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Abstract

We present the optimal homotopy asymptotic method (OHAM) to find the numerical solution of
the second order initial value problems of Bratu-type. We solve some examples to illustrate the
validity and efficiency of the method.
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1. Introduction

Herisanu et al. [1] proposed a new technique called the optimal homotopy asymptotic method (OHAM). The
main advantage of OHAM is that it is reliable and straight forward. Also, the OHAM does not need to worry
about h curves as homotopy asymptotic method (HAM). Moreover, the OHAM provides controls the
convergence of the series solution and its solution agrees with the exact one at large domains, for more infor-
mation see [2]-[6].

On the other hand, the standard Bratu problem is used in a large variety of applications, such as the fuel
ignition model of the theory of thermal combustion, the thermal reaction process model, the Chandrasekhar
model of the expansion of the universe, radiative heat transfer, nanotechnology and theory of chemical reaction,
for more information see [7] [8] and references therein.

The Bratu initial value problems have been studied extensively because of its mathematical and physical
properties. In [9], Batiha studied a numerical solution of Bratu-type equations by the variational iteration method;
Feng et al. [10] considered Bratu’s problems by means of modified homotopy perturbation method; Rashidinia
et al. [11] applied Sinc-Galerkin method for numerical solution of the Bratu’s problems; Syam and Hamdan [12]
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used variational iteration method for numerical solutions of the Bratu-type problems; Wazwaz [13] applied
Adomian decomposition method to study the Bratu-type equations.

The main goal of this paper is to extend OHAM method to solve the initial value problems of second order
differential equations of Bratu-type. The OHAM is very useful to get an approximate solution of the initial value
problems of second order differential equations of Bratu-type. Our numerical examples of OHAM are compared
with exact ones.

2. Analysis of OHAM
In this section we start by describing the basic formulation of OHAM, see for example [1] [3]-[5]. Consider the
boundary value problem
L(u(x))+g(x)+N(u(x))=0,
2.1
B (ud—uj =0, @1)
dx

where g =g(x) isagiven functionand u=u(x) isanunknown function. Here, L, N and B represent
a linear operator, a nonlinear operator and a boundary operator, respectively.

By means of OHAM one constructs a homotopy h(x, p):Rx[0,1] - R, which satisfies the following fa-
mily of equations

(1= p)[L(n(x P))+9(x)]=H (P)[L(n(x P))+ g (X)N(h(x P))]
X (2:2)
B[h(x, p),%x'p)j:o’ 2.2

where pe[0,1] is an embedding parameter, H(p) is a non-zero auxiliary function for p=0 and
H(0)=0. It is easy to see that when p=0 and p=1 we have h(x,0)=u,(x) and h(x1)=u(x),
respectively, where u, (x) is obtained from (2.2) for p=0

L(Uo(x)>+g(x):0’ 23)
B(u, (x),0)=0. '
Therefore, the unknown function h(x, p) goes from u,(x) to u(x) as p changesfrom 0 to 1.
In the sequel, we choose auxiliary function H(p) in the form
H(p)=c,p+C,p° +Cyp° +--, (2.4)
where ¢, i=12,3,.--, are constants to be determined.
In order to obtain an approximate solution, we expand h(x, p,c;), 1=12,3,-, in the form of Taylor’s
series about p as
h(x,p.c;)= uo(x)+iuj (x,.¢)pi=123: (2.5)
j=1

Now, substituting by Equation (2.5) into Equation (2.2) and equating the coefficients of like powers of p in
the resulting equation, we obtain the governing problem of u, (x), given by Equation (2.3). In addition, the
governing problems of u, (x) and u,(x) are given in the forms

L(ul(x))+ g(x) =¢,N, (UO(X)),
810 Zu ()]0

(2.6)
and

2.7)
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respectively. Also, the general governing problems of u; (x) are given by

L(uj (x)) = L(-uH(x))H:jN0 (up (x))

+Z;ci |:L(UH (x))+ N, (u[J (x),ul(x),-u,ujfl(x))] (2.8)

o4, ()b, (0] ~0.1 =234,

where Nm(uo(x),ul(x),---,ujfl(x)) is the coefficient of p™ in the expansion of N(h(x, p)) about the
embedding parameter p:

N (h(% P.¢)) = Ny (U (X)) + 2Ny (Ug, Uy, U, ) P, (2.9)
m=1
where h(x, p,c;), i=12.3,,isgiven by Equation (2.5).
Observe that the convergence of the series (2.5) depends upon the auxiliary constants ¢, i=12,3,---. If the
series (2.5) converges when p =1, one has

0

h(x,l,ci):uo(x)+ZNj(x,uo,ul,-~~,uj). (2.10)

j=1

The m-th order approximations are given by

m

T(X,€,,Cppee+,Cpy ) = Ug (X) + DUy (X, €y, Gy, € ). (2.11)

-1

By substituting Equation (2.11) into Equation (2.1), we get the following expression for residual

R(X,€,Cp,Cy ) = L(0(X,€,Cp0e+,€ )+ 9 (X)+ N (G(X,€,,¢,,0+, €, ). (2.12)

If R=0, then U will be the exact solution and this, in general, does not happen especially in nonlinear
problems. In order to find the optimal values of ¢, i=12,3,---, we apply the method of least squares as under
J(cl,cz,---,cm)=I:R2(x,cl,cz,-~,cm)dx, (2.13)

where a and b are numbers properly chosen in the domain of the problem. Next, minimizing J with

a_a_ a8
ac, ac, a,

m

After knowing those constants, the approximate solution of order m is well determined.

3. Numerical Examples
Example 1 Consider the second order initial value problem of Bratu type

2
d—u(x) = 2¢'™,

u(0)=0,u’(0)=0.

3.1)

The initial value problem (3.1) has u(x)=-2Incosx as the exact solution.
Next, we apply the OHAM method to the initial value problem (3.1). We have

g(x)=0, L(h(x,p))=h,(x, p) and N(h(x, p)):—Ze“(X’p). Therefore, according to the OHAM method,

we have
Problem of zero order:
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dZ

3t (=0 (3.2)
Uy (0)=0,u,(0) =0,
which has a solution u, (x)=0.
Problem of first order:
d2
e (0a) =20 (3.3)
u, (0)=0,u;(0)=0.
Problem (3.3) has a solution
uy (¢ ) =—¢,x". (34)
The problem of second order
d2
Wuz(x,cl,cz)=—2(c1+cz)—20f+20fx2, (3.5)
u,(0)=0,u;(0)=0.
The solution of Problem (3.5) is given by
uz(x,cl,cz)z—%(&:lxz+602x2+6cfx2—cfx4). (3.6)
Third order problem is
d? 2
vt (%,€1,65,C5) = =2(C; +C, +¢;) —4(1-x*)(c,c, +c12)—§(3— 6x° +2x* )¢, a7)

1,(0) =0, (0) =0
and its solution is given in the form
1 1
U (X,€,,C,,C5) = —X2 (¢, +C, +c3)—§(6x2 -x*)(csc, +cf)—4—5(45x2 ~15x* +2x°)c}.  (3.8)

Finally, fourth order problem is

2

d—zu4(x,cl,cz,c3,c4)=—2(cl+c2 +6y+C,)—2(1-x)(4e,c, + 26,6, +3¢7 +¢5 )
X

—(6-12x* +4x*)(cfc, +cf)—%(90—270x2 +180x* —19x° )¢/, (3.9)

u,(0)=0, u,(0)=0,

which has a solution in the form

Uy (X,€,C, €5, ) = —X2 (€, +C, +C +C4)—%(6X2 -x*)(4cc, + 26,6, +3¢7 +¢5 )
(3.10)

1

—E(45x3 ~15x" +2x° ) (cfc, +¢7) (2520x* ~1260x" +336x° ~19x° ).

2520

Now, by using equations (3.4), (3.6), (3.8) and (3.10), the fourth order approximate solution, using OHAM
with p =1, is given by

0(X,€,,C,,Cq,C, ) = Uy (X)+Uy (X,€,)+U, (X,C,C, ) +Ug (X,€,,C,, 5 ) +U, (X,C1,C,,C5,Cy ). (3.11)
Next, we follow the procedure presented in Section 2, we obtain the following values of ¢, ’s:
¢, =—-0.9556156427, c, =0.0942570476, c,=0.0374885311 and c, =-0.0116590295 (Table 1).
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Table 1. Absolute error between the exact solution and approximation solution.

X Exact sol. OHAM sol. Error
0.0 0.00000000 0.00000000 0.00000000
0.1 0.01001671 0.01001607 6.41021065x107
0.2 0.04026955 0.04025980 9.74693876x10°°
0.3 0.09138331 0.09133801 4.52998213x10°°
0.4 0.16445804 0.16433092 1.27118347x10™*
0.5 0.26116848 0.26089981 2.68671650x10™
0.6 0.38393034 0.38344668 4.83656903x 10
0.7 0.53617152 0.53533472 8.36799541x10™
0.8 0.72278149 0.72118096 1.60053795x10°°
0.9 0.95088489 0.94723518 3.64970628x10°
1.0 1.23125294 1.22186142 9.39151960x 10"
Example 2 In this example, let us consider the Bratu initial value problem
dZ
SZu)= "™, u(0)=0,u'(0)=n (3.12)

which has

u(x)=-In [1+ cos@} exact solution.

Now, we apply the OHAM method presented in previous section. In this example, we have

g(x)=0, L(h(x,p))=h,(x,p) and N(h(x,p))=-

Problem of zero order:
d2
d7u0 (X) = 0,
Uy (0)=0,uy(0) =m.
Problem (3.13) has a solution u, (x) =nx .
Problem of first order:

2

2
d u, (x) =-n’c, [1+1:x+%x2

[
u, (0)=0,u;(0)=0.
The solution of Problem (3.14) is given by

u (x)= —2—141:2xzcl(12+4nx+n2x2).

The problem of second order
2
d?uz (%,¢,,C,)

2

= 2 (2+2nX+7t X )(cl+cz)

() u;(0)=0,

O,

. Now,

(3.13)

(3.14)

(3.15)

(3.16)

(24+ 24mx—167°x° —5n'x* —n°x° )¢/,
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and its solution is given by
2

u, (x) = X (12+41[X+TI:2X2)(C1 +C,)
22; (3.17)
— 2> (2520 +840nx ~168n°X" — 357 x* ~5n°x° ) ¢
504
Third order problem is
2
vt (X,€,,C,,C4)
2
T
= 7(2+2nx+n X*)(c, +¢,+¢,)
TI:
E(Z4+24nx 16m°x° ~5m'x" —°x°)(c,C, +¢7 ) (3.18)
-7’ [1+ x-Syt~ paxs _Loaxa 3 ey 3 aeye S iyt p S 8Xaij’,
2 3 4 40 40 336 2688
U, (0)=0,u;(0)=0.
The solution of Problem (3.18) is given by
Uy (X,€,C,,Cy )
n’x 2,2
= ——(12+4mx+ 7% ) (¢, +C, +C5)
2 3.19)
T 35 4.,6 5.7 2 (
~ 520 ———(2520%° +840mx° ~1687°x° —35n"x° ~5n°X" ) (c.c, +¢7 )
Jx wd wxt e a'x® X 3t s’} AP ),
- —+—- - - + + + c,.
2 6 24 15 120 560 2240 24192 48384
In the end, the fourth order problem is given by
2
d_2u4 (X,€,,C,,C5,C,)
= _%(2+2nx+n2x2)(cl +C, +C3+C, )
—n—(24 +24nx —167°X% - 51 x* —1°x° )(40102 +26,C, +3¢] +¢3 )
24
2
T (26880 +26880mx —13440n°x* — 358401°x° — 67201* x* (3.20)
+20167°x° + 20167°x° +40071" X" +507°x® )(cfc2 +¢)
161280 — (161280 +161280mx —161280n°x” — 322560n°x" — 201607 x* +564487°x°
+320321°x° +1888nx” —16601°x® — 740n°x* —110x'°x" 107" “)cl“,
u,(0)=0,u, (0)=0.

which has a solution in the form

O,
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Table 2. Absolute error between the exact solution and approximation solution.

X Exact sol. OHAM sol. Error

-0.3 —0.59278360 —0.59050589 2.27771434x10°
-0.2 —0.46234012 —0.46195092 3.89206013x10™
-0.1 —0.26927647 —0.26926585 1.06182822x10°
0.0 0.00000000 0.00000000 0.00000000

0.1 0.36964005 0.36959323 4.68162342x10°°
0.2 0.88621083 0.88427218 1.93865546x10°°
0.3 1.65557083 1.63022895 2.53418803x10°

U, (X,€,C,,C4,C,)

2,2 2,2
Sy (12+4mx+ 2 )(cl+cz+c3+c4)—2520

(2520 +840mx —1687°x® — 351* x* —5n°X° )

2,2

(2¢,¢, +¢,,) —%(2520 +840mx ~1687°x° — 357" x* ~5n°x° ) (3¢] +¢3 )

242 3.21
_rX (13440+4480nx—1120n2x2—1792n3x3—224n“x4+48n5x5+36n6x6+@n7x7+§n8x8j (3.21)
8960 9 9
2,2
(c%c, +¢3 )= % (80640 + 26880mx — 134407 X2 —16128m°X° — 6721 x* +13447°X° + 57278 x°
GGG 161280

+@HX? _@nsxs _Engxg _Enloxlo —inMX“ C14.
9 11 6 78
Now, by using Equations (3.4), (3.6), (3.8) and (3.10), the fourth order approximate solution, using OHAM
with p =1, isgiven by

T(X,C,,C5,C4,C, ) = Uy (X)+Uy (X,€; ) +U, (X,6,C, )+ Uz (X, 6, €0 € )+ Uy (X,€1,C,,C50Cy ). (3.22)

Next, we follow the procedure presented in Section 0.2, we obtain the following values of ¢, ’s:
¢, =—-1.0391835661, c, =-0.0042471858, c, =0.0000013808 and c, =0.0001595594 (Table 2).

4. Final Remarks

Throughout this paper, an technique for obtaining a numerical solution for second order initial value problems of
Bratu-type, is optimal homotopy asymptotic method (OHAM). The main advantage of the used technique is
achieving high accurate approximate solutions. In the numerical tables and graphics, our numerical results are
compared with the exact ones.
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