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Integration Learning of Neural Network Training with 
Swarm Intelligence and Meta-heuristic Algorithms for Spot 
Gold Price Forecast
Zhen-Yao Chen

Department of Business Administration, Hungkuo Delin University of Technology, New Taipei City, 
Taiwan

ABSTRACT
This research attempts to enhance the learning performance of 
radial basis function neural network (RBFNuNet) via swarm 
intelligence (SI) and meta-heuristic algorithms (MHAs). Further, 
the genetic algorithm (GA) and ant colony optimization (ACO) 
algorithms are applied for RBFNuNet to learn. The proposed 
integration of GA and ACO approaches-based (IGACO) algo-
rithm combines the complementarity of exploitation and 
exploration capabilities to achieve optimization resolve. The 
feature of population diversification has higher opportunity to 
pursue the global optimal substitute being constrained to local 
optimal exceeding in five continuous test functions. The experi-
mental results have illustrated that GA and ACO approaches can 
be incorporated intelligently and propose an integrated algo-
rithm, which intents for obtaining the optimal accuracy training 
performance among relevant algorithms in this study. 
Additionally, method assessment results for five benchmark 
problems and a practical spot gold price forecast exercise 
show that the proposed IGACO algorithm outperforms other 
algorithms and the Box-Jenkins models in terms of forecasting 
preciseness and execution time.
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Introduction

Conventional gradient-based techniques regularly turn into powerless 
owing to their rigorous adopt conditions and slowly convergence (Wang 
et al. 2018). In addition, time series method contains autoregressive (AR) 
moving average (MA) model (Erdem and Shi 2011), AR integrated MA 
(ARIMA) model (Cadenas et al. 2016), ARIMA with exogenous 
(ARIMAX) variables model (Yan et al. 2017), etc. (Tian 2020). However, 
studies have shown that these approaches exist some shortcomings, for 
instance difficulty in parameter evaluation of high-order model and low 
forecasting precision of low-order model (Tian 2020).
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Evolutionary computation (EC) is constituted of a variation of evolution 
approaches like differential evolution (DE), evolutionary strategies, genetic 
programming, genetic algorithms (GAs), etc. These approaches are popula-
tion-based and exercise a global area seek. They incorporate a repetitively 
revised of experimental solution sets in generations. The solution sets of 
identical generation are sorted via their fitness values, and the most suitable 
unit of the recent generation are permitted to generate the inferior generation 
through means of varying operators (Oprea 2020). Besides, evolutionary 
algorithms (EAs) have some characters such as nonlinear, nonconvex, non-
differentiable, multimodal, etc., EAs are a major division of derivative-free 
methods for resolving several challenging optimization tasks. As a type of 
adaptive and random optimization methods, EAs illustrate afflatus from the 
group behavior and physical advancement of animal natural collectives or 
social hexapod colonies (Zhang et al. 2018).

Moreover, swarm intelligence (SI) is a group of methods excited through 
the group behavior of animal and insect such as fishes, birds, ants, bees, 
bacteria, etc. (Nanda and Panda 2014). Several representative instances are 
the artificial colony optimization (ACO), artificial bee colony (ABC), and 
particle swarm optimization (PSO) algorithms (Jose-Garcia and Gomez- 
Flores 2016). They are investigated for their effectiveness in resolving optimi-
zation instance problems, particularly in continuous resolution spaces (Song, 
Ma, and Qiao 2017).

Nowadays, optimization problem resolving has turn into a popular topic in 
engineering and science fields. Also, these optimization problems are acquir-
ing increasingly complicated owing to the features such as nondifferentiable, 
nonconvex, discontinuous, and nonlinear (Cui et al. 2017). Lately, some meta- 
heuristic (MH) algorithms (MHAs) based on population have fascinated wide 
advertence to resolving incorporating optimization tasks (Zhao et al. 2018a) 
with higher quality solving methods and in a rational time (Talbi 2009). 
Further, MHAs can summarily classify into four primary divisions: human 
behavior-based, chemistry or physics-based, swarm-based, and evolutionary- 
based algorithms (Kaur et al. 2020). MH methods are changing more prevalent 
particularly in engineering relevant problems owing to their capability to 
escape from the local area optimal with depending on simplicity conceptions 
that imitate from nature and can be adopted in a broad range of tasks from 
numerous subjects. Stimulated through nature MH are quite brief and mainly 
excited via simplicity conceptions (Sulaiman et al. 2020).

Another principal reason that judges the satisfactory application and exer-
cise of MHAs in resolving tasks is a complementarity trade-off between 
exploitation and exploration strategies. Consequently, both exploitation and 
exploration can be mentioned to as intensification and diversification proce-
dures (Nasir and Tokhi 2015). For instance, Wang et al. (2017a) implemented 
a multiobjective algorithm based on gradient and neighborhood mechanism 
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for realizing the balance of exploitation and exploration strategies. This multi-
objective algorithm was applied on wind turbine blade design and trialed on 
two to four objectives problem (Wang et al., 2017).

EAs like GAs (Abualigah and Hanandeh 2015) and SI-based algorithms 
such as ant colonies (Dowlatshahi and Derhami 2017), PSO (Abualigah, 
Khader, and Hanandeh 2018), and epsilon-greedy swarm optimizer 
(Dowlatshahi, Derhami, and Nezamabadi-pour 2017) belong to this type of 
SI algorithms. Further, a hybrid algorithms based on two or more MHs may 
integrate individual algorithm’s superiorities and further enhance the optimi-
zation performance (Chen, Tianfield, and Li 2019). On the other hand, 
artificial neural network (ANN) is designed to simulate the function and 
structure of human brain. It is consisted of a large amount of simple proces-
sing units connected in a large scope with a certain topological constitution. 
The following properties: error tolerance, distributed storage, parallel process, 
self-adaptation, self-organization (e.g., self-organizing map neural network 
(SOMNN)), and self-learning, allows ANN to be applied for prediction 
(Huseyin and Tansu 2019). Further, ANNs are calculating networks that 
simulate the human brain and the nervous network. Such networks train to 
fulfill problems through premeditating samples, thus deduce implication rele-
vant to unseen examples. Learning is recognizing the association between the 
characteristics in the examples and how that connection impacts the objective 
conception (Day, Iannucci, and Banicescu 2020).

Moreover, owing to radial basis function (RBF) neural network 
(RBFNuNet) possess a few of superiorities over other models of ANNs and 
these reveal superior approximation abilities, briefer network constructions, 
and speedy learning algorithms (Qasem, Shamsuddin, and Zain 2012). In 
these methods, the training work is to acquire network structures that can 
react as intently to the system to be imitated as possible. The construction of 
the RBFNuNet includes three layers: input, hidden (i.e., RBFs), and (linear) 
output layers (Su et al. 2012). Further, a compact teaching and learning-based 
optimization was proposed by Yang et al. (2018) to optimize feed-forward NN 
(FFNN) and RBF model. Rani and Victoire (2018) utilized RBF model opti-
mized through an improved PSO and differential search optimizer in the 
application of wind speed prediction. Consequently, for the purpose of 
model the tortuous relation, RBFNuNet is applied to predict the expected 
colors trained via a SI algorithm (Li et al. 2020). Next, the accumulated 
value yðtÞ: 

yðtÞ ¼
Xn

i¼1
wi � ϕiðXÞ (1) 
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denotes the RBFNuNet model output at time lag t, whereas wi correlates with 
the linear output weight for the ith neuron within the hidden layer. The RBF ϕi 
for input vector X is resolved as standard Gaussian function formula as below, 

ϕiðXÞ ¼ expð�
1

2σ2
i

X � cik k
2
Þ; i ¼ 1; 2; . . . ; n (2) 

where σi and ci denote the Gaussian distributed width and center of the ith 

neuron within hidden layer. The count of RBFNuNet hidden layer is denoted 
as n. It is worth to note that the featured nonlinear function parameters 
denoted in the Euclidean distance equations and denominator calls for effec-
tive optimization approach to determine (Yang et al. 2020).

SI and evolutionary computation (EC) relevant algorithms have been both 
used in various applications (Del Ser et al. 2019). Thanks to the new machine 
learning techniques, newly improved intelligence methodologies have been 
adopted to solve time series prediction problems in several scientific domains 
(Kouziokas 2020). For example, Moayedi et al. (2019) implemented several 
NN and evolutionary approaches for predicting the ultimate bearing capacity. 
Also, Khashei and Hajirahimi (2018) have attempted to act appropriate eva-
luation of two feasible classes of series models, established with ANN and 
ARIMA models for stock price prediction (Hajirahimi and Khashei 2019).

Subsequently, Khashei et al. (2009) merged ARIMA model with ANN and 
fuzzy logic for the prediction of daily price of gold and exchange rate. It 
conquered the linear and data constraints of ARIMA models and in result 
produced with higher accuracy. Further, Zhang and Liao (2013) inspected the 
forecast capability of hybrid fuzzy clustering (HFC) algorithm and RBFNuNet, 
and employed the HFC algorithm on gold price forecasting. The HFC algo-
rithm has evidenced superior capability over the previous. Wen et al. (2017) 
applied complete ensemble empirical mode decomposition (CEEMD) along 
with support vector machine (SVM) and ANN for prediction and analysis of 
gold price. Next, Kristjanpoller and Hernandez (2017) adopted a hybrid ANN- 
generalized auto-regressive conditional heteroskedasticity (GARCH) (ANN- 
GARCH) model with regressors to forecast the price variability of gold, 
copper, and silver. Contrast experiments evidenced that the integration of 
ANN raised forecasting accuracy contrasted with traditional GARCH model.

Afterward, the expression of RBFNuNet affected through several para-
meters of nonlinear RBF functions for RBFNuNet. Simultaneously, not 
enough efforts have been implemented to integrate some soft computing 
algorithms and applied on RBFNuNet where retains gaps to enhance in term 
of the fitting accurateness for function approximation. Thereby, this research 
expects to propose the IGACO algorithm for training RBFNuNet and realize 
sufficient performance confirmation and analysis. The proposed IGACO 
algorithm integrates the local and global search capabilities for task resolve. 
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Latter, the IGACO algorithm adopts five benchmark continuous test func-
tions, which are frequently utilized in the experiment to be the comparison 
of algorithm performance. Besides, we apply the inspected IGACO algorithm 
in term of forecasting accuracy to verify the exercise of spot gold price 
forecast.

The rest of this paper is structured as follows. In Section 2, the literature 
review is dissertated. Section 3 illustrates the methodology in detail for the 
proposed IGACO algorithm. The experimental results and performance eva-
luation are deliberated in Section 4. The practical exercise for the spot gold 
price forecast is provided and discoursed in Section 5. Finally, the conclusions 
are summarized in Section 6.

Literature Review

The recent optimization algorithm was exploited to resolve a broad scope of 
optimization tasks in distinct implementations of artificial intelligence (AI) 
such as nonlinear and linear calculations (George Lindfield 2019), resolving 
nonlinear practices (Truong and Kim 2018), any task where the global max-
imum or minimum is wished (Ghafil and Jarmai 2020), and constructional 
optimization (Mortazavi, Toğan, and Moloodpoor 2019). In addition, SI and 
EAs are stimulated via evolutionary procedures, natural phenomena, and the 
group behaviors of crowds of bees and ants, and flocks of birds when they look 
for a finer circumstance or food (Ma et al. 2019).

In the recent period, taking stimulated afflatus from different natural 
phenomenon, many MHAs have been developed by scholars from all over 
the relevant domains. Some major MHAs include GA (Wang et al., 2017b; 
Liu et al. 2018), differential evolution (Xu, Chen, and Tao 2018; Zhu et al. 
2018), PSO (Chen et al. 2017; Nagra et al. 2019), ACO (Xiaowei et al. 2014), 
and artificial bee colony (ABC) (Wang et al. 2019) algorithms. These MHAs 
have also been broadly applied to resolve related optimization problems and 
have shown extraordinary performance (Chen et al. 2018; Wang et al. 2018). 
Consequently, by information sharing among individuals, collaborative 
operators raise optimize individuals and population diversification 
(Huang and He 2020). This section dissertates general background correla-
tives to this research, containing SI and evolutionary MHA for RBFNuNet 
training.

GA-based Optimization Algorithm for NN Training

EAs imitate biological evolutions such as selection, duplication, crossover, 
and mutation. Chromosomes in the population act as some candidate 
solutions for the given task to be optimized and fitness of every chromo-
some is estimated using the estimation function. The solution for the task to 
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be optimized is acquired via utilizing the distinction processes. No assump-
tions are made for the fitness parameters in EAs, and therefore given task 
will obtain good approximating solutions (Baeck, Fogel, and Michalewicz 
2018).

On the other hand, GA is an evolution approach exploited based on the 
concept of organism species progress and natural selection presented by 
Holland (2008). Basically, GA may search the global optimal; however, GA 
revealed poor convergence in several cases (Islam et al. 2020). Owing to the 
limitation of looking for new spaces, the GA may easier cause premature 
convergence to the solutions on local area extreme points (Yan et al. 2020). 
With the Roulette wheel method, GA looks for the global optimal solutions 
via selecting and assessing the source population from the initialized popu-
lation and the utilization of progressive manipulators on the parent to 
generate the next offspring in each generation (Ansari, Othman, and El- 
Shafie 2020).

Further, Sarimveis et al. (2004) proposed a GA-based algorithm, which 
targeted to minimize the error function associated to the relevant parameters 
of the RBFNuNet. However, as the hidden layer of RBFNuNet utilizes the 
restraint of the thin-plate-spline function (Chen, Cowan, and Grant 1991), the 
GA-based algorithm invalided to decide a proper width value within 
RBFNuNet. This can lead to lower preciseness in training throughout function 
approximation for RBFNuNet. Besides, Deniz et al. (2017) merged multi-
objective GA with machine learning techniques and applied it to select features 
in classification tasks. The opinion is to choose the minimum count of 
characteristics while enhancing or retaining the classification preciseness. 
Moreover, Hamida, Azizi, and Saad (2017) integrated ‘similarity operator’ 
toward GA to resolve a fine arrangement task in their research and consulted 
it as genetic similarity algorithm (GSA). Research has indicated that the 
‘similarity operator’ while retaining GA’s exploitation and exploration cap-
abilities has produced comprehensive refinements on the solution (Islam et al. 
2020). In addition, Zhao et al. (2018b) exploited a hybrid MHA by embedding 
ANN into Monte-Carlo emulation and GA to choose sea-rail container routes 
to minimize total traffic cost. Besides, Zhou et al. (2018) devised an ensemble 
model with attempts to find the global area optimal handle parameters for the 
laser brazing onto galvanized steel. In their work, the RBF and Kriging are 
adopted as substitute model, and GA is used to solve the optimization for-
mulation (Yin et al. 2020).

ACO-based Optimization Algorithm for NN Training

ACO algorithms simulate the group action of a living ant when looking for 
food. In the process of looking, each ant indicates the trace it is movable 
along via deposing a material called pheromone. Ants on a shorter route 
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will be faster to backtrack to the lair, so higher density pheromone will be 
laying on the shorter routes. The quantity of pheromone in a route makes 
other subsequent ants recognize whether it is favorable (Zhang et al., 
2019).

Compared to other algorithms, the ACO algorithm is inspired by biology 
(Mustaffa, Yusof, and Kamaruddin 2014). The ACO algorithm imitates the 
behavior of real ants as they travel over different routes between their nest and 
sources of food. Communication between the real ants arises through 
a chemical remained by ants called pheromone. When real ants visit different 
routes to a food source, shorter routes typically end up with higher concen-
tration pheromone sediments (i.e., shorter node-to-node journey time) than 
longer routes. In result, the majority of ants learns over time and will take the 
shorter route to seek for food source (Pendharkar 2015).

The ACO is a swarm-based MHA for resolving combinatorial optimization 
problems and its ability to produce good solutions space within a reasonable 
computation time has been indicated (Zhang et al., 2019). For example, 
Tabakhi et al. (2014) presented a novel unsupervised feature selection (FS) 
method based on ACO algorithm, which applies multivariate approach and 
possible dependencies among selected features are taken into account to 
reduce the redundancy (Tabakhi et al., 2014). Next, an ACO with three-level 
algorithm is proposed by Rais and Mehmood (2018), where ACO is adopted as 
a FS method. In the proposed task ACO seeks for the optimal characteristics 
set through iteratively way based on the pheromone trial value of each gen-
eration (Rais and Mehmood 2018).

Further, most ACO algorithms involve two obvious phases – solution 
establishment and pheromone revision to other ants. In general, an ant 
constructs its solution from the pheromone deposited via former ants, thus 
permitting communication beyond many generations by a pheromone matrix 
and converges to a superior solution. The operation of solution construction 
and pheromone revise is duplicated over numbers of generations until the 
stopping condition is arrived, which can be either total calculation spend time 
or total number of generations (Dzalbs and Kalganova 2020). By nature, the 
solution establishment strategy of ACO is adequate for a discrete seek space 
(Du and Swamy 2016). Since ACO establish discrete solutions directly, it 
prevents extra procedures when protraction solutions to the discrete space 
(Zhao, Zhang, and Zhang 2020).

Hybridization of GA and ACO Approaches for NN Training

Inspired by Darwinian’s ‘survival of the fittest’ theory, the GA approach realize 
an optimum seeking strategy. After several complicated calculations, the GA 
receive a (near-) optimal solution. As a result of the preference of practicing 
fine on searching optimization, the trend is to adopt GA in integration with 
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other approaches (Day, Iannucci, and Banicescu 2020). In addition, excited by 
nature MHAs such as ACO approach have been favorably applied to numer-
ous optimization tasks (Dzalbs and Kalganova 2020).

A further hybrid prediction model was developed by Xiao et al. (2017) 
which incorporates maximum overlapping discrete wavelet convert of time 
series data with ANN and takes it to forecast container throughput for 
Shanghai and Tianjin ports. Further, Amar, Zeraibi, and Redouane (2018) 
implemented time-dependent multi-NN (mNN) and used it as a dynamic 
substitute model. Through merging constructed proxies with GA and ACO 
algorithms, the empirical result shown that the proposed proxy can be taken as 
an alternative numerical emulator (Islam et al. 2020). Additionally, Luan et al. 
(2019) proposed a hybrid GA-ACO algorithm, it was applied for supplier 
extract task and further utilized to solve the linear programming model. 
Furthermore, the solutions produced via GA method will be employed to 
resolve the initial generated pheromones for ACO method. The hybrid GA- 
ACO algorithm exploits the advantages of GA method with peak primary 
quicken convergence and the superiorities of ACO method with parallel and 
effective feedback (Luan et al. 2019). However, the investigate deepness of 
exploration and exploitation for GA-ACO algorithm is still extremely insuffi-
cient and it affects its performance in resolving. On the other hand, an 
intelligent optimization approach-based hybrid model is proposed by Zhou 
et al. (2020) to resolve the optimal solutions with parameters setting and 
further to accomplish optimal technical and economical indicators for an 
iron-making plant (Zhou et al., 2020).

Methodology

Since the 1990s, many distinct MHAs for resolving optimization problems that 
simulate the natural colony behavior of animals have been exploited. 
Algorithms based on these MHs are usually computationally more efficient 
than corresponding exact solutions. However, with the exploration in their 
probabilistic resolving, they are not able to assurance to find the global area 
optimal solution (Comuzzi 2019). Yet a MH is still a repetitive method and it 
exploits and explores effectively in the search space to obtain the optimal area 
solution (Dey, Bhattacharyya, and Maulik 2014).

There are two significant properties in MHAs: exploitation and exploration. 
Exploitation is the capability to locally seek round prospective solutions in an 
attempt to improve their quality. Relatively, exploration is the capability to 
globally seek the solution space. This capability is interrelated with abscond 
from local area optimal and avoiding local optimal hesitation. Favorable 
performance is realized through an adequate balance between these two 
properties. These features are utilized by all population-based algorithms yet 
with distinct mechanisms and manipulators (Faramarzi et al. 2020).
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According Ayala and Coelho (2016), the arithmetic formula which 
expounds a RBFNuNet is shown as 

ŷðtÞ ¼
XM

m¼1
wmϕ½rðtÞ; cm; σm� (3) 

where ŷðtÞ 2 <þ is the RBFNuNet forecasted output, M 2 Nþ is the number 
of RBF neurons within the RBFNuNet hidden layer. Next, the weights of the 
RBFNuNet output layer is given via wm 2 <, rðtÞ 2 <nr is an input vector at 
the given instant t, cm 2 <

nr is the center point within the mth hidden neuron 
of the RBFNuNet, σm 2 <

þ is the width within the mth hidden neuron of the 
RBFNuNet. Finally, the Gaussian RBF is expounded as: 

ϕðr; c; σÞ ¼ exp �
r � ck k

2

2σ2

� �

¼ exp �
1

2σ2

Xnr

i¼1
ðri � ciÞ

2

" #

(4) 

The current task treats sole output systems. The expansion to multiplex output 
systems is blunt through the application of a RBFNuNet for individual sys-
tem’s output (Ayala and Coelho 2016).

When the width parameter is settled and a set of RBF neurons is stipulated, 
RBFNuNet which has such construction and an algorithm with orthogonal 
least squares (OLS) (Chen, Cowan, and Grant 1991) method are prepared to 
construct concise RBFNuNet (Chen, Wu, and Luk 1999). Then, the RBF of 
hidden layer on the RBFNuNet utilized is the Gaussian function represented in 
Eq. (4). At the same time, a normal neuron within hidden layer on the 
RBFNuNet is distinguished via its center vector, where its number of inputs 
to the neuron is equals to the number of dimensions.

The Detailed Description of the Proposed IGACO Algorithm

This study aimed on training and adjusting relevant solutions of parameter 
values set on RBFNuNet. The resolved solutions set can be further employed 
on RBFNuNet with the proposed IGACO algorithm to resolve the function 
approximation problem. The aim is to achieve the appropriate parameter 
values set (i.e., the values of the center within hidden neuron, width, and 
weight parameters) for RBFNuNet. Hence, the fitness function utilized the 
inverse of mean absolute error (MAE) (i.e., MAE−1) and expound as Eq. (5). 
Latter, the optimal solutions of parameter values set for the IGACO algorithm 
in the examination are calculated via maximizing the MAE−1 values. 

Fitness ¼ MAE� 1 ¼ N �
XN

i¼1
yi � ŷi

�
�

�
�

 !� 1

(5) 
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where yi is the realistic output; ŷi is the estimated output of the learned 
RBFNuNet for the ith testing specimen; N is the count of the testing set. 
Additionally, RBFNuNet can be tuned and learned to approximate five non-
linear test functions to the better accuracy.

Moreover, the data are divided into three subsets with individual size Ω1, Ω2 
and Ω3, which are the training set: ðF1;Z1Þ (65%), testing set: ðF2;Z2Þ (25%), 
and validation set: ðF3;Z3Þ (10%) respectively (Looney 1996). Next, the 
pseudo-code for the proposed IGACO algorithm is illustrated in Figure 1, 
and the evolutionary sequences for the proposed IGACO algorithm were 
hereafter enforced and illustrated as follows.

(1) Initialization: The initialize sequence according to natural emulation 
selection insures the variety among all units (i.e., ants (chromosomes) in ACO 
(GA) approach) and boosts the subsequently progressive sequence. The pri-
mary population with a count of units is yielded and the initializing stages are 
as expounded below.

(a) Individual unit within the initial population is the set of the center 
within hidden neuron (i.e., ct

i;j) and width (i.e., dt
i) for RBFNuNet, which 

described as a matrix type. Figure 2 explains the idea of matrix 
schematically.

Ct ¼

ct
1;1 ct

1;2 � � � ct
1;N dt

1
ct

2;1 ct
2;2 � � � ct

2;N dt
2

..

. ..
. . .

. ..
. ..

.

ct
gt;1 ct

gt;2 � � � ct
gt ;N dt

gt
0 0 � � � 0 0
..
. ..

. . .
. ..

. ..
.

0 0 � � � 0 0

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

t 

The outcomes are utilized as the count of the centers within neurons on 
RBFNuNet. The 1; . . . :; gtf g rows of the Ct are substituted by an equal 
number of row vectors of size 1� ðN þ 1Þ that are the neurons of 
RBFNuNet associated with this unit. The gt þ 1; . . . ;f Gg rows retain equal 
to zero and do not conform to a neuron.

And then, Figure 3 denotes the design of decoding convention for the matrix form.

Meantime, the intrinsic values of Ct are equivalent to RBFNuNet hidden 
neurons which involve the ct

i;jði ¼ 1; . . . :;Gf g; j ¼ 1; . . . :;Nf gÞ and dt
iði ¼

1; . . . :;Gf gÞ for solution of parameter values set (i.e., units) such as positions 
of neuron and width. Tmatrices C1;C2; � � � ;CT (i.e., population size) of size 
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G� ðN þ 1Þ are created through setting all their instances equal to zero. For 
each Ctðt ¼ 1; 2; � � � ;TÞ, a random integer gt 2 1; . . . :;Gf g from the number 
of centers produced in RBFNuNet is chosen.

(a) The weights wi within hidden and output layers on RBFNuNet are 
acquired via deconstructing the linear relationship (Jakobsson, 
Andersson, and Edelvik 2009):

Aw ¼ u (6) 

where u ¼ uðxiÞ and A ¼ Aij ¼ �ið x � xik k2Þ are the inspected function values 
at the sample points. The picked neurons will yield a positive-definite matrix 
<, thereby insuring a single-handed solution to Eq. (6) (Jakobsson, Andersson, 
and Edelvik 2009). For every Ct, Eq. (7) is calculated to get the output weights 
of respective RBFNuNet (Denker 1986): 

wt ¼ ðΦT
t � ΦtÞ

� 1
� ðΦT

t � Z1Þ ¼ Φ� 1
t Z1 (7) 

where wt is the pseudo-inverse of the devise matrix Φt; Φt is the Ω1 � gt 
matrix including the reactions of the hidden layer to the F1 subset of instances; 
Z1 is the wished reaction vector in the training set. The count of columns 
within the Φt equals to the count of neurons within the hidden layer and the 
count of rows equals to the count of training specimens. For all input data, 

Figure 2. Illustrative schema of the unit matrix.
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each column of Φt conforms to the reaction of the separate hidden neuron 
(Barra, Bezerra, and de Castro 2006). For every Ct, the calculation of the 
output weights fulfill the formulation of gt RBFNuNets, which can be demon-
strated by the pairs ðC1;w1Þ; ðC2;w2Þ; . . . ; ðCgt ;wgtÞ.

(a) The fitness value of each unit matrix within population is calculated via 
Eq. (5) (i.e., MAE−1).

(2) ACO approach (Dorigo, Maniezzo, and Colorni 1996; Savsani, Jhala, and 
Savsani 2014):

Assume the ant home comprise K ants. In the primary of the optimiza-
tion program, all pathways are initialized as an equality amount of pher-
omone. In per period, ants stride at the home node, journey over the 
diversified layers from the original to the final layer, and accomplish at 
the goal node (Savsani, Jhala, and Savsani 2014). Then, according Eq. (8), all 
ants may choice alternative node in per layer (Dorigo, Maniezzo, and 
Colorni 1996). 

Pk
ij ¼

η@ij �
P

η@ij
� �� 1

if j 2 Kk
i

0if j‚Kk
i

(

(8) 

In which, Pk
ij represents the probability of picking node j as the latter intention 

goal node for ant k situated at node i, ηij is the pheromone exam and @ is the 
pheromone impressibility.

Supposing the pathway is stop, the ant sediments few pheromones on the 
pathway based on the regionally exam updating rule given via Eq. (9): 

ηij ¼ ηij þ Δηk (9) 

where Δηk is the pheromone cumulating by kth ant on the pathway it has 
passing.

When all ants accomplish their pathways, the pheromones on the universal 
best pathway are modified taking the universally exam improving rule given 
via Eq. (10). 

ηij ¼ ð1 � φÞηij þ
XK

k¼1
Δηk

ij (10) 

where φ is the pheromone diminish (steam) rate, Δηk
ij is the pheromone 

sediment through the best ant k on the pathway ij assessed as H �MAE� 1
k , 

and H is a constant (Dorigo, Maniezzo, and Colorni 1996). Furthermore, 
exploration is the capability to seek the global space and is cooperated with 
absconding from local area optimal while avoiding trapped local optimal 
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standstill (Faramarzi et al. 2020). Accordingly, for the generated population 
through ACO approach, the ant establishes superior solution through refer-
ring other ants and itself, decides the subsequent direction and thus may 
exploration in a universal search space.

(3) Duplication: The population boosted through progressive learning of 
ACO approach (Dorigo, Maniezzo, and Colorni 1996; Kozak and Boryczka 
2015) is reproduced and is called as ACO population.

(4) GA approach: The local space seek technique is established on the 
vicinity construction and the regulations which determine the method to 
receive a new solution from the present one. Its essential opinion is to revise 
the existing solutions in terms of the revision technique determined via the 
operator from its neighborhood, so a new practical solution with promising 
performance is generated (Qiu and Lau 2014). On the other hand, exploitation 
is the capability to seek locally around prospective solutions with attempt to 
improve their quality (Faramarzi et al. 2020). The procedure of GA progress 
that comprises two-point mutation and two-point crossover operators within 
the population of ACO approach progressive learning is named as [GA+ACO] 
subpopulation. The operators utilized in GA approach are as declarative 
below.

(a) GA adopts the crossover opinion to generate improved solutions (i.e., 
offspring). Besides, based on several suited solutions, stipulated as 
parents. Crossover is a natural phenomenon which helps retain diver-
sity in ecosystem and with this sensation, is to explore the region 
(Faramarzi et al. 2020). Accordingly, Figure 4 explains the idea of twp- 
point crossover idea schematically. Next, every row of the picked paired 
Ct will implement two-point crossover operator with Pc.

Figure 4. Illustrative schema of two-point crossover between Ct and Ctþ1 through each pair of rows 
individually alternating their values with Pc.

APPLIED ARTIFICIAL INTELLIGENCE e1994217-143



ct
1;1 ct

1;2 � � � ct
1;N dt

1
0 0 � � � 0 0

ct
2;1 ct

2;2 � � � ct
2;N dt

2
ct

3;1 ct
3;2 � � � ct

3;N dt
3

ct
4;1 ct

4;2 � � � ct
4;N dt

4
0 0 � � � 0 0
0 0 � � � 0 0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

t

,

ctþ1
1;1 ctþ1

1;2 � � � ctþ1
1;N dtþ1

1
ctþ1

2;1 ctþ1
2;2 � � � ctþ1

2;N dtþ1
2

ctþ1
3;1 ctþ1

3;2 � � � ctþ1
3;N dtþ1

3
0 0 � � � 0 0
0 0 � � � 0 0

ctþ1
4;1 ctþ1

4;2 � � � ctþ1
4;N dtþ1

4
ctþ1

5;1 ctþ1
5;2 � � � ctþ1

5;N dtþ1
5

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

tþ1 

(a) Mutations incite the offspring to have properties distinct from their 
parents. In GA this operator is aimed at local area search and to exploit 
results (Faramarzi et al. 2020). Take this two-point mutation, the values 
are replaced through randomly selected values from the scope of the 
search region in everyone dimension, which retains the variability and 
generates new solutions.

(5) Reproduction: For the aim of imposing the GA to disseminate the genetic 
substance more greatly from the best parents, the Roulette wheel selection 
(RWS) (Goldberg 1989) part was used to format the copulation pairs 
(Kuzmanovski, Lazova, and Aleksovska 2007). Through enhanced evolution, 
the [GA+ACO] and [ACO+GA] subpopulations are further integrated. Units 
with equivalent amount from the original population are stochastic picked by 
the proportional RWS (Goldberg 1989) for the evolution afterward. As such, 
through utilizing GA and ACO approaches to conduct exploitation and 
exploration in the resolving region respectively. Accordingly, it is anticipated 
to receive the superior solution regarding their best complementary features.

(a) The ðF2;Z2Þ subset is adopted in this step as a testing set in the following 
method. First, the predictions Ẑ2;1; Ẑ2;2; . . . ; Ẑ2;T of the T RBFNuNet 
established in the previous step and the corresponding MAEt are calcu-
lated as follows:

MAEt ¼ T� 1
XT

t¼1
Z2 � Ẑ2;t
�
�

�
�

 !

(11) 

(a) The pairðCt;wtÞrelated with the maximum error is substituted by the 
best RBFNuNet of the previous iteration so that the optimal solution 
survives in all iterations (this substitution will not occur in the initial 
iteration). The RBFNuNet related with the minimum error is stored for 
further adoption. The purpose is to offer higher survival possibility for 
the RBFNuNet related with smaller error values. Thus, the probability of 
selection pt of each Ct is calculated through Eq. (12)
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pt ¼ MAE� 1
t �

XT

t¼1
ðMAE� 1

t Þ

" #� 1

(12) 

and the cumulative probability qt is calculated through Eq. (13). 

qt ¼
Xt

i¼1
pi (13) 

Subsequently, since the characteristic of regional search with GA approach, 
regardless what the values of objective function of the units within population 
are, them absolutely have the possibility to make advancement with few 
heritable operators and entry the inferior iteration of population to fulfill.

(6) Termination: ECs apply global search method for optimization without 
former heuristics mechanism for any particular domain. Additionally, ECs 
conform the survival of the fittest principle and convergence to a better 
solution at each iteration (Dey, Bhattacharyya, and Maulik 2014). Thereby, 
the IGACO algorithm will perform until returning to step (2) only in a definite 
count of iterations has been arrived.

Hence, enforcing an evolution procedure through the ACO approach would 
obtain an advanced population, which is superior than the original population. 
In addition, the superiority of the characteristic of universal search in ACO 
approach permits extensive exploration on dimensionality region among differ-
ent examinations and the resolving interval is able to be enlarged. In addition, as 
the IGACO algorithm evolutions, the units of the population progress gradually. 
In this process, the IGACO algorithm corresponds the nature of GA approach, 
insures the inherited diversity in the advanced evolution, and makes enhances to 
receive a new improved population. Moreover, on the basis of the GA approach 
in the IGACO algorithm to estimate the fitness function of unit parameters set 
solution within the population, the dominance solutions will be achieved pro-
gressively. And then, the resolving region within population could be refined 
gradually and convergence toward to the global area optimal solution.

In the following experiment, the IGACO algorithm stops and the 
RBFNuNet corresponding to the maximum fitness value is chosen. Lastly, it 
is validated through adopting the ðF3;Z3Þ subset, which has not been adopted 
throughout the whole learning procedure. Once those crucial parameter values 
are settled, RBFNuNet starts the training of approximation and learning via 
five continuous test functions.

Experimental Results

This section concentrated on learning and adjusting the relevant parameters in 
RBFNuNet for function approximation task. The goal is to acquire the optimal 
appropriate fitness values regarding the parameters solution of the RBFNuNet. 
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The purpose is then to decide the adequate values of the parameters set from the 
searching region in the examination. The proposed IGACO algorithm will pro-
gressively may tune and therefore acquire the solutions of parameters value set for 
RBFNuNet.

In this section, all experiments have been implemented in Java 4.7.3a and 
conducted adopting a standard commercial Laptop (Microsoft Windows 10 
64-bit operating system, Intel CoreTM i7-4770 3.4 GHz CPU with 16 
GB RAM).

Benchmark Problems Experiment

Experimental exam function causes wonderful approximation to reimburse 
RBFNuNet for the effect of nonlinear mapping correlation. This paper utilizes 
five continuous test functions that are always applied in the literature to be the 
competitive benchmark of measured algorithms.

The unimodal functions are trialed for benchmarking the exploitation of 
algorithms as them have only one global optimal. On the other hand, the 
multimodal and compound functions, and them have many local optimal 
which in return are adequate for benchmarking the expression of algorithms 
and prevent local optimal as well as exploration assessment (Saremi et al., 
2017). Therefore, the examination contains the following five benchmark 
problems, including Griewank, Sphere, Rosenbrock (Bilal et al. 2020; 
Shelokar et al. 2007), Mackey-Glass time series (Liu et al. 2014; Whitehead 
and Choate 1996), and B2 (Shelokar et al. 2007) continuous test functions.

The first examination, Griewank function (Bilal et al. 2020; Shelokar et al. 
2007) is presented as follows: 

GRðxj; xjþ1Þ ¼
Xn

j¼1

x2
j

4000
�
Yn

j¼1
cosð

xjþ1
ffiffiffiffiffiffiffiffiffiffi
jþ 1
p Þ þ 1 (14) 

(a) search domain: −100 ≦xj≦ 100, j = 1;
(b) one global minimum: (x1; x2) = (0, 0); GRðx1; x2Þ= 0.

In the second examination, Sphere function (Bilal et al. 2020; Shelokar et al. 
2007) is presented as follows: 

f ðxÞ ¼
Xn

i¼1
x2

i (15) 

(a) search domain: −100 � xi � 100, i = 1;
(b) one global minimum: (x1; x2) = (0, 0); SPðx1; x2Þ= 0.
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In the third examination, Rosenbrock function (Bilal et al. 2020; Shelokar 
et al. 2007) is presented as follows: 

RSðxj; xjþ1Þ ¼
Xn� 1

j¼1
½100ðx2

j � xjþ1Þ
2
þ ðxj � 1Þ2� (16) 

(a) search domain: −30 ≦xj≦ 30, j = 1;
(b) one global minimum: (x1; x2) = (1, 1); RSðx1; x2Þ= 0.

In the fourth examination, the Mackey-Glass time series (Liu et al. 2014; 
Whitehead and Choate 1996) is presented as follows: 

dxðtÞ
dðtÞ

¼ 0:1xðtÞ þ 0:2 �
xðt � 17Þ

1þ xðt � 17Þ10 (17) 

where x(t) is the value of time series at time step t. The research for the 
retrieval t ranges from 118 to 1118 with the Mackey-Glass time series function, 
from which 1000 specimens were randomly produced (Whitehead and Choate 
1996). The data set is established with second-order Runge-Kutta method and 
with step size of 0.1 (Song et al. 2011).

In the fifth examination, B2 function (Shelokar et al. 2007) is presented as 
follows: 

B2ðxj; xjþ1Þ ¼ x2
j þ 2x2

jþ1 � 0:3 cosð3πxjÞ � 0:4 cosð4πxjþ1Þ þ 0:7 (18) 

(a) search domain: −100≦xj≦100, j = 1;
(b) one global minima: (x1; x2) = (0, 0); B2ðx1; x2Þ= 0.

Parameter Setup

There are several associated parameter values within RBFNuNet that must be 
set prior to execute training for function approximation. In addition, the 
IGACO algorithm is considered the better method to train RBFNuNet than 
the trial and error way in the literature since it has a preset range for each 
benchmark function associated to its own search domain. These estimated 
algorithms are started with the evaluation of the parameters setting for five 
benchmark functions listed in Table 1.

In the IGACO algorithm, four parameters (i.e., mutation rate, crossover 
rate, pheromone exam, and pheromone diminish), which have significant 
influence on estimation results are inspected. Simultaneously, this examina-
tion referred to the associated literature for the interval of the parameter values 
situation. Latter, the configuration of the parameters setup for the IGACO 
algorithm is revised by consulting to the Taguchi experimental (Taguchi et al. 
2005) design with inspection mode displace for applying trial and error 
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process (Yin et al. 2020). The Taguchi method (Taguchi et al. 2005) is utilized 
where orthogonal arrays are adopted to significantly reduce the number of 
experiments (Taguchi et al. 2004). Besides, Taguchi suggested that the signal- 
to-noise (S/N) ratio is a well selection for performance evaluation. A realistic 
solution for the present experimentation should be as large as possible (Kuo 
et al. 2015). Thus, the Taguchi trial analysis and trials were configured in a L9 
(34) orthogonal array (i.e., 4 factors with 3 levels, and 9 experiments) for the 
IGACO algorithm after the experiment was carried out 50 times. Meantime, 
the MINITAB 18 (statistical software) was used in the analysis of parameter 
design for the IGACO algorithm, where the stability of system quality in the 
experiment is assessed by the S/N ratio (Lin et al. 2009). After that, the 
maximum count of iterations is fix at 1,000 to set as termination situation in 
the examination. Finally, the assessment of the parameter values setting for the 
IGACO algorithm was executed with the detail exhibited in Table 2.

Performance Assessment and Comparison

The adjusting of all measured algorithms on few solution sets of parameters 
(i.e., the center within hidden neuron, width, and weight) configuration for 
RBFNuNet that are yielded via the population during the manipulation of 
the progression sequence in the examination are dissertated in this section. 
After that, 1000 stochastically yielded datasets are partition into three sec-
tions (i.e., 65% training dataset, 25% testing dataset, and 10% validation 
dataset) (Looney 1996) to train RBFNuNet. In which, we can examine the 
studying status and adjust the parameters’ arrangement. Afterward, this 

Table 1. The parameters setting for several benchmark problems in the experiment.

Description

Continuous test function

Griewank Sphere Rosenbrock
Mackey-Glass 

time series B2

Search domain [−100, 100] [−100, 100] [−30, 30] [0.4, 1.6] [−100, 100]
The widths on RBFNuNet [43000, 44200] [0.1, 0.9] [200, 700] [0.1, 0.3] [23000, 26000]

Table 2. Parameter values setting for the IGACO algorithm.
Parameter Description Value

E The maximum number of iterations 1000
gt The number of the RBFNuNet hidden neuron centers [1, 50]
dt

i The width of RBFNuNet hidden neuron [1100, 39000]
δ The learning rate of the RBFNuNet 0.34
T Population size 50
K The number of ant 100
η The pheromone exam 0.48
@ The pheromone impressibility 0.72
φ The pheromone diminish rate 0.37
H A constant 0.68
Pc Crossover rate (2-point crossover) [0.45, 0.65]
Pm Mutation rate (2-point mutation) [0.1, 0.18]
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study employs these measured algorithms to resolve the optimal solution 
sets of parameters configuration for RBFNuNet. And then it stochastically 
yields non-repetitive 65% training dataset from 1000 yielded specimen and 
transfer the dataset into RBFNuNet for training. With the identical manner, 
it stochastically yields nonrepetitive 25% testing dataset to examine unit’s 
parameters configuration solution within population and estimates the fit-
ness function. So far, RBFNuNet has applied 90% dataset in studying phase. 
After one thousand iterations in the evolvement operation, the optimal 
solution sets of parameters configuration for RBFNuNet are acquired. 
Lastly, it stochastically yields nonrepetitive 10% validation dataset to certi-
ficate how the parameters configuration solution of unit approximates the 
five examinations and remain the root mean square error (RMSE) values to 
explain the studying phase of RBFNuNet. In case the data extracting stage 
mentioned above have fulfilled, all measured algorithms are ready to 
enforce. The studying and certification phases mentioned above were imple-
mented 50 times before the average of RMSE (i.e., RMSEavg) values were 
assessed. The values of the RMSEavg and standard deviation (SD) for all 
measured algorithms estimated from the examination are revealed in 
Table 3.

In Table 3, the presented outcomes evidence that IGACO algorithm 
acquires the accurate enough values with steady representation during 
the studying process of the examination. Consequently, RBFNuNet may 
achieve the single solution set of parameters configuration from the pro-
gress process within population, which has implemented the circumstance 
with dominant function approximation. When the training of RBFNuNet 
via the IGACO algorithm is fulfilled, the unit with the optimal solution 
sets of parameters configuration (i.e., the center within hidden neuron, 
width, and weight) in studying phase is the RBFNuNet setting in certain.

Furthermore, when a large amount of training specimens is adopted com-
pared to the number of model parameters, the problem of overtraining can be 
considered minor (Shinozaki and Ostendorf 2008). As shown in Table 4, the 
values of training and validation expression are persistently small, which 
represents that RBFNuNet trained through the IGACO algorithm offers inevi-
table stability. Hence overfitting and over-training problems do not emerge in 
the experiment utilizing the IGACO algorithm. Such result not only satisfies 
for the training and validation set, a generalization could also be made 
regarding other unseen dataset. Additionally, since the numerical results 
contrast are significant in Table 4, the superiority of expression results 
received from the IGACO algorithm when inspected with different datasets 
is clearly presented. Consequently, the IGACO algorithm indicates excep-
tional studying through five benchmark continuous test functions and reveals 
superior approximation consequences.
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On the other hand, the comparison of the best learning expression during 
the training is addressed in Table 4. In which, it can be concluded that the 
IGACO algorithm has the smallest gains in RMSE value among relevant 
algorithms. It produced the lowest RMSE values and the optimal tuning of 
parameter setting in RBFNuNet and thus the IGACO algorithm was able to 
reach the best expression. Besides, this paper utilizes the proper RMSE value 
for five benchmark problems from Table 4 and yields as the threshold. The 
time consumed (in seconds) for all algorithms were listed in Table 5.

The results given in Table 5 represent that the proposed IGACO algorithm 
spends the least time among relevant algorithms to achieve the current RMSE 
threshold value for five benchmark problems. Consequently, experimental 
results in Tables 4 and 5 indicate that the IGACO algorithm surpasses other 
algorithms in terms of fitting preciseness and execution time.

Table 4. Contrast of the best learning expression among relevant algorithms in the experiment.
Benchmark 
problem 
Competitive 
algorithm

Griewank Sphere Rosenbrock
Mackey-Glass 

time series B2

RMSE

RBFNuNet 
(Chen, Cowan, and Grant 1991)

3.421 7.288 5.392 4.173 7.193

GA 
(Holland 1992)

5.175E-1 42.831E-2 47.816E-5 35.794E-2 25.269E-2

GA-based 
(Sarimveis et al. 2004)

5.142E-1 39.377E-2 47.211E-5 33.528E-2 24.843E-2

ACO 
(Dorigo, Maniezzo, and Colorni 1996)

5.092E-1 61.395E-2 43.843E-5 38.271E-2 22.075E-2

ACO-based 
(Tabakhi et al., 2014)

5.027E-1 53.471E-2 40.349E-5 31.604E-2 19.845E-2

GA-ACO 
(Luan et al. 2019)

4.828E-1 3.205E-2 3.914E-5 4.383E-2 5.660E-2

IGACO 4.179E-1 2.078E-2 3.242E-5 2.737E-2 4.735E-2

Table 5. Comparison of the time consumed (in seconds) among relevant algorithms arriving at the 
preset RMSE threshold.

Experiment 
(Benchmark problem) Griewank Sphere Rosenbrock

Mackey-Glass 
time series B2

RMSE threshold 
Competitive algorithm

5.175E-1 61.395E-2 47.81E-5 38.271E-2 25.26E-2

OLS (Chen, Cowan, and Grant 1991) – – – – –
GA (Holland 1992) 15.265 4.231 3.793 5.098 663.513
GA-based (Sarimveis et al. 2004) 11.389 6.379 5.285 4.872 349.228
ACO (Dorigo, Maniezzo, and Colorni 1996) 13.749 7.263 3.346 8.271 526.381
ACO-based (Tabakhi et al., 2014) 10.598 11.450 5.813 6.095 276.313
GA-ACO (Luan et al. 2019) 2.489 2.817 1.205 2.337 2.601
IGACO 1.871 2.279 0.748 1.593 1.926

Note. “–” means that it failed to achieve the preset RMSE threshold
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Practical Exercise for the Spot Gold Price Forecast

It has been indicated that RBFNuNet is able to reach precise approximation on 
five benchmark problems through the proposed IGACO algorithm. The 
results are compared with other algorithms in literatures with indication of 
the preciseness of the IGACO algorithm.

This assessment attempts to study the preciseness of forecast on spot gold 
price records of the London Afternoon (PM) Gold Price from Feb 1st, 2008 to 
Feb 2nd, 2009 (252 records in total) which is utilized as observations in this 
study. The data period of this exercise is presented in Table 6.

Additionally, the forecasting and verification of spot gold price is directly 
priced in US dollar (US$). Besides, the analysis has supposed that the effect of 
exogenous interfere variables did not emerge and the spot gold price data was 
not disturbed via any external events.

Build Box-Jenkins Models

Time series data are often assessed in expectation of discovering a historical 
pattern that can be utilized in the forecasting. Box and Jenkins (1976) devel-
oped the ARIMA methodology to forecast time series events. In this section, in 
order to assure the predictions of Box-Jenkins models could be fulfilled, the 
case study for the spot gold price forecast was utilized to inspect the models. In 
addition, EViewsTM 11.0 and SPSSTM 16.0 (statistical software) were adopted 
for the decomposition of Box-Jenkins models to estimate the numerical 
results. If the data are stationary, model estimation can be implemented 
directly; otherwise, differencing must be executed to make it stationary.

Further, the study implemented spot gold price forecast based on Box- 
Jenkins models. The ARIMA (p, d, q) modeling procedure has three steps: 
(a) to identify the model order (i.e., p, d, and q); (b) to estimate the model 
coefficients; and (c) then to forecast the data (Babu and Reddy 2014). Next, this 
study executes the data identification of ARIMA models via augmented 
Dickey-Fuller (Dickey & Fuller, 1981) (ADF) testing. Thus, it can adopt 
ARIMA (p, d, q) models to proceed measure and forecast of the spot gold 
price data. Moreover, the optimal model (Engle, Robert, and Yoo 1987) was 
filtered out by applying the criteria of Akaike information criterion (AIC) (i.e., 
AIC value = 8.551) (Akaike 1974). Based on the results, it concludes that the 
AIC value of ARIMA (2, 1, 2) model is the smallest (i.e., adjusted 
R-square = 0.0043) among every candidate ARIMA models, showing that it 

Table 6. The data period of the spot gold price forecast exercise.

Spot gold price 
forecast

The observations: month/day/year (number of sampling)

Learning set (90%) Forecasting set (10%)

Data Period Feb 1st 2008~ Dec-23 2008 (228) Dec-29 2008~ Feb 2nd 2009 (24)
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is the optimal model and thus the most adequate one for the spot gold price 
data. The results of model diagnosis indicate that the values of Q-statistic (i.e., 
Ljung-Box statistic) (Kmenta 1986) are greater than 0.05 in result of ARIMA 
models, in which are serial noncorrelation (i.e., white noise) and had been 
adequate fitted. This study adopts the fittest ARIMA (2, 1, 2) model, which has 
verified model estimation and diagnosis to proceed the spot gold price 
forecast.

Parameters Setup for the Spot Gold Price Forecast Exercise

There are some values of parameters within RBFNuNet that must be set up 
prior to executing training for the exercise of forecasting analysis. Thus, the 
parameters’ setting for the IGACO algorithm is received according to relevant 
literatures and Taguchi method. Moreover, the MINITAB 18 (statistical soft-
ware) was applied in the analysis of parameter design. The Taguchi trials were 
configured in a L9 (34) orthogonal array for the IGACO algorithm after the 
experiment was executed for 40 times. Finally, the IGACO algorithm was 
conducted with parameters setting listed in Table 7.

Error Estimate for Spot Gold Price Forecast

Looney (1996) suggests taking 65% of the parent database for training, 25% for 
testing, and 10% for validation respectively. On the other hand, most studies in 
the literatures have applied convenient ratio of splitting for in- and out-of- 
samples such as 70:30%, 80:20%, or 90:10% (Zou et al. 2007). Thus, this study 
uses the ratio of 90% (228 observations):10% (24 observations) as the basis of 
division. The spot gold price records are retrieved from Feb 1st, 2008 to 
Feb 2nd, 2009 (252 observations). The application example with the spot 
gold price forecast is based on time series data period and utilized for forecast 
analysis.

Table 7. Parameters setup for the IGACO algorithm in the spot gold price forecast 
exercise.

Parameter Description Value

E The maximum number of iterations 1000
gt The number of the RBFNuNet hidden neuron centers [1, 50]
dt

i The width of RBFNuNet hidden neuron [1000, 38000]
δ The learning rate of the RBFNuNet 0.25
T Population size 50
K The number of ant 100
η The pheromone exam 0.4
@ The pheromone impressibility 0.9
φ The pheromone diminish rate 0.45
H A constant 0.75
Pc Crossover rate (two-point crossover) [0.6, 0.7]
Pm Mutation rate (two-point mutation) [0.15, 0.25]
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Accordingly, the learning stage of RBFNuNet will be based on daily spot 
gold price data; it includes training and testing sets (i.e., 65%+25%). The 
training began with entering in turn four observations retrieved from 65% 
training set to RBFNuNet. In this process, the unit parameters solution within 
the population inspects along with the whole evolution procedure, thus the 
fitness values of all units within the population could be estimated with the 
25% testing set. At this point, 90% of the spot gold price data had been adopted 
to the learning stage of RBFNuNet, which actually generated a unit parameters 
solution with the most accurate forecasting. Consequently, it was necessary for 
the approximation expression of the RBFNuNet prediction to be assessed with 
the 10% validation set. Besides, the following predicted values were produced 
in turn from the moving window procedure. The first 90% of the observations 
were adopted for model estimation while the residual 10% were adopted for 
validation and gradually to move toward prediction. As summary, this section 
addresses how data is input to RBFNuNet for forecasting through several 
algorithms, and how the result is compared with Box-Jenkins models (i.e., 
ARIMA (2, 1, 2) model).

Moreover, the RMSE, mean absolute error (MAE), and mean absolute 
percentage error (MAPE) are the most common error estimates applied in 
business, and thus were utilized to assess the forecast models (Co and 
Boosarawongse 2007). Further, in Chen et al. (2020), the RMSE denoted the 
sample SD of the variances between observed and predicted values. As one of 
the commonly adopted error measure pointers in statistics, the RMSE was 
expounded as: 

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1
ðyi � ŷiÞ

2

v
u
u
t (19) 

The MAE was the average of the absolute error between yi and ŷi. It is 
expounded as follows: 

MAE¼
1
N

XN

i¼1
yi � ŷi

�
�

�
� (20) 

The MAPE was a statistical estimate of forecast for the preciseness of a forecast 
way. It normally represents the percentage of the output error and is 
expounded as below (Chen et al. 2020): 

MAPE¼
1
N

XN

i¼1

yi � ŷi
yi

�
�
�
�

�
�
�
� � 100% (21) 
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The algorithms of forecasting expressions mentioned earlier with the exercise 
data are shown in Table 8. The numerical results derived from RMSE, MAE, 
and MAPE (%) of the proposed IGACO algorithm were the smallest ones 
among relevant algorithms.

As for the verification of statistically significant difference, we received the 
results significantly while conducting the matched paired sample tests of 
T-test (5% significance level) with the absolute error from the estimated 
dataset of the source data in all algorithms. As result, the forecasting 
verification and the T-test results among relevant algorithms are presented 
in Table 9, which shows that the IGACO algorithm and ARIMA (2, 1, 2) 
model are not statistically significant (i.e., p value larger than 0.05 and it 
does not appear significant deviation between the predicted and actual 
values) and therefore provide more accurate forecasting than other 
algorithms.

Also, the statistical results reveal that the IGACO algorithm has the best 
expression for most accurate forecasting among relevant algorithms. 
Accordingly, the proposed IGACO algorithm can significantly provide the 
best results while the comparison results for the spot gold price (US$) forecast 
exercise is presented in Figure 5.

Table 8. The forecasting errors comparison for relevant algorithms used in the spot gold price 
forecast exercise.

Competitive algorithm

Error

RMSE MAE MAPE (%)

RBFNuNet (Chen, Wu, and Luk 1999) 8.217 5.729 2.134
GA (Holland 1992) 66.406E-4 68.053E-4 1.957
GA-based (Sarimveis et al. 2004) 53.037E-4 47.738E-4 1.423
ACO (Dorigo, Maniezzo, and Colorni 1996) 41.481E-4 22.391E-4 1.215
ACO-based (Tabakhi et al., 2014) 29.120E-4 18.925E-4 1.064
GA-ACO (Luan et al. 2019) 7.471E-4 11.301E-4 14.186E-2
IGACO 6.236E-4 8.572E-4 11.874E-2
ARIMA (2, 1, 2) model 16.172 11.173 1.328

Table 9. The statistical results for T-test among relevant algorithms.

Competitive algorithm

Paired differences

Mean Standard deviation T Significant (two-tailed)

RBFNuNet 
(Chen, Wu, and Luk 1999)

−625.1048 641.0314 −3.163 0.017*

GA (Holland 1992) −306.3764 622.7529 −1.381 0.143*
GA-based 

(Sarimveis et al. 2004)
−284.0823 551.5489 −1.026 0.172*

ACO (Dorigo, Maniezzo, and Colorni 1996) −517.2013 633.3081 −2.736 0.034*
ACO-based 

(Tabakhi et al., 2014)
−369.8834 548.7602 −1.475 0.027*

GA-ACO 
(Luan et al. 2019)

−204.0923 526.3407 −0.928 0.019*

IGACO −125.3682 434.1382 −0.647 0.773
ARIMA (2, 1, 2) model −226.1536 584.4939 −1.349 0.235

*: 5% significance level 
Note: Mean is equal to arithmetic average.
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Conclusions

This study proposed the IGACO algorithm by integrating GA and ACO 
approaches, which provides the solution of RBFNuNet parameter values. In 
addition, the spot gold price forecast exercise and the tuning values of 
parameters with RBFNuNet adopting the trained algorithm have been 
addressed. The empirical results indicated that GA and ACO approaches 
can be collaborated intelligently and exploit into an integrated algorithm 
which is achieving the optimal training representation among relevant algo-
rithms in this paper. Furthermore, algorithm evaluation results for five 
benchmark continuous test functions and the spot gold price forecast exer-
cise exhibits that the proposed IGACO algorithm surpassed relevant algo-
rithms and the traditional ARIMA models in terms of forecasting preciseness 
and execution time. This analytical implication will be favorable in practice 
to allow lower financial risk and could be practical to determine advisable 
marketing strategy.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

ORCID

Zhen-Yao Chen http://orcid.org/0000-0002-2349-5486

Figure 5. The forecasting results comparison of the proposed IGACO algorithm and Box-Jenkins 
model for the spot gold price forecast exercise.

e1994217-156 Z.-Y. CHEN



References

Abualigah, L., and E. Hanandeh. 2015. Applying genetic algorithms to information retrieval 
using vector space model. International Journal of Computer Science, Engineering and 
Applications 5 (1):19–28. doi:10.5121/ijcsea.2015.5102.

Abualigah, L. M., A. T. Khader, and E. S. Hanandeh. 2018. A new feature selection method to 
improve the document clustering using particle swarm optimization algorithm. Journal of 
Computational Science 25:456–66. doi:10.1016/j.jocs.2017.07.018.

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on 
Automatic Control 19 (6):716–23. doi:10.1109/TAC.1974.1100705.

Amar, M. N., N. Zeraibi, and K. Redouane. 2018. Optimization of WAG process using dynamic 
proxy, genetic algorithm and ant colony optimization. Arabian Journal for Science and 
Engineering 43 (11):6399–412. doi:10.1007/s13369-018-3173-7.

Ansari, M., F. Othman, and A. El-Shafie. 2020. Optimized fuzzy inference system to enhance 
prediction accuracy for influent characteristics of a sewage treatment plant. Science of the 
Total Environment 722:137878–90. doi:10.1016/j.scitotenv.2020.137878.

Ayala, H. V. H., and L. D. S. Coelho. 2016. Cascaded evolutionary algorithm for nonlinear 
system identification based on correlation functions and radial basis functions neural 
networks. Mechanical Systems and Signal Processing 68-69:378–93. doi:10.1016/j. 
ymssp.2015.05.022.

Babu, C. N., and B. E. Reddy. 2014. A moving-average-filter-based hybrid ARIMA-ANN model 
for forecasting time series data. Applied Soft Computing 23 (10):27–38. doi:10.1016/j. 
asoc.2014.05.028.

Baeck, T., D. B. Fogel, and Z. Michalewicz. 2018. Evolutionary Computation 1 Basic Algorithms 
and Operators. New York, US: CRC press, Taylor & Francis Group.

Barra, T. V., G. B. Bezerra, and L. N. de Castro. 2006. An immunological density-preserving 
approach to the synthesis of RBF neural networks for classification. The 2006 IEEE 
International Joint Conference on Neural Network Proceedings. Vancouver, BC, Canada: 
929–35.

Bilal, M. P., A. Abraham, A. Abraham, A. Abraham, and A. Abraham. 2020. Differential 
Evolution: A review of more than two decades of research. Engineering Applications of 
Artificial Intelligence 90:103479–502. doi:10.1016/j.engappai.2020.103479.

Box, G. E. P., and G. M. Jenkins. 1976. Time series analysis, forecasting and control. San 
Francisco. CA, USA: Holden-Day.

Cadenas, E., W. Rivera, R. Campos-Amezcua, and C. Heard. 2016. Wind speed prediction 
using a univariate ARIMA model and a multivariate NARX model. Energies 9 (2):1–15. 
doi:10.3390/en9020109.

Chen, S., C. F. N. Cowan, and P. M. Grant. 1991. Orthogonal least squares learning algorithm 
for radial basis function networks. IEEE Transactions on Neural Networks 2 (2):302–09. 
doi:10.1109/72.80341.

Chen, S., Y. Wu, and B. L. Luk. 1999. Combined genetic algorithm optimization and regular-
ized orthogonal least squares learning for radial basis function networks. IEEE Transactions 
on Neural Networks 10 (5):1239–43. doi:10.1109/72.788663.

Chen, X., H. Tianfield, C. Mei, W. Du, and G. Liu. 2017. Biogeography-based learning particle 
swarm optimization. Soft Computing 21 (24):7519–41. doi:10.1007/s00500-016-2307-7.

Chen, X., H. Tianfield, and K. Li. 2019. Self-adaptive differential artificial bee colony algorithm 
for global optimization problems. Swarm and Evolutionary Computation 45:70–91. 
doi:10.1016/j.swevo.2019.01.003.

APPLIED ARTIFICIAL INTELLIGENCE e1994217-157

https://doi.org/10.5121/ijcsea.2015.5102
https://doi.org/10.1016/j.jocs.2017.07.018
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1007/s13369-018-3173-7
https://doi.org/10.1016/j.scitotenv.2020.137878
https://doi.org/10.1016/j.ymssp.2015.05.022
https://doi.org/10.1016/j.ymssp.2015.05.022
https://doi.org/10.1016/j.asoc.2014.05.028
https://doi.org/10.1016/j.asoc.2014.05.028
https://doi.org/10.1016/j.engappai.2020.103479
https://doi.org/10.3390/en9020109
https://doi.org/10.1109/72.80341
https://doi.org/10.1109/72.788663
https://doi.org/10.1007/s00500-016-2307-7
https://doi.org/10.1016/j.swevo.2019.01.003


Chen, X., X. Cai, J. Liang, and Q. Liu. 2018. Ensemble learning multiple LSSVR with improved 
harmony search algorithm for short-term traffic flow forecasting. IEEE Access 6:9347–57. 
doi:10.1109/ACCESS.2018.2805299.

Chen, Y., J. Fan, Z. Deng, B. Du, X. Huang, and Q. Gui. 2020. PR-KELM: Icing level prediction 
for transmission lines in smart grid. Future Generation Computer Systems 102:75–83. 
doi:10.1016/j.future.2019.08.002.

Co, H. C., and R. Boosarawongse. 2007. Forecasting Thailand’s rice export: Statistical techni-
ques vs. artificial neural networks. Computers and Industrial Engineering 53 (4):610–27. 
doi:10.1016/j.cie.2007.06.005.

Comuzzi, M. 2019. Optimal directed hypergraph traversal with ant-colony optimization. 
Information Sciences 471:132–48. doi:10.1016/j.ins.2018.08.058.

Cui, L., G. Li, X. Wang, Q. Lin, J. Chen, N. Lu, and J. Lu. 2017. A ranking-based adaptive 
artificial bee colony algorithm for global numerical optimization. Information Sciences 
417:169–85. doi:10.1016/j.ins.2017.07.011.

Day, P., S. Iannucci, and I. Banicescu. 2020. Autonomic feature selection using computational 
intelligence. Future Generation Computer Systems 111:68–81. doi:10.1016/j. 
future.2020.04.015.

Del Ser, J., E. Osaba, D. Molina, X. S. Yang, S. Salcedo-Sanz, D. Camacho, S. Das, 
P. N. Suganthan, C. A. C. Coello, and F. Herrera. 2019. Bio-inspired computation: Where 
we stand and what’s next. Swarm and Evolutionary Computation 48:220–50.

Deniz, A., H. E. Kiziloz, T. Dokeroglu, and A. Cosar. 2017. Robust multiobjective evolutionary 
feature subset selection algorithm for binary classification using machine learning 
techniques. Neurocomputing 241:128–46. doi:10.1016/j.neucom.2017.02.033.

Denker, J. S. 1986. Neural network models of learning and adaptation. Physica D 22:216–32. 
doi:10.1016/0167-2789(86)90242-3.

Dey, S., S. Bhattacharyya, and U. Maulik. 2014. Quantum inspired genetic algorithm and 
particle swarm optimization using chaotic map model based interference for gray level 
image thresholding. Swarm and Evolutionary Computation 15:38–57. doi:10.1016/j. 
swevo.2013.11.002.

Dickey, D. A., and W. A. Fuller. 1981. Likelihood ratio statistics for autoregressive time series 
with a unit root. Econometrica 49(4): 1057–72.

Dorigo, M., V. Maniezzo, and A. Colorni. 1996. Ant system: Optimization by a colony of 
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part 
B (Cybernetics) 26 (1):29–41. doi:10.1109/3477.484436.

Dowlatshahi, M., V. Derhami, and H. Nezamabadi-pour. 2017. Ensemble of filter-based 
rankers to guide an epsilon-greedy swarm optimizer for high-dimensional feature subset 
selection. Information 8 (4):152. doi:10.3390/info8040152.

Dowlatshahi, M. B., and V. Derhami. 2017. Winner determination in combinatorial auctions 
using hybrid ant colony optimization and multi-neighborhood local search. The Journal of 
Artificial Intelligence and Data Mining 5:169–81.

Du, K. L., and M. Swamy. 2016. Ant colony optimization, in: Search and optimization by 
metaheuristics.Midtown Manhattan, New York City, US: Springer International 
Publishing: 191-99.

Dzalbs, I., and T. Kalganova. 2020. Accelerating supply chains with ant colony optimization 
across a range of hardware solutions. Computers and Industrial Engineering 147:106610–23. 
doi:10.1016/j.cie.2020.106610.

Engle, R. F., F. Robert, and B. S. Yoo. 1987. Forecasting and Testing in Cointegrated Systems. 
Journal of Econometrics 35:588–89. doi:10.1016/0304-4076(87)90085-6.

Erdem, E., and J. Shi. 2011. ARMA based approaches for forecasting the tuple of wind speed 
and direction. Applied Energy 88 (4):1405–14. doi:10.1016/j.apenergy.2010.10.031.

e1994217-158 Z.-Y. CHEN

https://doi.org/10.1109/ACCESS.2018.2805299
https://doi.org/10.1016/j.future.2019.08.002
https://doi.org/10.1016/j.cie.2007.06.005
https://doi.org/10.1016/j.ins.2018.08.058
https://doi.org/10.1016/j.ins.2017.07.011
https://doi.org/10.1016/j.future.2020.04.015
https://doi.org/10.1016/j.future.2020.04.015
https://doi.org/10.1016/j.neucom.2017.02.033
https://doi.org/10.1016/0167-2789(86)90242-3
https://doi.org/10.1016/j.swevo.2013.11.002
https://doi.org/10.1016/j.swevo.2013.11.002
https://doi.org/10.1109/3477.484436
https://doi.org/10.3390/info8040152
https://doi.org/10.1016/j.cie.2020.106610
https://doi.org/10.1016/0304-4076(87)90085-6
https://doi.org/10.1016/j.apenergy.2010.10.031


Faramarzi, A., M. Heidarinejad, B. Stephens, and S. Mirjalili. 2020. Equilibrium optimizer: 
A novel optimization algorithm. Knowledge-Based Systems 191:105190–210. doi:10.1016/j. 
knosys.2019.105190.

George Lindfield, J. P. 2019. Optimization methods. Cambridge, Massachusetts, US: Academic 
Press: 433-83.

Ghafil, H. N., and K. Jarmai. 2020. Dynamic differential annealed optimization: New meta-
heuristic optimization algorithm for engineering applications. Applied Soft Computing 
93:106392–410. doi:10.1016/j.asoc.2020.106392.

Goldberg, D. E. 1989. Genetic algorithms in search, optimization and machine learning. 
Reading, MA: Addison-Wesley.

Hajirahimi, Z., and M. Khashei. 2019. Hybrid structures in time series modeling and forecast-
ing: A review. Engineering Applications of Artificial Intelligence 86:83–106. doi:10.1016/j. 
engappai.2019.08.018.

Hamida, Z., F. Azizi, and G. Saad. 2017. An efficient geometry-based optimization approach for 
well placement in oil fields. Journal of Petroleum Science and Engineering 149:383–92. 
doi:10.1016/j.petrol.2016.10.055.

Holland, J. H. 1992. Adaptation in natural and artificial systems: An introductory analysis with 
applications to biology, control, and artificial intelligence. Cambridge, MA, US: MIT Press, 
Google books.

Holland, O. 2008. Optimal classification of epileptic seizures in EEG using wavelet analysis and 
genetic algorithm. Signal Processing 88:1858–67. doi:10.1016/j.sigpro.2008.01.026.

Huang, Y., and Z. He. 2020. Carbon price forecasting with optimization prediction method 
based on unstructured combination. Science of the Total Environment 725:138350–63. 
doi:10.1016/j.scitotenv.2020.138350.

Huseyin, A., and F. Tansu. 2019. Wind speed forecasting by subspace and nuclear norm 
optimization based algorithms. Sustainable Energy Technologies and Assessments 
35:139–47. doi:10.1016/j.seta.2019.07.003.

Islam, J., P. M. Vasant, B. M. Negash, M. B. Laruccia, M. Myint, and J. Watada. 2020. A holistic 
review on artificial intelligence techniques for well placement optimization problem. 
Advances in Engineering Software 141:102767–86. doi:10.1016/j.advengsoft.2019.102767.

Jakobsson, S., B. Andersson, and F. Edelvik. 2009. Rational radial basis function interpolation 
with applications to antenna design. Journal of Computational and Applied Mathematics 
233 (4):889–904. doi:10.1016/j.cam.2009.08.058.

Jose-Garcia, A., and W. Gomez-Flores. 2016. Automatic clustering using nature-inspired 
metaheuristics: A survey. Applied Soft Computing 41:192–213. doi:10.1016/j. 
asoc.2015.12.001.

Kaur, S., L. K. Awasthi, A. Sangal, and G. Dhiman. 2020. Tunicate swarm algorithm: A new 
bio-inspired based metaheuristic paradigm for global optimization. Engineering Applications 
of Artificial Intelligence 90:103541–70. doi:10.1016/j.engappai.2020.103541.

Khashei, M., M. Bijari, G. Ali, and R. Ardali. 2009. Improvement of auto-regressive integrated 
moving average models using fuzzy logic and artificial neural networks (ANNs). 
Neurocomputing 72 (4–6):956–67. doi:10.1016/j.neucom.2008.04.017.

Khashei, M., and Z. Hajirahimi. 2018. A comparative study of series arima/mlp hybrid models 
for stock price forecasting. Communication in Statistics-Simulation and Computation 
47:1–16.

Kmenta, J. 1986. Elements of econometrics (2nd ed.). New York: Macmillan Publishing Co.
Kouziokas, G. N. 2020. A new W-SVM kernel combining PSO-neural network transformed 

vector and Bayesian optimized SVM in GDP forecasting. Engineering Applications of 
Artificial Intelligence 92:103650–60. doi:10.1016/j.engappai.2020.103650.

APPLIED ARTIFICIAL INTELLIGENCE e1994217-159

https://doi.org/10.1016/j.knosys.2019.105190
https://doi.org/10.1016/j.knosys.2019.105190
https://doi.org/10.1016/j.asoc.2020.106392
https://doi.org/10.1016/j.engappai.2019.08.018
https://doi.org/10.1016/j.engappai.2019.08.018
https://doi.org/10.1016/j.petrol.2016.10.055
https://doi.org/10.1016/j.sigpro.2008.01.026
https://doi.org/10.1016/j.scitotenv.2020.138350
https://doi.org/10.1016/j.seta.2019.07.003
https://doi.org/10.1016/j.advengsoft.2019.102767
https://doi.org/10.1016/j.cam.2009.08.058
https://doi.org/10.1016/j.asoc.2015.12.001
https://doi.org/10.1016/j.asoc.2015.12.001
https://doi.org/10.1016/j.engappai.2020.103541
https://doi.org/10.1016/j.neucom.2008.04.017
https://doi.org/10.1016/j.engappai.2020.103650


Kozak, J., and U. Boryczka. 2015. Multiple Boosting in the Ant Colony Decision Forest 
meta-classifier. Knowledge-Based Systems 75:141–51. doi:10.1016/j.knosys.2014.11.027.

Kristjanpoller, W., and E. Hernandez. 2017. Volatility of main metals forecasted by a hybrid 
ANN-GARCH model with regressors. Expert Systems with Applications 84:290–300. 
doi:10.1016/j.eswa.2017.05.024.

Kuo, R. J., Y. H. Lee, F. E. Zulvia, and F. C. Tien. 2015. Solving bi-level linear programming 
problem through hybrid of immune genetic algorithm and particle swarm optimization 
algorithm. Applied Mathematics and Computation 266:1013–26. doi:10.1016/j. 
amc.2015.06.025.

Kuzmanovski, I., S. D. Lazova, and S. Aleksovska. 2007. Classification of perovskites with 
supervised self-organizing maps. Analytica Chimica Acta 595 (1–2):182–89. doi:10.1016/j. 
aca.2007.04.062.

Li, M., S. Lian, F. Wang, Y. Zhou, B. Chen, L. Guan, and Y. Wu. 2020. A decision support 
system using hybrid AI based on multi-image quality model and its application in color 
design. Future Generation Computer Systems 113:70–77. doi:10.1016/j. 
future.2020.06.034.

Lin, C. F., C. C. Wu, P. H. Yang, and T. Y. Kuo. 2009. Application of Taguchi method in 
lightemitting diode backlight design for wide color gamut displays. Journal of Display 
Technology 5 (8):323–30. doi:10.1109/JDT.2009.2023606.

Liu, B., H. Aliakbarian, Z. Ma, G. A. E. Vandenbosch, G. Gielen, and P. Excell. 2014. An 
efficient method for antenna design optimization based on evolutionary computation and 
machine learning techniques. IEEE Transactions on Antennas and Propagation 62 (1):7–18. 
doi:10.1109/TAP.2013.2283605.

Liu, H., S. Shi, P. Yang, and J. Yang. 2018. An improved genetic algorithm approach on 
mechanism kinematic structure enumeration with intelligent manufacturing. Journal of 
Intelligent and Robotic Systems 89 (3–4):343–50. doi:10.1007/s10846-017-0564-z.

Looney, C. G. 1996. Advances in feedforward neural networks: Demystifying knowledge 
acquiring black boxes. IEEE Transactions on Knowledge and Data Engineering 
8 (2):211–26. doi:10.1109/69.494162.

Luan, J., Z. Yao, F. Zhao, and X. Song. 2019. A novel method to solve supplier selection 
problem: Hybrid algorithm of genetic algorithm and ant colony optimization. Mathematics 
and Computers in Simulation 156:294–309. doi:10.1016/j.matcom.2018.08.011.

Ma, H., S. Shen, M. Yu, Z. Yang, M. Fei, and H. Zhou. 2019. Multi-population techniques in 
nature inspired optimization algorithms: A comprehensive survey. Swarm and Evolutionary 
Computation 44:365–87. doi:10.1016/j.swevo.2018.04.011.

Moayedi, H., A. Moatamediyan, H. Nguyen, X. N. Bui, D. T. Bui, and A. S. A. Rashid. 2019. 
Prediction of ultimate bearing capacity through various novel evolutionary and neural 
network models. Engineering with Computers 36 (2):671–87. doi:10.1007/s00366-019- 
00723-2.

Mortazavi, A., V. Toğan, and M. Moloodpoor. 2019. Solution of structural and mathematical 
optimization problems using a new hybrid swarm intelligence optimization algorithm. 
Advances in Engineering Software 127:106–23. doi:10.1016/j.advengsoft.2018.11.004.

Mustaffa, Z., Y. Yusof, and S. S. Kamaruddin. 2014. Enhanced artificial bee colony for training 
least squares support vector machines in commodity price forecasting. Journal of 
Computational Science 5 (2):196–205. doi:10.1016/j.jocs.2013.11.004.

Nagra, A. A., F. Han, Q. H. Ling, and S. Mehta. 2019. An improved hybrid method combining 
gravitational search algorithm with dynamic multi swarm particle swarm optimization. IEEE 
Access 7:50388–99. doi:10.1109/ACCESS.2019.2903137.

e1994217-160 Z.-Y. CHEN

https://doi.org/10.1016/j.knosys.2014.11.027
https://doi.org/10.1016/j.eswa.2017.05.024
https://doi.org/10.1016/j.amc.2015.06.025
https://doi.org/10.1016/j.amc.2015.06.025
https://doi.org/10.1016/j.aca.2007.04.062
https://doi.org/10.1016/j.aca.2007.04.062
https://doi.org/10.1016/j.future.2020.06.034
https://doi.org/10.1016/j.future.2020.06.034
https://doi.org/10.1109/JDT.2009.2023606
https://doi.org/10.1109/TAP.2013.2283605
https://doi.org/10.1007/s10846-017-0564-z
https://doi.org/10.1109/69.494162
https://doi.org/10.1016/j.matcom.2018.08.011
https://doi.org/10.1016/j.swevo.2018.04.011
https://doi.org/10.1007/s00366-019-00723-2
https://doi.org/10.1007/s00366-019-00723-2
https://doi.org/10.1016/j.advengsoft.2018.11.004
https://doi.org/10.1016/j.jocs.2013.11.004
https://doi.org/10.1109/ACCESS.2019.2903137


Nanda, S. J., and G. Panda. 2014. A survey on nature inspired metaheuristic algorithms for 
partitional clustering. Swarm and Evolutionary Computation 16:1–18. doi:10.1016/j. 
swevo.2013.11.003.

Nasir, A. N. K., and M. O. Tokhi. 2015. Novel metaheuristic hybrid spiral-dynamic 
bacteria-chemotaxis algorithms for global optimization. Applied Soft Computing 
27:357–75. doi:10.1016/j.asoc.2014.11.030.

Oprea, M. 2020. A general framework and guidelines for benchmarking computational intelli-
gence algorithms applied to forecasting problems derived from an application 
domain-oriented survey. Applied Soft Computing 89:106103–27. doi:10.1016/j. 
asoc.2020.106103.

Pendharkar, P. C. 2015. An ant colony optimization heuristic for constrained task allocation 
problem. Journal of Computational Science 7:37–47. doi:10.1016/j.jocs.2015.01.001.

Qasem, S. N., S. M. Shamsuddin, and A. M. Zain. 2012. Multi-objective hybrid evolutionary 
algorithms for radial basis function neural network design. Knowledge-Based Systems 
27:475–97. doi:10.1016/j.knosys.2011.10.001.

Qiu, X., and H. Y. K. Lau. 2014. An AIS-based hybrid algorithm for static job shop scheduling 
problem. Journal of Intelligent Manufacturing 25:489–503. doi:10.1007/s10845-012-0701-2.

Rais, H. M., and T. Mehmood. 2018. Dynamic ant colony system with three level update feature 
selection for intrusion detection. International Journal of Network Security 20 (1):184–92.

Rani, R. H. J., and T. A. A. Victoire. 2018. Training radial basis function networks for wind 
speed prediction using pso enhanced differential search optimizer. PLoS One 13 (5):1–35. 
doi:10.1371/journal.pone.0196871.

Saremi, S., S. Mirjalili, and A. Lewis. 2017. Grasshopper optimisation algorithm: Theory and 
application. Advances in Engineering Software 105: 30–47.

Sarimveis, H., A. Alexandridis, S. Mazarakis, and G. Bafas. 2004. A new algorithm for devel-
oping dynamic radial basis function neural network models based on genetic algorithms. 
Computers and Chemical Engineering 28:209–17. doi:10.1016/S0098-1354(03)00169-8.

Savsani, P., R. L. Jhala, and V. Savsani. 2014. Effect of hybridizing Biogeography-Based 
Optimization (BBO) technique with Artificial Immune Algorithm (AIA) and Ant Colony 
Optimization (ACO). Applied Soft Computing 21:542–53. doi:10.1016/j.asoc.2014.03.011.

Shelokar, P. S., P. Siarry, V. K. Jayaraman, and B. D. Kulkarni. 2007. Particle swarm and colony 
algorithms hybridized for improved continuous optimization. Applied Mathematics and 
Computation 188:129–42. doi:10.1016/j.amc.2006.09.098.

Shinozaki, T., and M. Ostendorf. 2008. Cross-validation and aggregated EM training for robust 
parameter estimation. Computer Speech and Language 22 (2):185–95. doi:10.1016/j. 
csl.2007.07.005.

Song, H. J., C. Y. Miao, R. Wuyts, Z. Q. Shen, M. D’Hondt, and F. Catthoor. 2011. An extension 
to fuzzy cognitive maps for classification and prediction. IEEE Transactions On Fuzzy 
Systems 19 (1):116–35. doi:10.1109/TFUZZ.2010.2087383.

Song, W., W. Ma, and Y. Qiao. 2017. Particle swarm optimization algorithm with environ-
mental factors for clustering analysis. Soft Computing 21 (2):283–93. doi:10.1007/s00500- 
014-1458-7.

Su, S.-F., -C.-C. Chuang, C. W. Tao, J.-T. Jeng, and -C.-C. Hsiao. 2012. Radial basis function 
networks with linear interval regression weights for symbolic interval data. IEEE 
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 42 (1):69–80. 
doi:10.1109/TSMCB.2011.2161468.

Sulaiman, M. H., Z. Mustaffa, M. M. Saari, and H. Daniyal. 2020. Barnacles Mating Optimizer: 
A new bio-inspired algorithm for solving engineering optimization problems. Engineering 
Applications of Artificial Intelligence 87:103330–42. doi:10.1016/j.engappai.2019.103330.

APPLIED ARTIFICIAL INTELLIGENCE e1994217-161

https://doi.org/10.1016/j.swevo.2013.11.003
https://doi.org/10.1016/j.swevo.2013.11.003
https://doi.org/10.1016/j.asoc.2014.11.030
https://doi.org/10.1016/j.asoc.2020.106103
https://doi.org/10.1016/j.asoc.2020.106103
https://doi.org/10.1016/j.jocs.2015.01.001
https://doi.org/10.1016/j.knosys.2011.10.001
https://doi.org/10.1007/s10845-012-0701-2
https://doi.org/10.1371/journal.pone.0196871
https://doi.org/10.1016/S0098-1354(03)00169-8
https://doi.org/10.1016/j.asoc.2014.03.011
https://doi.org/10.1016/j.amc.2006.09.098
https://doi.org/10.1016/j.csl.2007.07.005
https://doi.org/10.1016/j.csl.2007.07.005
https://doi.org/10.1109/TFUZZ.2010.2087383
https://doi.org/10.1007/s00500-014-1458-7
https://doi.org/10.1007/s00500-014-1458-7
https://doi.org/10.1109/TSMCB.2011.2161468
https://doi.org/10.1016/j.engappai.2019.103330


Tabakhi, S., P. Moradi, and F. A. Tab. 2014. An unsupervised feature selection algorithm based 
on ant colony optimization. Engineering Applications of Artificial Intelligence 32: 112–23.

Taguchi, G., S. Chowdhury, and Y. Wu. 2005. Taguchi’s quality engineering Handbook., 
Hoboken. NJ, USA: Wiley.

Taguchi, G., R. Jugulum, and S. Taguchi. 2004. Computer-based robust engineering: Essentials 
for DFSS. Milwaukee, WI, US: ASQ Quality Press.

Talbi, E. G. 2009. Metaheuristics: From design to implementation., Hoboken, NJ. Wiley: USA.
Tian, Z. 2020. Short-term wind speed prediction based on LMD and improved FA optimized 

combined kernel function LSSVM. Engineering Applications of Artificial Intelligence 
91:103573–96. doi:10.1016/j.engappai.2020.103573.

Truong, V.-H., and S.-E. Kim. 2018. Reliability-based design optimization of nonlinear inelas-
tic trusses using improved differential evolution algorithm. Advances in Engineering 
Software 121:59–74. doi:10.1016/j.advengsoft.2018.03.006.

Wang, B., M. Yu, X. Zhu, L. Zhu, and Z. Jiang. 2019. A robust decoupling control method based 
on artificial bee colony-multiple least squares support vector machine inversion for marine 
alkaline protease MP fermentation process. IEEE Access 7:32206–16. doi:10.1109/ 
ACCESS.2019.2903542.

Wang, L., T. Wang, J. Wu, and G. Chen. 2017a. Multi-objective differential evolution optimi-
zation based on uniform decomposition for wind turbine blade design. Energy 120:346–61. 
doi:10.1016/j.energy.2016.11.087.

Wang, S., C. Yu, D. Shi, and X. Sun. 2018. Research on speed optimization strategy of hybrid 
electric vehicle queue based on particle swarm optimization. Mathematical Problems in 
Engineering 2018: 1–14.

Wang, W., S. Yuan, J. Pei, and J. Zhang. 2017b. Optimization of the diffuser in a centrifugal 
pump by combining response surface method with multi-island genetic algorithm. 
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process 
Mechanical Engineering 231 (2):191–201. doi:10.1177/0954408915586310.

Wen, F., X. Yang, X. Gong, and K. K. Lai. 2017. Multi-scale volatility feature analysis and 
prediction of gold price. International Journal of Information Technology and Decision 
Making 16 (1):205–23. doi:10.1142/S0219622016500504.

Whitehead, B. A., and T. D. Choate. 1996. Cooperative-competitive genetic evolution of radial 
basis function centers and widths for time series prediction. IEEE Transactions on Neural 
Networks 7 (4):869–80. doi:10.1109/72.508930.

Xiao, Y., S. Wang, M. Xiao, J. Xiao, and Y. Hu. 2017. The analysis for the cargo volume with 
hybrid discrete wavelet modeling. International Journal of Information Technology and 
Decision Making 16 (3):851–63. doi:10.1142/S0219622015500285.

Xiaowei, H., Z. Xiaobo, Z. Jiewen, S. Jiyong, Z. Xiaolei, and M. Holmes. 2014. Measurement of 
total anthocyanins content in flowering tea using near infrared spectroscopy combined with 
ant colony optimization models. Food Chemistry 164:536–43. doi:10.1016/j. 
foodchem.2014.05.072.

Xu, B., X. Chen, and L. Tao. 2018. Differential evolution with adaptive trial vector generation 
strategy and cluster-replacement-based feasibility rule for constrained optimization. 
Information Sciences 435:240–62. doi:10.1016/j.ins.2018.01.014.

Yan, L., H. Wang, X. Zhang, M.-Y. Li, J. He, and S. B. Jadhao. 2017. Impact of meteorological 
factors on the incidence of bacillary dysentery in Beijing, China: A time series analysis 
(1970-2012). PLoS One 12 (8):1–13. doi:10.1371/journal.pone.0182937.

Yan, X., P. Li, K. Tang, L. Gao, and L. Wang. 2020. Clonal selection based intelligent parameter 
inversion algorithm for prestack seismic data. Information Sciences 517:86–99. doi:10.1016/j. 
ins.2019.12.083

e1994217-162 Z.-Y. CHEN

https://doi.org/10.1016/j.engappai.2020.103573
https://doi.org/10.1016/j.advengsoft.2018.03.006
https://doi.org/10.1109/ACCESS.2019.2903542
https://doi.org/10.1109/ACCESS.2019.2903542
https://doi.org/10.1016/j.energy.2016.11.087
https://doi.org/10.1177/0954408915586310
https://doi.org/10.1142/S0219622016500504
https://doi.org/10.1109/72.508930
https://doi.org/10.1142/S0219622015500285
https://doi.org/10.1016/j.foodchem.2014.05.072
https://doi.org/10.1016/j.foodchem.2014.05.072
https://doi.org/10.1016/j.ins.2018.01.014
https://doi.org/10.1371/journal.pone.0182937
https://doi.org/10.1016/j.ins.2019.12.083
https://doi.org/10.1016/j.ins.2019.12.083


Yang, Z., K. Li, Y. Guo, H. Ma, and M. Zheng. 2018. Compact real-valued teaching-learning 
based optimization with the applications to neural network training. Knowledge-Based 
Systems 159:51–62. doi:10.1016/j.knosys.2018.06.004.

Yang, Z., M. Mourshed, K. Liu, X. Xu, and S. Feng. 2020. A novel competitive swarm optimized 
RBF neural network model for short-term solar power generation forecasting. 
Neurocomputing 397:415–21. doi:10.1016/j.neucom.2019.09.110.

Yin, X., Z. Niu, Z. He, Z. S. Li, and D. Lee. 2020. An integrated computational intelligence 
technique based operating parameters optimization scheme for quality improvement 
oriented process-manufacturing system. Computers and Industrial Engineering 
140:106284–98. doi:10.1016/j.cie.2020.106284.

Zhang, F., and Z. Liao. 2013. Gold price forecasting based on RBF neural network and hybrid 
fuzzy clustering algorithm. Proceedings of the Seventh International Conference on 
Management Science and Engineering Management. Philadelphia, US. Springer, 73–84.

Zhang, H., Q. Zhang, L. Ma, Z. Zhang, and Y. Liu. 2019. A hybrid ant colony optimization 
algorithm for a multi-objective vehicle routing problem with flexible time windows. 
Information Sciences 490:166–90. doi:10.1016/j.ins.2019.03.070.

Zhang, M., N. Tian, V. Palade, Z. Ji, and Y. Wang. 2018. Cellular artificial bee colony algorithm 
with gaussian distribution. Information Sciences 462:374–401. doi:10.1016/j.ins.2018.06.032.

Zhao, H., C. Zhang, and B. Zhang. 2020. A decomposition-based many-objective ant colony 
optimization algorithm with adaptive reference points. Information Sciences 540:435–48. 
doi:10.1016/j.ins.2020.06.028.

Zhao, W., L. Yan, and Y. Zhang. 2018a. Geometric-constrained multi-view image matching 
method based on semi-global optimization. Geospatial Information Science 21:115–26.

Zhao, Y., R. Liu, X. Zhang, and A. Whiteing. 2018b. A chance-constrained stochastic approach 
to intermodal container routing problems. PLoS One 13 (2):1–22

Zhou, H., H. Zhang, and C. Yang. 2020. Hybrid-model-based intelligent optimization of 
ironmaking process. IEEE Transactions on Industrial Electronics 67 (3): 2469–79.

Zhou, Q., Y. Rong, X. Y. Shao, P. Jiang, Z. M. Gao, and L. C. Cao. 2018. Optimization of laser 
brazing onto galvanized steel based on ensemble of metamodels. Journal of Intelligent 
Manufacturing 29 (7):1417–31. doi:10.1007/s10845-015-1187-5.

Zhu, Z., L. Chen, C. Yuan, and C. Xia. 2018. Global replacement-based differential evolution 
with neighbor-based memory for dynamic optimization. Applied Intelligence 48 (10):1–15. 
doi:10.1007/s10489-018-1147-9.

Zou, H. F., G. P. Xia, F. T. Yang, and H. Y. Wang. 2007. An investigation and comparison of 
artificial neural network and time series models for Chinese food grain price forecasting. 
Neurocomputing 70 (16–18):2913–23. doi:10.1016/j.neucom.2007.01.009.

APPLIED ARTIFICIAL INTELLIGENCE e1994217-163

https://doi.org/10.1016/j.knosys.2018.06.004
https://doi.org/10.1016/j.neucom.2019.09.110
https://doi.org/10.1016/j.cie.2020.106284
https://doi.org/10.1016/j.ins.2019.03.070
https://doi.org/10.1016/j.ins.2018.06.032
https://doi.org/10.1016/j.ins.2020.06.028
https://doi.org/10.1007/s10845-015-1187-5
https://doi.org/10.1007/s10489-018-1147-9
https://doi.org/10.1016/j.neucom.2007.01.009

	Abstract
	Introduction
	Literature Review
	GA-based Optimization Algorithm for NN Training
	ACO-based Optimization Algorithm for NN Training
	Hybridization of GA and ACO Approaches for NN Training

	Methodology
	The Detailed Description of the Proposed IGACO Algorithm

	Experimental Results
	Benchmark Problems Experiment
	Parameter Setup
	Performance Assessment and Comparison

	Practical Exercise for the Spot Gold Price Forecast
	Build Box-Jenkins Models
	Parameters Setup for the Spot Gold Price Forecast Exercise
	Error Estimate for Spot Gold Price Forecast

	Conclusions
	Disclosure Statement
	ORCID
	References

