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Reduction of Training Data Using Parallel Hyperplane for
Support Vector Machine
Pardis Birzhandi, Kyung Tae Kim, Byungjun Lee, and Hee Yong Youn

College of Software, Sungkyunkwan University, Suwon, South Korea

ABSTRACT
Support Vector Machine (SVM) is an efficient machine learning
technique applicable to various classification problems due to
its robustness. However, its time complexity grows dramati-
cally as the number of training data increases, which makes
SVM impractical for large-scale datasets. In this paper, a novel
Parallel Hyperplane (PH) scheme is introduced which efficiently
omits redundant training data with SVM. In the proposed
scheme the PHs are recursively formed while the clusters of
data points outside the PHs are removed at each repetition.
Computer simulation reveals that the proposed scheme greatly
reduces the training time compared to the existing clustering-
based reduction scheme and SMO scheme, while allowing the
accuracy of classification as high as no data reduction scheme.

Introduction

Support vector machine (SVM) is a powerful technique used to classify the
data generated in various fields (Varadwaj, Purohit, and Arora 2009).
Basically, the algorithms of machine learning are divided into three cate-
gories; Supervised Learning, Unsupervised Learning, and Semi-Supervised
Learning. The supervised learning algorithms have been successfully applied
to various problems due to the promising performance of classification.
Among them, SVM has been shown to be effective for a wide variety of
problems such as handwritten character recognition, face detection, pedes-
trian detection, and text categorization (Cristianini and John 2000).

SVM is a practical approach useful for both linearly and nonlinearly
separable data. The main idea employed for nonlinearly separable data is to
map low dimension data points into high dimension space using kernel
function which makes the data points linearly separable. The key operation
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of SVM is to find an optimal hyperplane which maximizes the separating
margin between the data. Even though it has gained wide acceptance with
various classification problems, it requires a large amount of computation
and memory for handling the training data. The issue can be alleviated by
reducing the number of training data having no or little effect on the
construction of the hyperplane, which are called redundant data points.

Only a small group of the training samples called support vector (SV)
influence the creation of the hyperplane in SVM. Therefore, the training
samples that are not relevant to the SVs can be removed without affecting the
construction of appropriate decision function. Here the key is to correctly
and efficiently identify the redundant data points among the given training
dataset. Various approaches have been proposed to reduce the computation
overhead of training with SVM. Among them, combining the clustering
algorithm with SVM is one of the common ways employed for reducing
the complexity of SVM. Hierarchical clustering (Awad et al. 2004; Heisele
et al. 2003; Yu et al. 2005), Fuzzy clustering (Almasi and Rouhani 2016;
Cervantes, Li, and Yu 2006; Sohn and Dagli 2001), crisp cluster (Koggalage
and Halgamuge 2004), and K-mean clustering (Shen et al. 2013, 2016; Yao
et al. 2013) have shown to be effective for diverse classification problems.
There also exist the schemes based on the distance from hyperplane (Li, Liu,
and Wang 2011; Xia et al. 2015) and neighboring data (Xu and Dong 2016).

While there exist various approaches for the reduction of training data of
SVM, little attention has been paid to the manipulation of clusters and
hyperplane in an integrated way. In this paper, thus, a new notion of
Parallel Hyperplane (PH) is proposed to substantially reduce the amount of
training data without degrading the classification accuracy. Here what we call
approximate hyperplane is built based on the clusters’ centroids, and a PH is
parallel to it and passes through the center of the clusters’ centroids. The
clusters whose data points are not located between the PH and approximate
hyperplane are removed from the training dataset. This is because they
cannot be included in SVs. A new PH is then constructed with the remaining
clusters, and the process is repeated until no reduction is possible. To validate
the effectiveness of the proposed scheme, the performance of the proposed
PH algorithm is compared with the clustering-based algorithm (Cervantes,
Li, and Yu 2006; Li, Cervantes, and Yu 2010) and SMO algorithm (Platt
1998) in terms of training time and accuracy. The simulation with a wide
range of data demonstrates that the proposed scheme greatly decreases the
training time without lowering the accuracy of classification. This is due to
the fact that the proposed scheme preserves the SVs in omitting redundant
data points, and thus no harm on the construction of the hyperplane. Also, it
turns out to be more effective for the dataset of relatively large standard
deviation and a large number of clusters up to a certain point. The main
contributions of the paper are summarized below.
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● Development of a new notion of parallel hyperplane for effectively
omitting redundant data points with SVM. As a result, the training
time can be significantly reduced.

● By discretely omitting the data points not belonging to the SVs, high
classification accuracy as the scheme of no training data reduction can
be achieved.

● Investigation of the effect of the number of clusters and distribution of
data. Increasing the number of clusters up to a certain value allows
a dramatic reduction of the number of training data points but not
beyond it.

The organization of the rest of the paper is as follows: Section 2 introduces
the related work, and in Section 3 the proposed PH scheme is presented.
Section 4 evaluates the proposed scheme by computer simulation, and finally,
the conclusion is given in Section 5.

Related Work

Support Vector Machine

The basic concept of SVM is represented in Figure 1, which finds
a hyperplane separating the d-dimensional data into two classes based on
the maximum margin rule (Joachims 2002). The margin is defined as the
geometrical distance of blank space between the two species (Yao et al. 2103).
To increase the applicability of SVM, the separating margin needs to be
maximized. The maximum margin rule uses a safe distance between the data

Figure 1. An example of SVM classifier.
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points and hyperplane to achieve accurate classification. This margin is called
safety margin.

The optimal hyperplane (decision boundary) is defined by w∙x + b = 0,
where w is a weighted vector showing the orientation of a discriminant plane.
The scalar b determines the offset of the plane from the origin. In Figure 1,
the SVs are data points on the dotted lines. Assume that a training dataset is
given as S ={(xi,yi) | xi ∈ ℝd, yi ∈ {1, −1}}, i =1, 2, …, N. Here xi is i-th data
point among the N data points in S. The dimension of the data points is d. yi
∈ {1, −1} is the output index of xi. The optimal hyperplane is found by
solving the quadratic problem below:

min
�;w

~wk k2 þ c
XN

i¼1
�i (1)

s.t. yi ~wxi
!þ b

� � � 1� �i; ði ¼ 1; 2; . . . ;N) �i � 0;

where ξi is the slack variable. The tunable scalar is defined by c which
determines the cost of constraint violation. The dual problem of Eq. (1) is
represented as below:

max
λi

� 1
2

XN

i¼1
λi þ

XN

i;j¼1
λiλjyiyj xixj

� �
(2)

s.t.
PN

i¼1 λiyi ¼ 0 0 � λi � c

λi (i= 1, …, N) is a Lagrange multiplier. The optimal classifier parameters can
be expressed as:

w ¼
XN

i¼1
λiyixi

b ¼ yi �
XN

i¼1
λiyi xixj

� �
(3)

f xð Þ ¼ sgn
XN

i¼1
λiyi xixj

� �þ b
� �

By converting the problem of Eq. (1) into its dual problem of Eq. (2), the
computational complexity becomes dependent only on the number of SVs.
Consequently, the optimal discriminant function is determined only by the
SVs, whose portion is usually much smaller than that of non-SVs in the training
set (Li, Wang, and He 2012). The SVs can be identified from the equations
above. The vectors whose components, λi, are nonzero are the SVs, which are
used to find the optimal separating hyperplane. The quadratic problem (QP) of
Eq. (2) is needed to be solved to obtain the SVs. Its complexity exponentially
grows as the number of training data points increases. This is the reason why
extensive efforts have been put to reduce the complexity of SVM especially for
handling a large-scale dataset.
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Clustering

Clustering is one of the common tasks handled by unsupervised learning
technique. It classifies a set of objects in such a way that the objects in
a group are more similar to each other than those in other groups. K-means
clustering is an unsupervised algorithm working based on the similarity. It is
an iterative algorithm frequently used in the field of data mining, and quite
efficient in partitioning the data points. The measure of similarity based on
Euclidean distance is the main part of the algorithm, which is used to
distinguish the similarity between the data points. There are two important
parameters influencing the final result of clustering. The first one is the
number of clusters formed, and the second one is the centroids of the initial
clusters. Given the number of clusters, k, the algorithm proceeds by alter-
nating between the two steps (Shrivastava and Ahirwal 2013). In the first
step, each data are assigned to the cluster whose mean is closest to it as
below.

if x�mik k � x�mj

�� ��; then x 2 i (4)

Here x is a data point, and mi and mj are the centroid of cluster-i and cluster-j
respectively. In the second step, the new mean of data points is calculated as the
centroid of each new clusters using Eq. (5).

mi ¼ 1
ni

Xni

j¼1
xj; (5)

where ni is the number of data points in cluster-i.
Hierarchical clustering (Awad et al. 2004; Heisele et al. 2003; Yu et al.

2005), has been adopted for SVM, where the main issue is the variation
within a class of objects. With fuzzy clustering (Sohn and Dagli 2001), fuzzy
class membership is used for each sample in the training set, while the
concept of crisp cluster (Koggalage and Halgamuge 2004) was introduced
to identify irrelevant samples from the training data points.

K-SVM algorithm (Yao et al. 2013) was proposed to find the SVs while
reducing the number of training data, which is useful for binary classification
with small-scale data points. The k-mean clustering was applied to large-scale
data points (Shen et al. 2013, 2016), where the clusters far from hyperplane
are removed using the Max-min cluster distance scheme. A measure in
kernel space based on the distance from hyperplane was also proposed to
extract a subset of the data which includes the SVs (Xia et al. 2015). A fast
classification algorithm (Sun et al. 2017) was proposed for multi-label large-
scale datasets by applying the method handling approximately extreme
points. The proposed scheme is presented next.
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The Proposed Scheme

The Parallel Hyperplane

Only a small number of the training samples called SVs have a dominant
effect on creating the hyperplane in the SVM technique since they lie close to
the decision boundary. Therefore, the training samples irrelevant to the SVs
can be removed without the deterioration of the construction of appropriate
decision function. The data points which are far from the hyperplane are
deemed to be not part of the SVs. Removing them can significantly improve
the performance of SVM in terms of computation and memory overhead. In
order to efficiently find such data points, the PH scheme is proposed which
consists of seven steps as explained below:

Step 1: Clustering of data
The k-mean clustering algorithm is used to cluster the original training

data points into k clusters. The value of k is selected by the user. Note that
the final result of SVM is substantially dependent on the value of k. After
clustering, some clusters may contain the data of two class labels (called duo-
cluster), while others do only one class label (distinct cluster). The duo-
clusters need to be divided into two distinct clusters. For this, the k clusters
are further classified into two subsets as U = {ui | i = 1, 2 …, r (1 ˂ r ˂ k)}
and V = {vi | i = r + 1, r+ 2, …, k}. Set U is constructed by the clusters of only
one class label, while set V of the clusters of two class labels. The set of all
clusters, C, is thus C = U ∪ V. In the classification process, only distinct
clusters are acceptable. Therefore, every cluster in V should be divided into
two distinct clusters. Assume that the clusters in set V are further divided
into L sub-clusters VL = {vlj | j = 1, …, l}. In the SVM technique, the SVs lie
on the bindery of convex hull of two distinct classes, and consequently it is
highly likely that the SVs are in the clusters of the VL (Heisele et al. 2003).
Therefore, vlj clusters are not removed. In Figure 2(a) the center cluster of
two sub-clusters is an example of duo- cluster. Note that, if there exist (k−r)
duo-clusters, the total number of clusters after dividing them into two
becomes r + 2(k−r) = (2k−r).

Step 2: Identifying the centroid of each cluster
Applying k-mean clustering, the centroid of each cluster (ui ∈ U) is

determined. Also, for each cluster, the distances between the centroid and
the data points inside the cluster are decided. MU = {mu1, mu2, …, muk} is the
set of the centroids of U. For each cluster of vl, the centroid of the cluster is
calculated using Eq. (6).

mvl ¼ 1=nð Þ
Xn

i¼1
xi; (6)

where n is the number of data points in cluster vl. MVL= {mvl1, mvl2, …, mvl} is
defined as the set of centroids of the clusters of VL. Then, the distance between
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each data point and its corresponding centroid in each cluster is decided, and the
maximum distance in each cluster, d(max)i (i= 1, …, (2k−r)), is determined.

Step 3: Obtaining approximate hyperplane
In this step approximate hyperplane is found with only the centroid of the

clusters of the training data instead of all data points. This hyperplane is
represented by a normal vector ~w and bias b.

Step 4: Finding the centroid of the clusters’ centroids in the two sides of
approximate hyperplane

Assume thatM+ = {(mi,yi) |mi ∈ (MU ∪MVL), yi = 1} is the set of the centroids
of the clusters of label_1 andM − = {(mi,yi) |mi ∈ (MU ∪MVL), yi = −1} is for the
label_(−1). The centroid of set M+ and M − are denoted as Ce+ and Ce–,
respectively. They are decided by Eq. (7), assuming n clusters in each side.

Ceþ ¼ 1=nð Þ
Xn

i¼1
mi; "i 2 Mþ (7)

Ce� ¼ 1=nð Þ
Xn

i¼1
mi; "i 2 M�

Step 5: Finding PH
The PHs each passes Ce+ and Ce – are found. They are denoted as PH+ and

PH –, respectively. Note that the hyperplane is defined by ax + by + cz + d =
0. The normal vector to this plane is defined as ~w = (a, b, c). Then, the PH
passing through the point (x0, y0, z0) is found as below:

PH : ~w: x� x0ð Þ; y� y0ð Þ; z � z0ð Þð Þ (8)

¼ a x� x0ð Þ þ b y� y0ð Þ þ c z � z0ð Þ ¼ 0

In Figure 2(a), an example of clustered data points of two distinct labels is
shown. The dot and star indicate the center of each cluster of label-1 and
label-2, respectively. The approximate hyperplane is represented by a solid
line. The triangles marked as Ce+ and Ce– are the centroids of the centroids

Figure 2. An example of the proposed scheme.
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of the clusters in the two different sides of the approximate hyperplane. The
PHs passing through Ce+ or Ce– are shown by dotted line. Observe from
Figure 2(a) that the clusters beyond the PHs have little influence on the
approximate hyperplane and thus eventually on the classification process.
Efficiently identifying them is the main objective of the proposed scheme,
and Figure 2(b) is the result of one iteration of data removal.

Step 6: Removing the clusters lying at the positive side of PH+ and negative
side of PH –

The main goal of this step is to eliminate the training data far from the
approximate hyperplane. For this, the clusters lying at the positive side of
PH+ and negative side of PH – are removed. Here, the position of each data
point in set M+ and M − need to be compared with PH+ and PH –,
respectively. Denote set Γ+ and Γ – the data points in M+ lying at the positive
side of PH+ and those of M − at the negative side of PH –, respectively. Note
that the positive side is a half space of hyperplane in the direction of the
upward normal vector of the hyperplane. Similarly, another half-space is
determined from the negative side.

In order to identify the position of the data points with respect to hyper-
plane, dot product is used. In Figure 3, A is a point on the hyperplane. The
position of another point B with respect to the hyperplane is found by dot
product of B � A

����!� �
and ~w (Eq. (9)). A positive result indicates that the

vectors form an acute angle (θ) and the data point, B, lies in front of the
plane. On the contrary, a negative value does that the vectors form an obtuse
angle and the data point lies in the back of the plane like point C in Figure 3.

~w� B� A
���!� �

¼ Bj j Aj j cos θ (9)

To find out the clusters to be removed, d(max)i in set Γ+ and the distance
between mi and PH+ ( dmi�PHþ) is compared. Similarly, d(max)i in set Γ– and
the distance between mi and PH – ( dmi�PH� ) are compared. mi is removed if

Figure 3. The position of a data with respect to the plane.
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( dmi�PHþ ) ≥ d(max)i and mi ∉ MVL. As it is highly likely that SVs are in the
clusters of the VL, mi 2 MVL are not removed in the proposed scheme.
Figure 2(b) shows the remaining clusters of data points of Figure 2(a) after
applying the first iteration of the proposed PH algorithm. After removing the
redundant clusters in Step 6, the process is repeated from Step 4 with
a reduced number of clusters as far as there exist some clusters in the positive
or negative side of the approximate hyperplane satisfying the condition of
cluster removal. The remaining clusters are considered as the training data
for the final SVM. The following is the procedure of the proposed scheme.

(1) Put each point mi 2 MU [ MVL whose class label is (1) in set Mþ

(2) Put each point mi 2 MU [ MVL whose class label is (−1) in set M�

(3) Compute the centroid of set Mþ which is called Ceþ

(4) Find the PH+ which pass through Ceþ

(5) For (each data point mi in Mþ,) do
(6) Compare the position of each data points with PH+

(7) Put each data points of Mþ which is in the positive side of parallel
hyperplane in set Γ +

(8) End for
(9) For (each data point mi in Γ +), do
(10) Compute the distance between each data points and PH+ and call

them dmi�PHþ

(11) If dmi�PHþ � d maxð Þi then
(12) If mi‚MVL then
(13) Remove mi from sets Mþ and Γ +

(14) End if
(15) End for
(16) If there were any mi which removed from set Mþ then
(17) Go back to line 3
(18) Else, consider Mþ as a final set of cluster’s centroid
(19) End if
(20) Compute the centroid of set M� which is called Ce�

(21) Find the PH – which pass through Ce�

(22) For (each data point mi in M�), do
(23) Compare the position of each data points with PH−

(24) Put each data points of Mþ which is in the negative side of parallel
hyperplane in set Γ −

(25) End for
(26) For (each data point mi in Γ −), do
(27) Compute the distance between each data points and PH – and call

them dmi�PH�

(28) If dmi�PH� � d maxð Þi then
(29) If mi‚MVL then

APPLIED ARTIFICIAL INTELLIGENCE 505



(30) Remove mi from sets M� and Γ −

(31) End if
(32) End for
(33) If there were any mi which removed from set M� then
(34) Go back to line 3
(35) Else, consider M� as a final set of cluster’s centroid
(36) End if
(37) Keep the data points of clusters whose centroids belong to M�, Mþ

and MVL as remaining data points.
(38) Remove the data points of the other clusters
(39) Apply final SVM to the remaining data points as training dataset

Data Modeling

There are some parameters directly affecting the performance of the pro-
posed PH scheme. In the following, they are discussed along with the process
of modeling of the data points. Normal and exponential distribution are used
for randomly generating the training data. The probability density function
(PDF) of the normal distribution and exponential distribution are defined in
Eqs. (10) and (11).

f xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2σ2π

p e
� x�μð Þ2

2σ2 (10)

f xð Þ ¼ λe�λx (11)

Here μ and σ are the mean and standard deviation of the normal distribu-
tion, and λ is the rate parameter of the exponential distribution. A low
standard deviation indicates that the data points lie close to the mean of
the data of the set, while a large value implies widespread. Therefore,
standard deviation is an important parameter deciding the distribution
of the distances between each pair of data points in a cluster. The effect of
increasing the standard deviation on the normal distribution of the data
points is illustrated in Figure 4. The upper set is distributed with μ = (4, 4)
and σ = 0.8, while the lower set with μ = (−4, −4) and σ = 2. The figure
shows that the distance between the data points grows by increasing the
value of σ. The distance factor also affects the result of k-mean clustering
algorithm. Consequently, the effectiveness of the PH scheme is affected by
the value of standard deviation.

Besides standard deviation, the number of clusters in k-mean clustering is
another parameter affecting the performance of the PH scheme. Given a set
of n data points X= (x1, x2, …, xn), k-mean clustering aims to partition the
n data points into (k ≤ n) clusters. With a fixed number of data points, the
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more clusters, the less data points in each cluster. Note that the variance of
the distance in each cluster is thus influenced by the number of clusters. The
maximum distance between the data points and the centroid of each cluster
depends on k, and it affects the process of identification of removable clusters
in the proposed scheme.

In order to investigate the effect of the number of clusters on the
maximum distance between the data points, the Fisher’s Iris dataset of
100 data points is divided into two different numbers of clusters of 3 and
6, as shown in Figure 5. The variance of each cluster in Figure 5(a) is
greater than that of the clusters in Figure 5(b). The maximum distance of
each cluster is listed in Table 1 with different numbers of clusters. Notice
that increasing the number of clusters from 2 to 9 reduces the average
distance from 1.6 to 0.45.

Figure 4. The distribution of data with different σ.

Figure 5. Clustering with Fisher’s Iris dataset.
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As the number of clusters and the standard deviation are important
factors, they are treated as variables in the performance evaluation of the
proposed scheme presented next. Figure 6 illustrates the main steps of the
proposed scheme. Figure 6(a) shows a binary class dataset-1 with 2000 data
points which is generated using two normal distributions of N (3, 1.69) for
the upper set and N (−3, 1.69) for the lower one with class labels of 1 and 2,
respectively. In this paper, the goal is to find effective classifier using only
a small group of data points to reduce training time and memory

Table 1. The maximum distance of each cluster with a different number of clusters.
Number of clusters Maximum distance Avg

2 1.7 1.5 – – – – – – – 1.6
3 0.7 1.5 1.1 – – – – – – 1.1
4 0.4 1.2 0.9 0.9 – – – – – 0.86
5 0.8 0.51 0.7 0.62 0.95 – – – – 0.72
6 0.9 0.7 0.4 0.6 0.4 0.4 – – – 0.57
7 0.7 0.6 0.4 0.4 0.4 0.6 0.4 – – 0.5
8 0.4 0.4 0.6 0.4 0.7 0.6 0.4 0.3 – 0.47
9 0.2 0.4 0.7 0.5 0.4 0.4 0.6 0.6 0.3 0.45

Figure 6. The steps of the proposed PH scheme with normally distributed data.
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requirement. The case of 90 clusters is shown in Figure 6(b), which is
obtained using the k-mean clustering algorithm.

The approximate hyperplane obtained with the centroids of the clusters is
displayed by the solid line in Figure 6(c). The lines of safety margin of the
approximate hyperplane are also shown as dotted lines. With the proposed
PH scheme, the redundant data points having no potential to be the SVs are
removed from the training data. The remaining data points are illustrated in
Figure 6(d). Only 313 data points remain as the training data. Using them,
the final separating classifier is obtained which is represented by dash-dotted
line in Figure 6(c).

Figure 7 shows binary class dataset-2 with 10000 data points which are
generated using normal and exponential distributions. The upper set is of the
normal distribution with μ = (25, 25) and σ = 2.5, while the lower set is an
exponential distribution with the mean parameter λ−1 = 3.5. The remaining
data points after the proposed scheme is applied are illustrated in Figure 7(b),
showing only 238 data points. Applying SVM to the remaining data points,
the final separating classifier is obtained which is shown by dash-dotted line
in Figure 7(a). Observe from the figure that the data points are dense around
the origin and (25, 25), while sparse around the separating hyperplane.

Performance Evaluation

In this section, the performance of the proposed PH scheme is evaluated
using various datasets. The skin segmentation dataset from the UCI
machine learning database repository (Bhatt and Dhall 2009) is selected
as the real world dataset, while several large-scale datasets are generated
randomly as artificial datasets. The experiments are conducted on the PC of
Core i5-4690 3.50 GHz CPU using the MATLAB programing and applying
the CVX modeling system (Grant and Boyd 2013). To investigate the
effectiveness of the proposed scheme, the performance of the PH algorithm

Figure 7. The Result of the proposed PH scheme.
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is compared with the clustering-based algorithm (Cervantes, Li, and Yu
2006; Li, Cervantes, and Yu 2010) and SMO algorithm (Platt 1998) in terms
of training time and accuracy with different number of clusters and various
standard deviations.

Artificial Dataset

The parameters of dataset-1 are used to generate 100000 data points.
Figures 8 and 9 show the training time and the accuracy of the three
classification schemes for the 100000 data points when the number of
clusters varies from 50 to 200. Unlike the proposed and the clustering-
based scheme, the SMO algorithm classifies data points without clustering.
Therefore, it shows constant performance regardless of the number of
clusters.

Figure 8 shows that the proposed scheme is much faster than the other
schemes since it allows a significant reduction in the number of training data
points. The figure demonstrates that increasing the number of clusters up to
150 notably reduces the training time of classification. However, a further
increase beyond it shows little impact on the reduction of training time. This
property will be more delved at the end of this section.

The accuracies of the three schemes are compared in Figure 9. The results
indicate that the accuracy of the proposed scheme is almost the same as the
SMO algorithm and higher than the clustering-based algorithm. This is due
to the fact that the proposed scheme preserves the SVs in omitting redundant
data points, and thus no harm on the construction of the hyperplane. The
proposed PH scheme consistently provides high accuracy while taking less
training time compared to the other schemes.

Figure 8. The comparison of training times with the data of normal distribution.

510 P. BIRZHANDI ET AL.



The statistical parameters of the mixed distribution of dataset-2 are used to
generate 100000 data points. Figures 10 and 11 show the training time and
accuracy achieved by the three classification schemes with the 100000 data
points of mixed distribution. The figures illustrate that the proposed scheme
still classifies the data of the mixed distribution faster than the SMO and
Clustering-based schemes. Its accuracy is also higher than the other schemes.
Note that the density of data points of exponential distribution around the
hyperplane is lower than that with a normal distribution. As a result, the
training time of the proposed scheme of Figure 10 is smaller than that of
Figure 8.

Figure 12 shows the percentage of the remaining data points with the
proposed scheme for different sizes of a dataset, the number of clusters, and

Figure 9. The comparison of classification accuracies with the data of normal distribution.

Figure 10. The comparison of training times with the data of mixed distribution.
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σ. Here the data points are generated using two normal distributions of μ1 =
(3, 3) and μ2 = (−3, −3) in four different sizes of 1000, 10000, 100000, and
500000. Four values of standard deviations of 0.5, 0.8, 1, and 1.3 are con-
sidered for the generation of each case. The results in the figures are the
average value of five runs for each case. As identified from the figures,
a decreasing trend in the percentage of remaining data is observed when
the standard deviation increases. This means that the performance of the
proposed algorithm is higher for the data of larger standard deviation. The

Figure 11. The comparison of classification accuracies with the data of mixed distribution.

Figure 12. The percentage of the number of remaining data points with a different number of
clusters.
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same characteristics are observed as the number of clusters increases. The
performance gain, however, is not monotonous. Increasing the number of
clusters from 50 to 100 allows a significant reduction in the number of
remaining data points, while no notable decrement between 200 and 250.
Increasing the number of clusters up to a certain point can dramatically
reduce the number of training data points. However, a further increase
beyond it shows little impact on the reduction of data points.

Figure 12(d) demonstrates that the proposed PH scheme effectively
reduces the number of training data points from 500000 to 4948 using 250
clusters. This result shows 99% removal of redundant data points in the
training dataset. The result of the proposed PH scheme for the data of the
combination of the normal and exponential distribution is illustrated in
Figure 13. A significant decrease in the number of remaining data points is
observed with the increase of the number of clusters up to a certain point.
Compared to Figure 12, a lower number of remaining data points are
observed for some number of training data points and clusters. As an
example, for 100000 training data points with 100 clusters, the number of
remaining data points for normal distribution in Figure 12 is 10884 while it is
2639 in Figure 13.

Real Dataset

In addition to linearly separable datasets, the proposed PH scheme can be
applied to nonlinearly separable datasets where most of the data points are
linearly separable while a small portion of data points are located in the
overlapped region. The Skin Segmentation dataset constructed using 3D skin
textures of 245057 face images taken from people of different ages, genders,
and races, is an example of this kind of datasets (Bhatt and Dhall 2009). The

Figure 13. The number of remaining data points with mixed distribution.
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performance of the proposed scheme is compared with the other schemes
over the Skin Segmentation dataset, as the number of clusters varies from 5o
to 200. Figure 14 illustrates that the training time of the proposed PH
algorithm is substantially lower than that of the other schemes while allowing
high accuracy as the SMO scheme.

Conclusion

In this paper, we have introduced the PH scheme which effectively removes
redundant data points from the training dataset to reduce the training time of
SVM. In the proposed method the k-mean clustering algorithm is adopted to
divide the given data points into different clusters. Then, the data points of the
cluster which are not potentially support vectors are removed from the training
dataset. MATLAB was used to verify the robustness of the proposed scheme. It
demonstrates that the proposed scheme removes a significant amount of redun-
dant data points, and eventually reduces the training time without affecting the
accuracy of the classification. It also shows that the proposed scheme is much
faster than the existing cluster-based scheme. The effect of the number of
clusters in k-mean clustering and the data distribution was also studied. The
results show that the proposed scheme is more effective for the dataset of
relatively high standard deviation. Also, increasing the number of clusters up
to a certain value can dramatically reduce the number of training data points.
The number of clusters and the distribution of the data points influence the
effectiveness of the proposed approach. In the future, we will model the impact
of these factors on the performance of the proposed approach, and develop the
scheme further enhancing the performance. Also, the proposed scheme will be
expanded to large-scale fully nonlinearly separable data points.

Figure 14. The comparisons of the training times and accuracies with Skin Segmentation dataset.
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