provided
for the network training.
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Encoder
For the encoder part – (64C3-128C3-MP2)-(128C3-128C3-MP2)-(128C3-
128C3-MP2)-(2C1) – eight convolutional layers were used, whereby after
the second, fourth and sixth layer max-pooling was applied. As the input size
of the network is 64� 64, this results in a feature map size of 8� 8 after
max-pooling in the sixth layer. In the seventh layer, a 1� 1 kernel was used
for dimensionality reduction. Rectified Linear Units (ReLUs) were used as
activation functions for each layer in the encoder with batch normalization
applied prior to them.

Decoder
The decoder part of the segmentation network consists of two layers that
upsample their corresponding input regions by transposed convolution with
strides 2 and 4, respectively. In favor of a better segmentation granularity,
there is a skip connection from the output of the first upsampling layer to the
output of the fourth layer of the encoder part. For the decoder part, linear
activations were used without batch normalizations.

Training Details
The fully convolutional network (FCN) was trained from scratch using the
ADAM optimizer [13] with hyperparameters α ¼ 0:0005, β1 ¼ 0:9,
β2 ¼ 0:999, � ¼ 10�8 and a batch size of 336. In all layers, the weights were
initialized from a truncated Gaussian distribution with a mean of 0 and
a standard deviation of 1. All biases were zero-initialized.

Figure 3. Architecture of the fully convolutional neural network (FCN). The orange cuboids
represent convolutional layers (conv.) with kernels of size 3 × 3 with downstreamed batch
normalization (BN) and rectified linear units (ReLU) as activation function. The yellow cuboids
represent layers that upsample its input by transposed convolution with strides 2 and 4.
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Metrics for Model Evaluation on Imbalanced Data Sets

Despite the injection of synthetic defects, which leads to patch-wise balanced
training and validation data, there is a strong imbalance at pixel level, since the
majority of pixels is negative. The test data set is imbalanced even when con-
sidering patch-wise classification, because no synthetic defects but only real ones
occur. The imbalance of data sets is commonly represented by its skew,

Skew ¼ negatives
positives

; (1)

where negatives denote the number of fault-free (negative) instances and
positives the number of defective (positive) instances. On highly skewed data
sets, some metrics can be misleading. One such example is the commonly
used accuracy that reaches values close to 1 for a model that predicts every
instance to be negative.

Receiver-Operator-Characteristic (ROC)
Another common metric is the ROC curve and the area under it (AUROC).
The ROC curve is a plot of the recall (true positive rate),

Recall ¼ TP
TPþ FN

; (2)

against the false-positive rate (FPR),

FPR ¼ FP
FPþ TN

; (3)

at various threshold settings, where TP is the number of true positives, FP
is the number of false positives, FN is the number of false negatives and TN
is the number of true negatives. In contrast to accuracy, a model that
predicts all pixels to be negative does not surpass the AUROC baseline of
0.5. ROC metrics might therefore be suitable to assess the performance of
tested models on data sets with a large skew. However, for reasonably well-
performing models, applied on a data set with a very high skew, the ROC
curve rises sharply due to the large fraction of TN which leads to an
AUROC close to 1. Therefore, ROC metrics can be misleading for the
comparison of two well-performing models on strongly imbalanced data
sets (Davis and Goadrich 2006; Jeni, Cohn, and de La Torre 2013).
Nevertheless, for the sake of completeness, ROC and AUROC are reported
on pixel level.

Precision-Recall-Curve (PRC)
For data sets with a large fraction of negative instances, metrics such as
precision in combination with recall are frequently reported. One defines
precision as
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Precision ¼ TP
TPþ FP

: (4)

In contrast to the ROC metrics, precision and recall are not affected by a large
fraction of TN. Actually, it is also possible to evaluate problems where no or
no meaningful counting of TN is possible. Precision-recall metrics are there-
fore very sensitive when comparing models on data sets (Davis and Goadrich
2006) with a large skew, such as in the given case. While for balanced data
sets the baseline of the AUPRC is also about 0:5, for data sets with a large
skew the baseline approaches zero.

Matthews Correlation Coefficient (MCC)
The MCC (Matthews 1975) is another metric that will be reported in this
paper:

MCC ¼ TP � TN� FP � FN
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞð Þ1=2

: (5)

The MCC is between � 1 and 1, whereas 0 is the baseline for random
prediction. An MCC of 1 corresponds to a perfect prediction. In contrast,
� 1 corresponds to a prediction that is exactly the wrong way around.
For imbalanced classification problems, especially those with low skew, the
MCC is regarded as more meaningful than the F1 score, because it takes
into account the balance ratios of all four categories of the confusion
matrix (Chicco 2017).

Defect-Wise Evaluation
In addition to the pixel-wise evaluated metrics, the AUPRC is reported
considering defect-wise detection. The defect-wise TP, FP and FN are defined
as follows: A correctly detected defect (TP) is counted if at least one asso-
ciated pixel has been classified as defect-positive. Otherwise, it is counted as
an undetected defect (FN). A false-positive occurrence (FP) is counted
whenever a cluster (connected components whose pixels are connected
through an 8-pixel connectivity) of positive predicted pixels does not include
any positively labeled pixels. True negatives TN, in turn, can not be reason-
ably counted on a defect basis. AUROC and MCC, can therefore not be
reported on a defect basis.

Experiments

Data Sets

The images used for the case study originate from free-form plastic parts
whose surface decoration significantly varies from part to part. Multiple
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views per part were necessary to cover the entire surface. However, the
positioning of the parts is fixed for each view, with the exception of small
variations (see Figure 1). Two different types of parts were used for the
experiments, resulting into two data sets, called A and B. On data set A,
a state of the art unsupervised anomaly detection method (Schlegl et al. 2017)
was tested for reasons of comparison. All parts of each data set were split up
into three groups (Training, Validation, and Test).

As already stated in section 3.1, it is assumed that the raw training and
validation data are fault-free. Patches labeled as positive are only provided
by injecting synthetic defects. Hence, the parts that showed noticeable
defects were used for the test set. The other parts were used for the
training set and validation set. While the parts used for training and
validation are not completely fault-free, they appear to be so at first
glance. Only in the test set, visible defects were manually annotated.
Data set A includes four viewing directions per part, whereas 34 parts
were used for training, 9 for validation and 17 for testing with real
defects. All four viewing directions combined, a total of 1055862 different
image patches can be extracted per part, which are strongly overlapping.
Since the patch size was chosen to be of size 64� 64, this results in
approximately 260 non-overlapping image patches per part. For data set
B, which contains three viewing directions per part, 12 parts were used for
training, 12 for validation and 4 for testing.

Results

The results for data set A are summarized in Table 1. The corresponding
PR and ROC curves are shown in Figure 4. All models of the FCN
network (see Figure 3) were trained on 300k to 700k batches with
synthetic defects until the AUPRC saturated on the validation data set
(see Figure 5). According to the loss and the segmentation AUPRC
history for training and validation, neither significant under- nor over-
fitting occurred. This also holds true when training is performed on
a subset of data set A consisting of only five parts for training.

Table 1. Summary of results.
Pixel-wise Defect-wise

AUPRC AUROC MCC AUPRC TP FP FN

FCN (data set A) 0.78 0.9999 0.65 0.77 64 145 3
FCN (five parts of A) 0.75 0.9998 0.61 0.77 61 127 6
AnoGAN (data set A) 0.08 0.84
FCN (data set B) 0.76 0.9997 0.67 0.87 302 225 30
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Presumably, this is made possible by the extensive data augmentation
both on basis of raw data and with regard to synthesized defects that
are used only once.

(a) Pixel-wise PRCs (b) Defect-wise PRCs

(c) Pixel-wise ROC (d) PRCs on data set B

Figure 4. ROC and PR curves for data set A. The areas under the curves are reported within the
parenthesis.

(a) Training on full data set A with 34 training
samples.

(b) Training on reduced data set A with 5
training samples.

Figure 5. Training history of the fully convolutional neural network on data set A.
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Full Training Set A
On data set A, consisting of 34 parts, a segmentation AUPRC of 0.78 was
reached on the test set (which includes manually annotated real defects) in
comparison to 0.92 on the validation data set (which includes only synthetic
defects). Considering the patch-wise AUPRC, a score of 0.77 (test) and 0.97
(validation) was achieved. Examples of surface images of test data set A with
superimposed CNN predictions are shown in Figure 6.

It is noteworthy that the AUPRC is much lower on the test data sets than on
the validation data sets. This can be explained by fact that the test set has a much
higher skew than the validation set. While 50% of the patches in the validation
data set contain defects, this holds true for only about 0.5% of the patches in the
test data set. On pixel level the situation is similar: 0.4% of the pixels are positive
in the validation data set in comparison to only 0.004% in the test data set. This
ratio of 100 between the skew of the test data set and the validation data set
strongly affects the measured AUPRC, as also demonstrated by Jeni, Cohn, and
de La Torre (2013).

Since slightly imperfect structures appear in the raw training data set,
which is defined to be fault-free, it is difficult, if not impossible, to draw
a sharp line between defect and non-defect. The majority of negatively
labeled patches on which at least one pixel was predicted as positive (see
Figure 7a), showed structures that could be interpreted as defects.

Reduced Training Set A (Five Parts Only)
With the repetition of the experiments on the significantly reduced data set,
the performance of the models hardly deteriorated. The segmentation PRC

(a) Example part 1 (b) Example part 2

Figure 6. Two parts of dataset A with view on the same section. Defect-wise true positives (blue
squares) and false positives (red squares) detected by the FCN are superimposed. At pixel level,
blue pixels indicate true positive predictions, red pixels indicate false positives and purple pixels
indicate false negatives.
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scores of 0.75 (test) and 0.94 (validation), as well as the patch-wise PRC
scores of 0.77 (test) and 0.93 (validation), were just slightly below the scores
of the models trained on the full data set.

Comparison to AnoGANs
As a comparison, an unsupervised anomaly detection method utilizing
a generative adversarial network (AnoGAN) (Schlegl et al. 2017) was tested
(similar comparison has been performed by Haselmann et al. 2018). For this,
the publicly available implementation of Ayad et al. (2017) was used. The
GAN was trained on the full training set without the injection of synthetic
defects, thus only on fault-free patches. After training, the GAN was used to
generate patches that were as similar as possible to the patches of the test data
set. As proposed by Schlegl et al. (2017) this was done by mapping the
corresponding patches to the latent space of the network by an iterative
optimization process. Since this resulted in an inspection time that was 60000
times longer compared to the inspection time of the FCN, AnoGANs were
only tested on one data set (data set A).

It turned out that the images generated by the GAN did not match the
query images very well when trained on patches containing visible edges of
the defined regions of interest (ROIs). Therefore, the GAN was retrained
(and tested) on patches with no visible mask edges (see Figure 8). Although
the majority of generated patches looked quite realistic, only a segmentation
AUPRC of 0.08 could be reached. Non-matching reconstructions, such as in

(a) False positives defects (b) False negatives defects (all of them)

(c) True positives defects (well visible) (d) True positives defects (weakly visible)

Figure 7. Examples of image patches of data set A (upper row) with merged predictions (lower
row). At pixel level, blue pixels indicate true positive predictions, red pixels indicate false
positives and purple pixels indicate false negatives. The contrast of undetected defects in (a)
resembles the contrast of false positively detected structures in (b). This is a consequence of the
problem that no sharp line between a defect and non-defect can be drawn.
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Figure 8d, were excluded for reasons of comparability since there were
presumably a result of the optimization procedure for the being stuck in
a local minimum in the latent space. Nevertheless, only the few most high-
contrast defects, such as the one in Figure 8b were reliably detected. Weakly
contrasted defects, such as in Figure 8c were often mixed up with normal
structures.

Training Set B
Similarly to the results on data set A, the FCN reached a pixel-wise AUPRC
of 0.76 for the test set and 0.97 for the validation set. Defect-wise, the
AUPRCs were at 0.87 (test) and 0.99 (validation). Surface images of data
set B including highlighted defects are depicted in Figure 9.

Figure 8. Examples of four image patches processed by AnoGANs as a comparison to the
proposed method. The top row shows image patches to be inspected (query images). The
middle row shows the reconstructions by the AnoGAN. The bottom row shows the absolute
value of the difference image between the query and reconstructed image. While column (a)
shows a fault-free image patch, (b) and (c) show an image patch with a strongly visible and
weakly visible defect, respectively. Failed reconstructions, such as in (d) have been discarded in
order to enhance the measured pixel-wise AUPRC and AUROC.
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Discussion

On data set A, the pixel-wise AUPRC of 0.78 – reached by the proposed
method – is much higher than the AUPRC of 0.08 of the tested state-of-
the-art unsupervised anomaly detection method. One of the reasons for
this is that weakly contrasted defects, such as those depicted in Figure 7d,
were only detected by the proposed method. This is not surprising, as the
sensitivity of the method is significantly influenced by the distribution of
the artificial defects. Furthermore, it could be shown that a similarly good
performance (pixel-wise AUPRC of 76%) could be reached even when
training was performed on five surface samples only. For surface inspec-
tion, this means that the effort for teaching a new type of surface to the
system is low.

The limitations of the described method are dictated by the injection of
synthetic defects. Defects that are not covered by the distribution of artificial
ones cannot be reliably detected. Especially anomalies that are only visible
when looking at a larger area of the surface can hardly be detected since they
are difficult to synthesize. However, in some cases, a multi-scale version of
the described method – where the input images are scaled to different sizes in
order to cover defects of strongly varying sizes – might work. Another
limitation occurs for RGB images. Since the injection of synthetic defects is

(a) Example part 1 (b) Example part 2

Figure 9. Two parts of dataset B with view on the same section. Defect-wise true positives (blue
rectangulars) and false positives (red rectangular) detected by the FCN are superimposed. At
pixel level, blue pixels indicate true positive predictions, red pixels indicate false positives and
purple pixels indicate false negatives.
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based on gray levels, the RGB channels cannot be jointly analyzed. They have
to be processed independently, either with one model for all channels or with
a separate model for each channel.

Conclusion

In this paper, a method is proposed that is capable of detecting locally
confined defects on surface images with pixel accuracy. The method uses
a fully convolutional neural network for image segmentation that is
trained on respective surface images that have been defined as fault-free
by the user. For this purpose, image patches are randomly extracted from
the high-resolution surface images. In order to enable two-class supervised
training on a pixel basis, randomly generated artificial defects are injected
into 50% of the extracted patches. Consequently, real defects are not
required for training. By these means the common issue in machine
learning driven surface inspection of collecting and labeling sufficient
amounts of data can be bypassed. Experiments were conducted on two
different data sets. On data set A, a pixel-wise AUPRC (area under the
precision–recall curve) of 78% was achieved, compared to the AUPRC of
8% of a state-of-the-art unsupervised anomaly detection method.
Furthermore, it could be shown that a similarly good performance (pixel-
wise PRC score of 76%) could be achieved even when training was
performed on five surface samples only.
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