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Visual inspection of surface defects of extreme size based 
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bSchool of Mechanical Science and Engineering, Huazhong University of Science and Technology, 
Wuhan, China

ABSTRACT
Surface defects of industrial products are generally detected 
through anchor-based object detection methods during manu
facturing. However, these methods are prone to missed and 
false detection for ultra-elongated and ultra-fine defects. An 
advanced fully convolutional one-stage object detector (FCOS) 
is proposed. This method is based on an anchor-free FCOS 
network model. First, a novel type of center-ness is proposed 
to reduce the suppression of off-centered positions of defects of 
extreme size. In addition, to eliminate background interference, 
a self-adaptive center sampling method is proposed as 
a replacement for the conventional center sampling method. 
The regularization method and the loss function are also 
improved according to the defect characteristics. Experimental 
results show that this advanced-FCOS-based method outper
forms anchor-based methodson the surface defect dataset. The 
proposed method effectively detects defects of extreme size 
without affecting the detection of normal defects. The perfor
mance of the proposed method meets the requirements of real 
industrial applications.
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Introduction

Surface defects not only affect the appearance of a product but may also cause 
serious safety problems during the use process. In recent years, machine 
vision-based detection methods (Wang et al. 2018; Kwon et al. 2015) have 
received extensive attention due to their high detection accuracy and fast 
detection speed. This type of method involves first the collection of product 
surface images via an industrial camera and then the processing of the images 
with conventional image processing or deep learning methods to obtain the 
corresponding results.

Compared with conventional image processing methods, deep learning- 
based defect detection methods have a wider range of adaptability. A network 
can be trained on samples with different types of defects for use in the 
detection of multiple types of defects. Liu and Kang (2005) proposed a neural- 
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network-based method for cold rolled strips, but this method cannot effec
tively locate defects. With the proposed object detection framework, deep 
learning methods can be used to accurately locate various defects. Ji, Du, 
and Peng et al. (2019) used the Faster region-based convolutional neural 
network (R-CNN) to detect defects in gears, which is faster and more accurate 
than previous methods. Zhang and Huang (2020) integrated Faster R-CNN 
and You Only Look Once (YOLO) v3 for the detection of aluminum surface 
defects.

The abovementioned methods are anchor-based. These methods can often 
effectively detect defects with a normal aspect ratio. However, these methods 
can only partially detect or even fail to detect defects of extreme size, such as 
elongated defects or microdefects. In this study, a defect with a label box aspect 
ratio greater than n (e.g., n > 5) or a label box area satisfying the ratio of the 
number of pixels in the label box to the number of pixels in the original image 
≤ f (e.g., f = 1 × 10−4) is defined as a defect of extreme size. This type of defect 
often exists on large parts, such as engine blades or wind turbine blades. 
Normal defects with a large overall size are also considered to be extreme- 
size defects, for which anchor-based methods cannot enumerate all the label 
boxes. Therefore, an advanced-FCOS-based anchor-free detection method is 
proposed in this study to solve this problem.

The main contributions of this paper are as follows:

(1) An anchor-free detection method is proposed to solve the problem that 
extreme-size targets are difficult for the existing network to detect 
without affecting the detection of normal-size defects.

(2) To alleviate excessive suppression of slender defects by the original 
center-ness, the center-ness index term is modified to improve adapt
ability to slender defects.

(3) Adaptive central sampling is proposed to reduce the loss of information 
for extreme-size defects caused by central sampling.

The rest of the paper is organized as follows: the recent research advances in 
this field are described in Section 2. An overview of the methodology of the 
advanced FCOS is presented in Section 3. Experimental results are presented 
and discussed in Section 4. Conclusions are presented in Section 5.

Related Work

Object detection in machine vision refers to finding the position of an object of 
interest in an image and classifying the object. This task is highly challenging 
because of the large variety and complexity of shapes of objects and the 
presence of background interference in industrial scenes.
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Conventional object detection uses a sliding window in conjunction with 
a classifier method. Each time the sliding window slides to a region, the 
classifier determines the category of the region. Chen and Liu (2007) and 
Han and Liao (2009) used the Harr feature and the AdaBoost classifier to 
detect human faces. Bauer, Köhler, and Doll et al. (2010) proposed 
a pedestrian detection method based on a support vector machine (SVM). 
Wang, Jia, and Huang et al. (2008) and Gan and Cheng (2011) investigated 
object detection methods based on a histogram of oriented gradients (HOG) 
for pedestrian detection. These methods require feature representation to be 
manually designed based on experience.

Deep learning methods were first used in image classification. AlexNet 
(Krizhevsky, Sutskever, and Hinton 2017), VGG (Simonyan and Zisserman 
2014), and ResNet (He, Zhang, and Ren et al. 2016) were shown to far 
outperform other conventional image classification methods on the 
ImageNet dataset. Subsequently, an R-CNN (Girshick, Donahue, and Darrell 
et al. 2014) was used to locate objects using a selective search algorithm with an 
SVM classifier, and a deep convolutional network was used for end-to-end 
object detection. Generally, deep-learning-based object detection methods are 
classified into two categories. One category includes two-stage methods, such 
as Fast R-CNN (Girshick 2015) and Faster R-CNN (Ren, He, and Girshick 
et al. 2015). The other category includes one-stage methods, such as YOLO 
(Redmon and Farhadi 2017; Redmon, Divvala, and Girshick et al. 2016) and 
single-shot detection (SSD) (Liu, Anguelov, and Erhan et al. 2016). Two-stage 
methods are based on R-CNN. These methods first generate the object candi
date box, then classify the candidate box, and perform regression on the 
coordinate offset of the candidate box. These methods are more accurate but 
are less efficient. In contrast, the one-stage methods directly regress the object 
position and the probability of its category. Although the one-stage methods 
generally have lower accuracy than the two-stage methods, their detection 
speed is faster. A feature pyramid network (FPN) (Lin, Dollar, and Girshick 
et al. 2017) was proposed to simultaneously make predictions on multiple 
scales, thus improving the performance of the network for detecting small 
objects. The methods mentioned above are all anchor-based.

An anchor is a prediction box with a fixed shape and size obtained by 
clustering ground truth labeled boxes, which can avoid blind searching during 
model training and help the model converge quickly. For example, Faster 
R-CNN needs manual specification of the anchor parameter ratio and scale 
and obtains a series of anchors through different combinations of these two 
parameters, while YOLOv3 (Redmon and Farhadi 2018) obtains the widths 
and heights (dimension clustering) of representative shapes to form the 
anchors by clustering the ground truth of all samples in the training set via 
the k-means algorithm. These anchors mark the detection object in 
a rectangular box, and the horizontal and vertical axes of the box are parallel 

e2122222-3126 H. SHI ET AL.



to the horizontal and vertical directions of the image. The shape and size of the 
rectangular box need to be determined by prior knowledge from the ground 
truth. Therefore, when the size and aspect ratio of the object change drasti
cally, the performance of the model declines sharply. For example, when there 
are defects such as elongated scratches and microspots, the anchor-based 
method is prone to missed detection and misdetection. In addition, the 
exhaustive number of rectangular boxes must be increased to improve the 
detection accuracy for such defects, which increases the detection time. The 
experiments in this paper confirm that Faster R-CNN and YOLO have limita
tions in detecting defects of extreme size.

Therefore, to achieve better detection results, anchor values should be 
setted properly or a customized anchor-based architecture should be built. 
DefectDet (Duje et al. 2022) modified the detection head to improve the 
detection of the objects with extreme aspect ratios which are common in UT 
images. Another way is to free the network from the constraint of anchors. 
The first anchor-free model DenseBox (Huang, Yang, and Deng et al. 2015) 
first introduced the concept of a fully convolutional network (FCN) 
(Shelhamer, Long, and Darrell 2017) into target detection. The model 
directly predicts the bounding box and confidence score of each pixel result 
through NMS. CenterNet (Zhou, Wang, and Krahenbühl 2019) and FCOS 
(Tian, Shen, and Chen et al. 2019) are the most representative anchor-free 
methods. CenterNet replaces the object with its center point and ultimately 
returns the position of the center point and the object size. An FCOS is 
similar to CenterNet, but it returns a series of points close to the center point 
of the object and the distance from this point to the object bounding box. In 
CenterNet, a target corresponds to the local peak point on the feature map 
output by the network. This network does not provide an effective solution 
to overlapping targets. Comparing the two types of methods, an FCOS is 
more likely to have the ability to detect objects of extreme size. Therefore, an 
FCOS is used in this study as a backbone for the detection of defects in 
industrial products. The original network structure is improved to improve 
the detection performance for extreme-size defects.

Advanced FCOS Network Structure and Algorithm Design

Original FCOS

For the anchor-based methods, it is necessary to generate a large number of 
anchors and gradually fit an object through these anchors, while an FCOS 
predicts the sampling points by using the concept of FCN to obtain the 
corresponding category of each sampling point and the distances from each 
sampling point to the four sides of the corresponding object bounding box, as 
shown in Figure 1.
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Let Fi 2 RH�W�C represent the feature map of the ith layer in the convolu
tional neural network (CNN) backbone and s represent the total stride from 
the input image to this layer. In the Fi layer, a certain position (x, y) corre
sponds to an area centered at (s/2 + xs, s/2 + ys) on the input image.

For the FCOS, if the position (x, y) falls in a certain ground truth box, it is 
considered a positive sample belonging to this category; otherwise, it is 
regarded as a negative sample, that is, background. In the FCOS, C binary 
classifiers (C is the total number of categories) are trained rather than one 
multiclassifier. Moreover, to describe the prediction results, in addition to the 
classification label of the position, the FCOS regresses a four-dimensional 
vector (L, T, R, B), where L, T, R, and B represent the distances from the 
position to the four sides of the bounding box, as shown in Figure 1. The 
network structure of the FCOS in Figure 2 shows that regression and classi
fication are output as two branches. As the distance obtained by the regression 
is always positive, the output of the model is mapped through the exponential 
function at the top of the regression branch. If a position exists in multiple 
ground truth boxes at the same time, its category attribution is ambiguous, 
that is, a position belongs to multiple categories at the same time; however, the 
final output of the classifier should be one category.

To eliminate the ambiguity of overlapping objects, the bounding box with 
minimal area is chosen as its regression target. Moreover structure of an FPN 
is introduced in the FCOS, with different levels of the FPN predicting objects 

Figure 1. Schematic diagram of the FCOS prediction results.

Figure 2. FCOS network structure diagram.
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of different sizes. The FPN has a total of five feature levels, namely, P3, P4, P5, 
P6, and P7. By limiting the regression results of each layer (i.e., L, R, T, and 
B in Figure 1), the model assigns a task of predicting objects of a different size 
to each layer, thereby avoiding the problem of overlap between objects of 
different sizes. Specifically, if max(L, T, R, B)>mi or max(L, T, R, B) <m i-1, this 
position is set as the background in this layer. Here, mi represents the max
imum regression distance of the ith feature layer, and m2, m3, m4, m5, m6, 
and m7 are generally set to 0, 64, 128, 256, 512, and ∞, respectively.

In addition to the output classification and regression common to the object 
detection models, the FCOS outputs the center-ness to suppress the bounding 
boxes that are close to the edge of the object. The center-ness represents the 
distance between a position and the center of the object. The center-ness of the 
object center is 1, and the greater the distance of the position from the center, 
the smaller its center-ness. During inference, the center-ness is combined with 
the category confidence to calculate a final score. At the nonmaximum sup
pression (NMS) stage, filtering is performed based on the final score so that 
these prediction boxes that are far from the center can be filtered out. The 
expression of center-ness cx,y is as follows: 

cx;y ¼ ð
minðl; rÞ
maxðl; rÞ

�
minðt; bÞ
maxðt; bÞ

Þ
1
2 (1) 

In Equation (1), the square root operation is to reduce the attenuation rate of 
the center-ness. Since the value range of center-ness is [0, 1], binary cross- 
entropy loss is used for training. In the testing phase, the ranking score of the 
NMS is taken as follows: 

sx;y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
px;y � cx;y

p
(2) 

where px;y represents the classification score.
The loss function of the FCOS is as follows: 

Lðfpx;yg; ftx;ygÞ ¼
1

Npos

X

x;y
Lclsðpx;y; c�x;yÞþ

λ
Npos

X

x;y
lfc�x;y > 0gLregðtx;y; t�x;yÞ (3) 

where Lcls is the classification loss, which is represented by the focal loss 
(Linet al. 2017), and Lreg is the regression loss. Npos represents the number 
of positive samples, and positive samples are the sample points that fall within 
the label box. Λ is a hyperparameter with a default value of 1.

Improved Center-Ness

For elongated defects, such as the scratches shown in Figure 3(a), a very large 
aspect ratio causes the center-ness defined in (1) to be very sensitive to changes 
in the short side but less sensitive to changes in the long side. Thus, a large 
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number of bounding boxes close to the ground truth are suppressed in the 
NMS stage, resulting in missed detection of elongated defects.

As shown in Figure 3(b), the predicted values in the narrow red range at the 
center are retained, while the predicted values in the surrounding large range 
are suppressed and filtered in the NMS stage. In fact, these positions can also 
describe the defect well and are not the so-called low-quality prediction boxes. 
Consequently, a novel definition of center-ness is proposed: 

cx;y ¼ ð
minðl; rÞ
maxðl; rÞ

�
minðt; bÞ
maxðt; bÞ

Þ
α (4) 

α ¼
minðh;wÞ

2 maxðh;wÞ
(5) 

where h and w denote the height and the width of the bounding box, 
respectively. When the aspect ratio increases, α decreases, and in this manner, 
the suppression of the prediction boxes of elongated defects can be weakened. 
For nonelongated defects, the improved center-ness can also suppress the off- 
center bounding boxes as the original center-ness does. As shown in 
Figure 3(c), the improved center-ness has a better tolerance in the width 

Figure 3. Schematic diagram and the center-ness heatmap of an elongated defect (a) Schematic 
diagram of elongated defects (b) Heatmap of the original center-ness (c) Heatmap of the improved 
center-ness.

e2122222-3130 H. SHI ET AL.



direction, which weakens the excessive suppression of the predicted values in 
the width direction of elongated defects by the original center-ness.

In addition, the center-ness and classification modules in the conventional 
FCOS share parameters, as Figure 2 shows. In this study, the center-ness 
branch and regression branch are implemented together, as in (Tian et al. 
2020), after the center-ness is improved. The advanced FCOS network struc
ture is shown in Figure 4.

Self-Adaptive Center Sampling

In the conventional FCOS, the sample points that fall into the ground truth 
labeled box are treated as positive samples, which causes many positive 
samples to deviate from the center of the object. These samples introduce 
a large quantity of background information and affect the detection results, as 
shown in Figure 5(a). Tian et al. (2020) used center sampling to improve this 
problem, as shown in Figure 5 (b). Specifically, only the points in the central 
region of the object are treated as positive samples. The central region is 
defined as (cx – rs; cy – rs; cx + rs; cy + rs). cx and cy represent the abscissa and 
ordinate coordinates of the center point, respectively, s represents the stride of 
the FPN layer, and r is a hyper-parameter with a default value of 1.5. However, 
this sampling method loses most of the information for elongated objects. 
Therefore, a self-adaptive center sampling method is proposed in this study to 
redefine the center region as (cx – rs; cy – ρrs; cx + rs; cy + ρrs) when ρ ≤ 1, or (cx 
– ρrs; cy – rs; cx + ρrs; cy + rs) when ρ > 1, where ρ represents the aspect ratio of 
the label box and the definitions of the remaining symbols remain unchanged, 
as shown in Figure 5 (c). It will work for objects elongated in all the directions 
according to ρ. After the improvement, as the aspect ratio of the label box 
changes, the central area changes accordingly so that the part that deviates in 
the length direction can also be used as a positive sample instead of the 
background.

Figure 4. Advanced FCOS structure.

APPLIED ARTIFICIAL INTELLIGENCE e2122222-3131



Using the GIoU Loss Function

The regression branch of conventional FCOS uses the intersection over union 
(IoU) loss as the loss function (Yu, Jiang, and Wang et al. 2016). However, there 
are two problems with using IoU loss as the loss function. First, when two 
bounding boxes do not intersect, the IoU is 0 regardless of the distance. 
However, the closer the bounding boxes are, the more accurate the prediction 
of the model should be, but the IoU loss cannot reflect this trend. Second, when 
two bounding boxes intersect, the prediction accuracy is not only related to the 
intersection area but also related to the intersection position, which is also not 
affected by the IoU loss. Therefore, this study uses the generalized intersection 
over union (GIoU) loss (Rezatofighi, Tsoi, and Gwak et al. 2019) instead of IoU 
loss.

Assuming that there are two bounding Boxes A and B, then 

IoU ¼ ðA \ BÞ=ðA [ BÞ (6) 

The minimum closure region of A and B is defined as C; then, the GIoU 
formula is as follows: 

GIoU ¼ IoU �
ðA [ BÞ

C
(7) 

The GIoU loss is hence as follows: 

LGIoU ¼ 1 � GIoU (8) 

Through the definition of GIoU, it can be seen that GIoU takes into account 
both the overlapping and nonoverlapping regions of the two intersecting 

Figure 5. Schematic of center sampling and self-adaptive center sampling. (a) Original FCOS 
sampling. (b) Center sampling. (c) Self-adaptive center sampling.
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bounding boxes as well as the situation of two bounding boxes that do not 
intersect, which makes up for the deficiency of using IoU as the loss function.

Group Normalization

The original FCOS performs batch normalization of the dataset (Ioffe and 
Szegedy 2015) and limits the results to a specific range to exclude singular 
data. In industrial detection, most collected images contain more than 
one million pixels. In training, only a small batch size can be used, and 
the data are often highly imbalanced. In this case, batch normalization not 
only affects the network performance but also causes the mean and var
iance of the data to deviate from the original values, which affects the 
training results. Group normalization (GN) can solve the problems 
encountered with using batch normalization for small batches (Wu and 
He 2018). The data dimension of the neural network is generally expressed 
in the form of [N, C, H, W] or [N, H, W, C], where N is the batch size, 
H and W are the height and width of the feature, respectively, and C is the 
channel of the feature. The dimension of the data after batch normal
ization is [N, H, W], the channel directions are grouped by group normal
ization, and the normalization is performed within each group; that is, the 
dimension of the feature is first reshaped from [N, C, H, W] to [N, G, C// 
G, H, W] and then normalized to [C//G, H, W] to remove the effect of the 
batch size.

Experiments and Results

The software and hardware platforms used in our experiment include an 
NVIDIA GTX 1080Ti as the GPU, Ubuntu 18.04 as the operating system, 
and PyTorch as the deep learning framework.

Experimental Dataset

The data used in this paper are from the Tianchi aluminum surface defect 
dataset (Tianchi 2018). The image resolution is 2560 × 1920. Since there are 
many types of defects in the original dataset and most of them are defects of 
common size that are easy to detect, the low accuracy and low recall rate of 
defects of extreme size are masked in the evaluation of the results. Hence, we 
modify the original dataset by considering two representative types of defects, 
that is, those with the largest aspect ratios and smallest resolutions (scratches 
and spots), and use two types of typical defects (wrinkles and bumps) as 
controls. These training data are enhanced by flipping and rotating. 
Eventually, 1600 images are obtained. Each of these 1600 images is manually 
labeled. Sixty percent of the dataset is used as the training set, and the 
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validation and test sets each account for 20%. Sample images of the four types 
of defects are shown in Figure 6.

Evaluation Indicators for Detection Results

The precision, recall, and mean average precision (mAP) are common indi
cators used to evaluate object detection performance. The formulas for the 
precision and recall are as follows: 

Precision ¼
TP

TP þ FP
(9) 

Recall ¼
TP

TPþ FN
(10) 

where the true positive (TP) represents the number of defective areas 
detected as defects, the false positive (FP) represents the number of non
defective areas detected as defects, and false negative (FN) represents the 
number of defective areas detected as nondefective areas (Ren and Xue 2020; 
Wang et al. 2020). The precision-recall curve for a defect is plotted, and the 
area under the curve that lies above the x-axis is taken as the average 
precision (AP) of the defect. The mean of the AP values of all defects is 
taken as the mAP.

In this study, the AP and mAP are used to evaluate the detection results.

Analysis of Experimental Results

During training, the batch size is set to 16, the total number of training 
iterations is 20,000, and stochastic gradient descent (Theodoridis 2015) is 
used for optimization. The momentum factor μ is 0.9, and the weight attenua
tion coefficient ω is 0.0001. In addition, ResNet101 is used as the model 

Figure 6. Schematic of defects. (a) Scratches, (b) spots (size defects), (c) wrinkles, and (d) bumps.
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backbone. The training loss curve is shown in Figure 7. The loss curve in the 
figure is obtained by sampling once every 200 epochs.

Comparison of IoU Loss and GIoU Loss

To verify the effectiveness of the GIoU loss in place of the IoU loss, the GIoU 
loss and IoU loss are substituted into the original FCOS framework for 
comparison. The results are shown in Table 1. The AP values of all four 
types of defects (especially those of spots and bumps) evidently increase. The 
experimental results show that the use of GIoU loss can increase the mAP 
by 2.9%.

Comparison of Batch Normalization and Group Normalization

For microdefects, such as spots in the dataset, the use of compressed images 
inevitably leads to the loss of defect information. Therefore, it is necessary to 
input the original size image into the network. In addition, the use of a smaller 
batch size for training results in batch normalization being inferior to group 
normalization. Based on the advanced FCOS model discussed in 3.3.1, we 
replace batch normalization with group normalization. The comparative 
experiment results are shown in Table 2. The AP of spot detection is signifi
cantly improved, the AP of the detection of other three types of defects is 
improved, and the overall mAP is increased by 1.5%.

Figure 7. Loss curve.
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Comparison Between the Improved Center-Ness and Original Center-Ness

In the dataset, most scratches are defects of extreme size that lie near the 
widest part of the image. The improved center-ness and the original center- 
ness are compared. The results show that after the center-ness is improved, the 
AP of scratch detection is increased by 4.4%. As shown in Table 3, the 
improved center-ness optimizes the detection of elongated defects by FCOS 
without affecting the detection of other types of defects, and the overall mAP is 
increased by 1.3%.

Experimental Analysis of Self-Adaptive Center Sampling

The comparative experimental results of self-adaptive center sampling and 
center sampling are shown in Table 4. Since self-adaptive center sampling is 
also an improvement targeting elongated defects, it effectively improves the 
AP of scratch detection from 58.2% to 62.0%. The overall mAP increases from 
74% to 75.4%.

Table 3. Comparison of the experimental results of the improved center-ness and original center- 
ness.

Baseline GIoU GN Improved center-ness Self-adaptive

AP (%)

Scratches Spots Wrinkles Bumps

FCOS √ √ ˟ ˟ 53.8 78.0 80.9 78.2
FCOS √ √ √ ˟ 58.2 78.7 80.7 78.5

Table 4. Analysis of experimental results for self-adaptive center sampling and center sampling.

Baseline GIoU GN Improved center-ness Self-adaptive

AP (%)

Scratches Spots Wrinkles Bumps

FCOS √ √ √ ˟ 58.2 78.7 80.7 78.5
FCOS √ √ √ √ 62.0 80.2 81.1 78.3

Table 1. Comparison of the IoU loss and GIoU loss (√ denotes that the AP was improved after 
introducing the GIoU loss).

Baseline GIoU GN
Improved 

center-ness Self-adaptive

AP (%)

Scratches Spots Wrinkles Bumps

FCOS ˟ ˟ ˟ ˟ 50.2 69.7 79.3 74.1
FCOS √ ˟ ˟ ˟ 52.9 74.4 80.5 77.0

Table 2. Comparison of the effects of batch normalization and group normalization.

Baseline GIoU GN Improved center-ness Self-adaptive

AP (%)

Scratches Spots Wrinkles Bumps

FCOS √ ˟ ˟ ˟ 52.9 74.4 80.5 77.0
FCOS √ √ ˟ ˟ 53.8 78.0 80.9 78.2

e2122222-3136 H. SHI ET AL.



Overall Analysis of Experimental Results

The experimental results are visualized in Figure 8. The results of the entire 
ablation experiment are presented in Table 5 and show that, based on the 
original FCOS framework, the performance for detecting defects of extreme 
size can be optimized for each improvement experiment and the accuracy of 
detection of normal-size defects can be improved to some extent. For ultra- 
elongated scratches, the AP can reach 62%, with an increase of 11.8%, while 
the AP of detecting microspots can even exceed 80%, with an increase of 
10.5%. For the detection of wrinkles and bumps (defects of common size), the 
AP increases by 1.8% and 4.2%, respectively.

Comparison of Advanced FCOS and Other Anchor-Based Methods

For the anchor-based methods, it is necessary to define the anchors based on 
the defects. Faster R-CNN defines nine anchors of fixed size. YOLOv3 and 
YOLOv5 obtain the appropriate anchors through clustering. YOLOv5x is the 

Figure 8. Visualization of the detection results, where defects 1 to 4 represent scratches, spots, 
wrinkles, and bumps, respectively.

Table 5. Comparison of experimental results of the five-stage model.

Baseline GIoU GN Improved center-ness Self-adaptive

AP (%)

Scratches Spots Wrinkles Bumps

FCOS ˟ ˟ ˟ ˟ 50.2 69.7 79.3 74.1
FCOS √ ˟ ˟ ˟ 52.9 74.4 80.5 77.0
FCOS √ √ ˟ ˟ 53.8 78.0 80.9 78.2
FCOS √ √ √ ˟ 58.2 78.7 80.7 78.5
FCOS √ √ √ √ 62.0 80.2 81.1 79.7
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version with the strongest detection capability among YOLOv5 series. Figure 9 
is a scatter plot of the defect size distribution in the aluminum-surface-defect 
dataset. In the figure, the sizes of the four types of defects are widely distrib
uted: both the width and length follow a nearly random distribution in the 
interval (1, W), where W denotes the width of the input image. Neither the 
defined anchors nor the anchors obtained by clustering can be well fitted. In 
fact, the anchor-based methods generally rely on increasing the number of 
anchors to solve these problems, which seriously affects the detection effi
ciency and can even make the network difficult to train.

As shown in Figure 10, when the angle of an ultra-elongated defect is 
rotated from horizontal to 45° and 90°, the aspect ratio of the bounding box 

Figure 9. Scatter plot of size distribution of defects in the dataset.

Figure 10. Schematic diagram of the change in the bounding box when the angle of an elongated 
defect changes.
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Table 6. Comparison of the AP values of the three models.
Faster R-CNN YOLOv3 YOLOv5x Our model

Scratches 48.7 48.2 49.1 62.0
Spots 67.9 63.5 65.3 80.2
Wrinkles 77.9 75.7 77.6 81.1
Bumps 75.6 72.6 73.5 79.7
mAP 67.5 65.0 66.4 75.8

Table 7. Comparison of the detection speeds of the three models.
Faster R-CNN YOLOv3 YOLOv5x Our model

fps (f/s) 0.8 25 28 6

Figure 11. Comparison of the scratch detection results for (a) Faster R-CNN detection, (b) YOLOv3 
detection, (c) YOLOv5x detection and (d) our model.
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changes sharply, which corresponds to the overly large Euler distance between 
the two points in Figure 9. Consequently, the detection performance of the 
anchor-based methods drops. Therefore, the anchor-based methods are not 
suitable for the detection of defects of extreme size.

Advanced FCOS and the anchor-based methods are compared on the test set. 
The AP (%) values of the detection of the four types of defects are shown in 
Table 6. Among these methods, Faster R-CNN also uses ResNet101 as the back
bone and introduces the FPN structure. YOLOv3 uses DarkNet as the backbone. 
The hyperparameters for both YOLOv3 and YOLOv5x were set to default values 
proposed by its creators. The number of anchors in both models is set to the 
default value of 9. It can be seen that the mAP of our model for the detection of 
the four types of defects is significantly higher than that of Faster R-CNN, by 
8.3%, and that of YOLOv5x, by 9.4%. If we look only at the two types of defects of 
extreme size, i.e., scratches and spots, the improvements are even more obvious. 
For example, the AP for spot detection using our model is higher than that of 
Faster R-CNN by 12.3% and that of YOLOv5x by 14.9%. The visualized examples 
of the scratch detection results of the four models are shown in Figure 11. The 
figure shows that the ranges detected by Faster R-CNN, YOLOv3 and YOLOv5x 
differ considerably from the actual values, resulting in lower AP values.

The detection speeds are compared in Table 7. YOLOv5x has a detection 
speed of approximately 28 f/s and the best real-time performance, whereas 
Faster R-CNN has a detection speed of approximately 0.8 f/s. The detection 
speed of the proposed method (6 f/s) lies between Faster R-CNN and YOLO 
methods, whereas the size of input image is approximately 28 times that of 
YOLOv3. The advanced FCOS method is suitable for real industrial detection.

Conclusions

Ultra-elongated and ultra-fine defects are prone to be missed and false detec
tion during manufacturing, in this study an advanced fully convolutional one- 
stage object detector is proposed to solve this problem. We improved the 
original FCOS framework, proposed center-ness and self-adaptive center 
sampling to prevent center suppression, and improved the regularization 
method and the loss function based on the defect characteristics. 
Experimental results show that the proposed method significantly improves 
the performance of the network in detecting defects of extreme size, including 
elongated defects and microdefects, without affecting the detection of normal- 
size defects. The proposed method outperforms Faster R-CNN, YOLOv3 and 
YOLOv5x on the aluminum-surface-defect dataset. In addition, the proposed 
method can detect large images (>2Kx2K) at 6 f/s, which meets the require
ments of real-time industrial detection.
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