Taylor & Francis
Taylor & Francis Group

APPLIED 7~
Alﬂﬁ%ﬁf Applied Artificial Intelligence

An International Journal

ISSN: 0883-9514 (Print) 1087-6545 (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Support Vector Machine State Estimation

Vedran Kiriné&i¢, Ervin Ceperi¢, Sasa Vlahini¢ & Jonatan Lerga

To cite this article: Vedran Kirin¢i¢, Ervin Ceperi¢, Sasa Vlahini¢ & Jonatan Lerga (2019)
Support Vector Machine State Estimation, Applied Artificial Intelligence, 33:6, 517-530, DOI:
10.1080/08839514.2019.1583452

To link to this article: https://doi.org/10.1080/08839514.2019.1583452

ﬁ Published online: 05 Mar 2019.

\]
CA/ Submit your article to this journal &

||I| Article views: 657

A
& View related articles &'

P

(&) view Crossmark data &

CrossMark

@ Citing articles: 2 View citing articles &

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uaai20


https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2019.1583452
https://doi.org/10.1080/08839514.2019.1583452
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2019.1583452
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2019.1583452
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2019.1583452&domain=pdf&date_stamp=2019-03-05
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2019.1583452&domain=pdf&date_stamp=2019-03-05
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2019.1583452#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2019.1583452#tabModule

APPLIED ARTIFICIAL INTELLIGENCE Tavlor & F .
2019, VOL. 33, NO. 6, 517-530 e aylor rancis

https://doi.org/10.1080/08839514.2019.1583452 Taylor & Francis Group

W) Check for updates ‘

Support Vector Machine State Estimation
Vedran Kirinci¢?, Ervin Ceperic¢®, Sasa Vlahini¢?, and Jonatan Lerga ©°

Faculty of Engineering, University of Rijeka, Rijeka, Croatia; "HEP Telekomunikacija d.o.o., Rijeka,
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ABSTRACT

The power system state estimator based on the support vector
machine (SVM) and the weighted least squares (WLS) method
is presented in the paper. The WLS provides state estimations
necessary for creating SYM model which is then used for state
estimation. The developed algorithm was tested on the IEEE
systems, and the performance indicators were calculated in
order to compare the accuracy of estimation and the measure-
ment error filtering. The results indicate that the proposed
hybrid model outperforms the classical WLS-based state esti-
mation in terms of accuracy and improves measurement error
filtering in comparison to the classical estimator.

Introduction

The trend of growing population in developing economies, with goals of
reaching already unsustainable energy consumption levels in the countries of
a higher living standard, results in increasing energy demands worldwide. As
the electric power system forms the backbone of modern lifestyle, special
attention should be given to the optimization of its assets and operation.
Although the sector of distributed generation was recognized as a potential
solution for environmental issues and as a flywheel for stumbled national
economies, the intermittent nature of the majority of plants imposes addi-
tional uncertainties in power system operation. Furthermore, the electric
energy market operations often neglect technical restrictions in favor of
a financial profit. Since the obsolete infrastructure was not designed for
bidirectional energy and information flows, new concepts and technical
solutions are needed in order to assist power utilities worldwide to cope
with the challenging trends which result in power systems being operated
closer to their stability limits and with lowered security margins.

Since it first appeared in the late 1960s (Schweppe, Wildes, and Rom
1970), the state estimator has been playing a significant role in the control
centers worldwide as its output is used in the majority of subsequent
applications. Therefore, extensive research tackled the field of the state
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estimation in order to enhance its performance in various aspects (Monticelli
1999; Abur and Gome-Exposito 2004). The emergence of modern sensors
offered many benefits in various fields and many numerous were provided in
order to optimally combine novel measurements with the conventional
supervisory control and data acquisition (SCADA) measurements.
Although sensing unit price has continuously been dropping, when it
comes to larger power systems, it still presents a financial and a technical
challenge to deploy numerous units.

The majority of control centers use the state estimators with the weighted least
squares (WLS) method. The problem with WLS estimators based on SCADA
measurements is the influence of bad data and imprecise measurements on its
accuracy which is, in some cases, significant (Chen and Abur 2006). Different
approaches have been suggested to solve this problem, e.g., linear regression
(Haughton and Heydt 2013), artificial neural networks (Huang et al. 2010),
adaptive Kalman filter (Zhang et al. 2014), etc.

To improve the effectiveness of WLS, a new model that uses an enhanced
version of the support vector machine (SVM) algorithm is introduced. Due
to the effectiveness in solving different machine-learning problems, such as
short-term load forecasting (Ceperic, Ceperic, and Baric 2013), electricity
price forecasting (Shiri, Afshar, and Rahimi-Kian 2015), and intrusion detec-
tion in SCADA systems (Leandros and Jiang 2014), SVMs have generated
a lot of research interest among scientists. Some of the main advantages of
SVM are higher tolerance to the increased complexity of the model and lower
susceptibility to local minimal. The proposed model improves state estimator
performance when compared to a classical WLS-only model.

This paper is organized as follows: The theoretical fundamentals are explained
in the section on Theoretical Fundamentals, while the proposed solution is
elaborated in the section on Support Vector Machine Theoretical Background.
The cases used to test the solution and the obtained results are given in the
section on Case Studies. The paper closes with the Conclusion section.

Theoretical Fundamentals
State Estimation Theoretical

Background

The classical state estimation theory, which presents a fundamental for the
most of the estimators that run in the control rooms, uses the WLS. The
classical state estimation approach is based on SCADA measurements (vol-
tage magnitudes, power flows, and injections) that are combined in the
vector of measurements (z), while the vector of state (x) includes phasors
of voltage. The relationship between the state vector elements and power
flows/injections is:
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z = h(x)+e (1)

where h(x) contains nonlinear equations, while e denotes errors in measure-
ments. The measurement error covariance matrix denoted as z = h(x) +e
(m is a number of measurements and ¢ is a standard deviation) is used to
relate measurement weights to the accuracy of each measurement. The
standard uncertainty may be calculated from the accuracy limits A (Al-
Othman and Irving 2005; ISO - IEC - OIML - BIPM 2008):

o= 2)

V3

The state estimator results in the optimal estimation by minimizing the

objective function J(x):
() =5 2~ b)) "R — b)) 0

The solution is obtained through an iterative algorithm, with the Gain matrix
G(x) and the Jacobian matrix H(x), respectively:

G(x) =H"(x)-R'-H(x) (4)
H(x) = Oh(x)/0x (5)

The change in the state vector is recalculated until the maximum change
AxFbecomes smaller than the predefined tolerance:

G(x"axk = HT (x%) - R7! [z — h(xk)] (6)
Axk = X — Xk (7)

The issue of the Gain matrix ill-conditioning, caused by the high weights of
the measurements such as zero-injections (Abur and Gome-Exposito 2004),
is dealt with by introducing a set of constraints:

L(x,1)= % [z~ h(®)] 'R [z — h(x)] — 1"e(x) (8)

subject to ¢(x) = 0

That is minimized by using JL(x,1)/0A = 0 andOL(x,1)/0x = 0. The sys-

tem is solved for Ax and \ (the vector of the Lagrange multipliers):
[ocHTR‘lH CT} {Ax} _ [aHTR—l(z—h(xk))

C 0|2 —e(xh) ©)

where Ax = x¥*! — xk, C = Oc(x)/0x, and « = 1/ max(diag(R™!))are the
scaling factors used to minimize the Gain matrix condition number.
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Support Vector Machine Theoretical Background

This subsection summarizes the support vector regression (SVR) algorithm.
The SVMs were introduced by Cortes and Vapnik (1995) with the intention
to be used in solving learning problems in regression and classification in
a supervised manner.

SVMs were originally applied to classification problems (Cortes and
Vapnik 1995) and then later even to regression problems (Drucker et al.
1996). Due to some theoretical guarantees, SVM provides great generaliza-
tion properties in various classification and regression problems.

The formulation of SVM regression most commonly used is e-tube sup-
port vector regression (¢ - SVR, proposed by Vapnik) (Drucker et al. 1996).
The main goal is to determine a linear function f, which has the largest
difference ¢ than all data and simultaneously is flat as possible:

f(x) = (w,x) + b, (10)

where the weight vector is w, x is associated input vector, and b € R is
a constant.

The flatness of the function f presupposes seeking a smaller vector w. One
of the ways to obtain flatness is b minimizing the|w||> = (w, w).

The most common way to calculate weight w is by transferring the SVR
optimization problem to dual optimization and then applying quadratic
programming.

A kernel function on vectors v and z is the function K>X — R. which

tulfills: K(v,2) = (O(v), D(2)). (11)

Kernel function transformation input space in high-dimensional feature
space and then the standard SVR algorithm can be applied (Smola and
Scholkopf 2004). The radial basis function (RBF) is kernel function:

K(v,z) = exp(—yllv 2|

= exp(—y((v,v) + (z,2) — 2(v,2))), for y>0. (12)

The e-SVR requires the selection of two parameters:

the regularization parameter C,

the e-tube width,

while RBF requires the selection of the additional parameter y, in
Equation (12).

The library for SVM (LIBSVM) tool (Chang and Lin 2011)-based e-SVR
implementation is used in order to select the parameters, known as hyper-
parameters. The selection of hyper-parameters is the most important step in
building accurate and robust model. For example, an overfitting phenom-
enon may appear if the case where the value of hyper-parameter C is too
large. The most common method for finding near-optimal parameters is
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a grid search (GS), as shown in Cao et al. (2007), but the main problem is its
time consumption.

Many researchers use the particle swarm optimization (PSO) method for
optimization of the hyper-parameters (Ceperic, Ceperic, and Baric 2013; Cao
et al. 2007). The main principle of the PSO optimization algorithm is based
on the principles of swarm intelligence. The use of PSO enables more
accurate and faster identification of near-optimal hyper-parameters com-
pared to the GS method and other conventional methods.

In this paper, for SVM hyper-parameter optimization, the particle swarm
pattern search method (PSwarm) is used, a technique inspired by PSO.
PSwarm is actually a hybrid algorithm that combines, for global optimiza-
tion, a heuristic approach (particle swarm) and, for local minimization, more
rigorous method (pattern search). The PSwarm was introduced in Vaz and
Vicente (2007) where it was shown that PSwarm is very competitive in
efficiency and has the best result when compared to other tested global
optimization solvers. PSwarm combines the efficiency of PSO global and
convergence properties of pattern search.

Support Vector Machine State Estimation

The proposed support vector machine state estimator (SVMSE) is a mixed
model that improves the classical WLS model by introducing an additional
SVR block. The block diagram of hybrid model for each state is shown in
Figure 1. The n past inputs and outputs from the WLS are actually used as
inputs for building the additional SVR model. The SVR model is then used to
calculate actual states by using actual measurements as inputs. For each state,
the separate model is built so the number of models depends on the number
of states. The determination of optimal hyper-parameters is done by cross-
validation on 200 training samples. Once determined, they are used for
building SVR models. All the variables used as input for SVR are normalized
in the range [-1 1] as suggested in Ceperic, Ceperic, and Baric (2013).

State estimator model

actual and n SVM
lagged
measurements n states
» WLS S
B;’\l;;\’;g Power
system state
Delay model Y >
0..n
actual
measurements

Figure 1. Support vector regression single state estimator block diagram.
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The optimal number of past inputs and outputs used to build an SVR
model is determined by optimization on the training data set. The number of
optimal past state is actually the number of past states in a given interval for
which best results on training data set are obtained.

The advantage of hybrid model is not only in increased performance but
also in avoiding the problem of convergence of classical WLS model. In that
way, a more robust solution is obtained.

Case Studies

The proposed algorithm was tested on the systems of various topologies, sizes,
and locations of measurements (Christie R., Power system test archive; http://
www.ee.washington.edu/research/pstca.). The observability analysis was used
to ensure the observability. In Tables 1-4, the conventional SCADA measure-
ment locations (buses) are shown.

The accuracy limits used to calculate the standard uncertainties for each
type of measurements are given in Table 5. As the true measurements, the
results of power flow calculation were used, while the Gaussian noise was
added to simulate the noisy measurements.

A total of 1000 trials were run, with randomly generated errors in mea-
surements. The accuracy of the state estimator was expressed through the
variance of the estimated states:

Table 1. The IEEE 14 SCADA measurements.

Type Location

Magnitude of voltages 2,10,12,8.3

Power flows 1-2, 6-13, 7-9, 6-12, 4-9, 5-6, 13-14, 4-7
Power injections 1,2,8,13,9,11,3,4,10,6, 12, 14

Table 2. The IEEE 30 SCADA measurements.

Type Location

Magpnitude of voltages 2,3,9 11,16, 6,17, 25, 14, 30

Power flows 1-3, 2-6, 5-7, 6-9, 6-10, 12-13, 14-15, 16-17, 15-18, 10-20, 10-17, 2-4,
15-23, 25-26, 6-8, 25-27, 28-27, 12-15, 4-6, 29-30, 6-28

Power injections 1, 2,6, 11, 4,12, 10, 18, 24, 25, 19, 27, 15, 30

Table 3. The IEEE 57 SCADA measurements.

Type Location
Magnitude of 1,3,7,8,11,17, 22,5, 27, 37, 15, 44, 52, 4, 31, 54
voltages
Power flows 1-15, 2-3, 3-4, 4-5, 4-18, 6-7, 7-29, 8-9, 9-10, 9-11, 9-13, 12-16, 12-17, 13-15,

14-15, 18-19, 1-17, 7-8, 22-23, 22-38, 24-25, 14-46, 28-29, 24-26, 26-27, 35-36,
38-48, 9-12, 46-47, 52-29, 32-33, 52-53
Power injections 1,2,5,6,10, 15,18, 19, 27, 35, 41, 13, 44, 12, 25, 47, 51, 54, 55, 30, 32, 43, 53, 49, 57
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Table 4. The IEEE 118 SCADA measurements.

Type Location

Magnitude of 4,12, 25, 36, 73, 10, 76, 27, 86, 40, 107, 59, 111, 82, 92, 112, 18, 117
voltages

Power flows 1-2, 3-5, 5-6, 9-10, 5-11, 7-12, 14-15, 16-17, 23-24, 28-29, 30-17, 17-31, 23-32,

34-36, 40-41, 43-44, 2-12, 34-43, 45-49, 52-53, 54-55, 56-57, 50-57, 51-58, 60-62,
64-65, 68-65, 47-69, 71-72, 71-73, 69-75, 4-11, 74-75, 12-14, 76-77, 78-79, 81-80,

77-82, 84-85, 86-87, 85-88, 17-18, 91-92, 92-93, 93-94, 94-95, 82-96, 62-67,

92-100, 95-96, 98-100, 51-52, 99-100, 21-22, 100-101, 6-7, 101-102, 100-106,

105-107, 105-108, 59-60, 39-40, 108-109, 46-48, 103-110, 37-40, 109-110,
110-112, 17-113, 27-115, 114-115, 75-118, 76-118
Power injections 3,4, 12, 13,16, 15, 19, 20, 24, 25, 27, 31, 35, 36, 42, 46, 47, 49, 52, 53, 8, 55, 61, 66, 70,
72,74, 77,79, 83, 85, 86, 89, 90, 92, 94, 33, 96, 97, 98, 99, 102, 22, 104, 54, 105, 44,
110, 111, 112, 116, 117, 118

Table 5. Maximum measurement uncertainties.

Magnitude of voltages Power flows Power injections
0.2% 2% 2%
M
1 2
2 .
03 =3 (30) — #()) (13)
i=1 j=1

where X; is the vector of estimated states, while x is the vector of true
states, M is the number of trials, and L is the number of variables.
The filtering index is calculated as:

1 j=1
YD R — (14)

m
1:1 Z (zj z]true)z

where z and 2" are the calculated and true values, respectively, while z are

measurements containing noise.

For each of the test systems, a base scenario was simulated with 1000
Monte Carlo trials. To determinate systems, SVR hyper-parameters 200
Monte Carlo trials were used, while for finding the optimum number of
past n measurements 100 trials were used. Following the calculation of the
parameters and number of past measurements for SVR, the test systems were
simulated for basic and other operating states in order to test the proposed
state estimator performance in various scenarios. Therefore, for each test
system, additional scenarios were simulated with a single branch, generator,
or load outage, and for each additional scenario, 1000 Monte Carlo trials
were carried out.
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The relative variance and index are calculated as relative change between
the variances of the estimated states and the filtering indices of the WLS and
SVMSE, expressed in percentage. The sum is obtained as:

2

2 ~ —
o w — 0 J—
sum — > s ) SVMSE _ §<x> WLS §<x) SVMSE (15)
= P —
Sas () e
sum = relVar + relFidx (16)

where 0222 WLS and o2 are the variances of the estimated states of the

Z SVMSE

models obtained by using expression (13), respectively, while §<5c> s and

13 <?c> S the filtering indices for the models obtained using expression

(14). The optimal number of past values for each test system is determined
by selecting the largest relative difference between the WLS and SVMSE
models, i.e., the largest sum. Figures 2-5 show the change of the sum of
relative variance and relative index for the test systems with different number
of past WLS values (lagged values), with the maximum values highlighted in
dashed rectangles. The results for the base and the additional scenarios are
obtained by simulating the power systems with the given optimal number of
state vectors.

Tables 6-9 show the obtained results for the tests systems when simulating
base and additional scenarios, in order to compare the performance of the
SVMSE with the classical state estimator.

Comparing the results of the SVMSE and the classical state estimator, we
can conclude that the accuracy and the measurement error filtering are

Relative variances of the estimated states and relative filtering indices - IEEE 14 test system
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Figure 2. The estimated states sum of relative variance and relative index change for the IEEE 14.
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Relative variances of the estimated states and relative filtering indice - IEEE 30 test systems
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Figure 3. The estimated states sum of relative variance and relative index change for the IEEE 30.

Relative variances of the estimated states and relative filtering indices - IEEE 57 test system
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Figure 4. The estimated states sum of relative variance and relative index change for the IEEE 57.

enhanced since the indices are smaller for the SVMSE in all test scenarios.
This is especially true for the base scenario where variances and filtering
indices are lower by the order of magnitude. For other scenarios, the results
are close or better for SVMSE. The proposed method is faster than the
classical approach since the time needed to obtain the state estimate when
using the SVMSE is also smaller when compared with the classical state
estimator.

Visual results are given for the base scenario of the IEEE 14 and IEEE 30 test
systems only. The estimation errors for these systems are shown in Figures 6-9.

The presented results indicate that the proposed SVMSE estimates voltage
angles and magnitudes with smaller errors.
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Relative variances of the estimated states and relative filtering indices - IEEE 118 test system
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Figure 5. The estimated states sum of relative variance and relative index change for the IEEE 118.

Table 6. Results for the IEEE 14.

Classical SVMSE
System scenario o2 ¢ 02 13
Base scenario 7.2371 x 107° 0.4572 6.5621 x 107° 0.0725
Branch outage bus #2-#4 7.5969 x 10~ 0.3104 2.6990 x 10~ 0.1312
Generator outage bus #2 8.9025 x 107° 0.4652 29526 x 107 0.2210
Load outage bus #3 3.9402 x 107° 0.3876 1.5250 x 107> 0.2244

Table 7. Results for the IEEE 30.

Classical SVMSE
System scenario 02 i3 0% £
Base scenario 3.0474 x 107° 0.3622 51452 x 107° 0.0590
Branch outage bus #2-#6 3.4149 x 107° 0.1600 7.7323 x 107° 0.0397
Generator outage bus #2 3.4028 x 107° 0.3533 7.9799 x 1076 0.0867
Load outage bus #5 2.0904 x 107° 0.4194 53418 x 107° 0.1254

Table 8. Results for the IEEE 57.

Classical SVMSE
System scenario 02 3 02 £
Base scenario 14228 x 10~ 0.2917 6.4455 x 107 0.0351
Branch outage bus #24-#25 1.0319 x 107 0.3015 1.8631 x 10~ 0.0622
Generator outage bus #12 1.4882 x 1073 0.2534 3.0527 x 107* 0.0574
Load outage bus #8 1.4858 x 1073 0.2831 2.9687 x 107* 0.05765

Conclusion

In the paper, the state estimator based on the SVM regression and WLS
method is presented. SVR is a machine learning technique known for its
good generalization performance, and in this case, it is used to significantly
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Table 9. Results for the IEEE 118.

Classical SVMSE
System scenario a2 13 o2 13
Base scenario 6.4869 x 107* 0.7026 5.8957 x 107° 0.0421
Branch outage bus #76-#118 1.2280 x 103 0.7063 5.9625 x 107° 0.0530
Generator outage bus #49 8.0301 x 107* 0.7062 9.0388 x 107° 0.0576
Load outage bus #59 56933 x 107* 0.7002 1.1808 x 107° 0.0682
x10° Vang errors
25 T T T T T T T T T T T T T T
[ WIS
[ JsvmsE
2r J
_15f 1
g
s
w
ik J
0.5 1

Figure 6. Voltage angle estimation errors for the IEEE 14.
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Figure 7. Voltage magnitude estimation errors for the IEEE 14.
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Figure 9. Voltage magnitude estimation errors for the IEEE 30.

improve the accuracy and effectiveness of the WLS model. The SCADA
measurements and states estimated by the WLS model are used as an input
of the SVR model. The output of the state estimator is an improved estima-
tion of the complete system.

The algorithm is tested on the IEEE systems, and the performance indi-
cators were calculated in order to compare the accuracy of estimation and the
measurement error filtering.
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When compared with the WLS-only estimator, it was shown that the
proposed model enhances the state estimation accuracy since it provides
the estimation of the state vector elements closer to the true values.
Furthermore, the measurement error filtering is improved. In addition, the
proposed method was shown to outperform the classical one in terms of
computational efficiency. Therefore, the proposed method can be utilized as
an efficient solution for the power utilities.
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