
*Corresponding author: E-mail: plala@tamut.edu;

British Journal of Applied Science & Technology
10(5): 1-8, 2015, Article no.BJAST.19154

ISSN: 2231-0843

SCIENCEDOMAIN international

 www.sciencedomain.org

A CAM (Content Addressable Memory) Architecture
for Codon Matching in DNA Sequences

Parag K. Lala1*

1Electrical Engineering, Texas A&M University-Texarkana, Texas, USA.

Author’s contribution

The sole author designed, analyzed and interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/BJAST/2015/19154

Editor(s):
(1) Nan Wu, Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, Canada.

Reviewers:
(1) Anonymous, Czech Republic.

(2) Anonymous, São Paulo State University, Brazil.
(3) Anonymous, India.

Complete Peer review History: http://sciencedomain.org/review-history/10133

Received 27
th

 May 2015
Accepted 2nd July 2015

Published 10
th

 July 2015

ABSTRACT

DNA sequences are long strands of four letters – A,T.C and G, that represent the amino-acid
building components of proteins . A triplet sequence of adjacent letters on a DNA sequence is
known as a codon. Multiple codons represent one of the 20 possible amino acids. DNA sequence
matching is used to determine the similarity between an unidentified DNA sequence with the
database of other sequences with known characteristics. Those sequences displaying high levels of
similarity tend to be similar in nature and thus the matching can be a useful tool in determining the
nature of the new genetic sample. This paper presents the conceptual architecture of a content
addressable memory that can be used to provide simultaneous comparison of a query DNA
sequence with 16 stored sequences, and identifies the ones with the highest number of codon
matches with the query sequence.

Keywords: Amino acid; codon; protein; CAM; alignment.

1. INTRODUCTION

The DNA (Deoxyribonucleic acid) is composed of
four constituent bases: adenine (A), thymine (T),

cytosine (C), and guanine (G). When expressed
as a part of a genetic sequence, the bases are
grouped into triplets called codons; each codon
produces a particular amino acid [1].

Original Research Article

Lala; BJAST, 10(5): 1-8, 2015; Article no.BJAST.19154

2

Since there are 4 characters in the DNA
alphabet, the triplet could encode 64 distinct
values. However, there are only 20 amino acids.
As a result, multiple codons can be used to code
the same amino acid. Arginine, for example, is
coded for by CGT, CGC, CGA, CGG, AGA, and
AGG while Tryptophan is coded only by TGG.

Additionally, some codons, called start and stop
codons, do not produce any amino acid at all and
instead they are used to regulate the reading
frame of a protein sequence. The fact that
multiple codons can represent the same amino
acid means that, in spite of mutations, similar
DNA sequences represent proteins of similar
function. This means that by comparing unknown
DNA sequences to similar known sequences it is
possible to determine the structure and function
of their corresponding proteins. These
projections of form and function, as well as the
study of molecular evolution, are possible only by
using tools of molecular sequence alignment.

2. DNA SEQUENCE MATCHING

DNA sequence matching is used for
identification, analysis, and evolutionary
placement of an unknown sequence [2].Typical
applications involve the comparison of a single
unknown DNA sequence against extremely large
and growing databases of the known sequences.
It is a computationally intensive task [3]. Existing
algorithms for sequence matching are largely
software-based with specially designed hardware
implementations capturing the high-end market
[4-6]. Improvements in the performance are
typically provided by heuristic approaches.
Heuristics are useful because they allow the
databases to be quickly searched for potential
matches. In doing so, a fair number of potential
matches are overlooked and accuracy is thereby
sacrificed.

Distributed computing speeds up the
computation process by dividing the workload. It
may take the form of specialized parallel
hardware implementations or, in the realm of
software, clusters of computers working jointly
[7]. Though there are definite improvements in
search speed, the same sequential comparison
algorithms with their associated deficiencies are
utilized in each distributed instance.

In an effort to offer an alternative, the use of a
dedicated CAM (Content Addressable Memory)
architecture is proposed in this paper; this allows
simultaneous comparison of a single query

sequence with a number of stored DNA
sequences. The use of CAM for faster sequence
matching was first proposed in Ref. [8,9]; these
papers, however, did not present a specific CAM
architecture for this purpose.

Sequence alignment is the process by which two
or more sequences are arranged alongside one
another to maximize the similarity observed in a
pair-wise comparison of their members. Gaps
(‘—‘) are often used to pad sequences in order to
achieve a better match, and typically represent
insertion or deletion type mutations.

Fig. 1. Improving alignment with null
characters

While the first alignment (on the left) shown
above in Fig. 1 is perfectly valid, the second
represents an optimal alignment of the two
sequences. An alignment is said to be optimal if
it features the maximum number of matching
positions. Finding an optimal alignment is not a
computationally trivial task as the number of
potential placement combinations is enormous.
Algorithms to find these optimal alignments must
maximize the number of matching bases while
minimizing null character utilization.

The Smith-Waterman algorithm [10] is a popular
choice for finding the alignment between two
sequences. The algorithm, however, requires the
construction of a matrix where memory and time
requirements are quite large and increase with
the sizes of the sequences being compared.
When comparisons are needed with more than
one sequence, such as when searching through
a large database to find and score near matches,
faster implementations are required.

Progress has been made in both the realm of
hardware- and software-based sequence
alignment techniques; these can be divided into
two categories. The first is the reduction of the
search set [11]. Software solutions, such as
BLAST [12] and FASTA [13] work by using
heuristics to eliminate, in part or whole, some of
the database entries and then execute the Smith-
Waterman algorithm on the remainder. By
eliminating sequences that appear to be unlikely
matches, comparison time can be reduced
dramatically. The time savings comes at a cost of
accuracy as some potentially good alignments

A T C G T A C G - T
| | | | | | | |
A - C G T A C G C T

ATCGTACGT
 | |
ACGTACGCT

Lala; BJAST, 10(5): 1-8, 2015; Article no.BJAST.19154

3

can be discarded. The second group attempts to
exploit of parallelism to speed up the search
process. For example, the Smith-Waterman
algorithm’s distance matrix lends itself to cellular
organization and a degree of pipelining.
Additionally, by breaking the database of
sequences to be searched into smaller pieces,
comparisons, in either hardware or software, can
be distributed and executed concurrently.

The fastest way to enhance the alignment speed
is through parallel computation, for example, by
distributing n sequences across n machines with
each machine running a comparison between the
two sequences. By changing the nature of the
comparison, this is possible in a single machine
by using a content addressable memory.

3. CONTENT ADDRESSABLE MEMORY

Random access memory (RAM) works by
accepting an address and then returning the
value stored at the memory module referenced
by that address. Content-addressable memory
(CAM)], in contrast, works in the opposite fashion
[14]. A query value is supplied to the CAM and
the addresses of the modules that contain
matching stored values are returned. The ability
to simultaneously compare a single query value
with multiple stored values makes CAMs very
useful as a basis for hardware-based searching.
Of the commonly available CAM
implementations, the binary CAM is the most
straightforward. Sequence composition is limited
to 1s and 0s and a match is returned only if the
query and stored values are identical as
determined by a bitwise comparison.

This paper presents a dedicated binary-CAM
architecture for comparing DNA sequences; it is
designed to report matches on similar rather than
identical sequences. It features a three-level
hierarchal organization that allows varying match
criteria to be used across the three different
levels of abstraction: the base, the codon, and
the DNA sequence. The lowest level of the
hierarchy is a grouping of three bits into a group
representing a single molecular base (A,C,G or
T). Three of these bases are grouped to form a
codon, and sixteen codons are joined into a DNA
sequence; a sequence of 16 bases is chosen
arbitrarily in this paper to simplify the
presentation of the main concept of the design.
Thus the CAM module presented in this paper is
composed of 16 words, each composed of 124
bits as shown in Fig. 2. The objective is to
simultaneously compare the query sequence
with 16 sequences each stored in a 124-bit word,
and to identify among these the ones with the
highest number of matches.

The basic component, and base of the CAM
hierarchy, is the 3-bit block shown in Fig.3.
These blocks are capable of storing values
representing any of four DNA bases or one of
two conditions: don’t care or off. A don’t care
serves as a wildcard and will signal a match with
any base. Off simulates a ‘—‘in the sequence
that indicates the base is not intended for
comparison. This is helpful when comparing
sequences of different sizes as the ends of
smaller length DNA sequences can be padded
with offs. A match is indicated by the block when
the query and stored bases are identical, when

Fig. 2. A 16-word CAM organization

 Base Bit Codon

Sequence 1

Sequence 2

Sequence 3

Sequence 16

Lala; BJAST, 10(5): 1-8, 2015; Article no.BJAST.19154

4

one of the two is a base and the other a don’t
care. Additionally if one is off, no match should
occur. For example:

query stored Match
A C 0
G G 1
T don’t care 1
C off 0
don’t care
off

C
G

1
0

Bases and special conditions are encoded using
three bits. The leftmost bit of the sequence

functions as a flag that indicates whether a base
(0) or a special condition (1), is being
represented. Assignments within the base
category are not subject to any design
constraints and are made as follows:

000 = A 001 = C 010 = G 011 = T

The two special conditions,don’t care and off, are
assigned as follows:

10X = don’t care 11X = off

Fig. 3. A 3-bit CAM block

Lala; BJAST, 10(5): 1-8, 2015; Article no.BJAST.19154

5

The data storage in the CAM is realized using D
flip-flops; EX-NOR gates are utilized to compare
the stored data sequence in the flip-flops with the
query sequence (Fig.4). An output of 1 from an
EX-NOR gate indicates a match of a single bit. If
a match is signaled for all three bits, then a
preliminary match is assumed for the two bases
being compared.

Fig. 4 Comparison logic for 1-bit

While the query and stored sequences are being
compared for exact bit matches, simultaneous
checks for don’t care and off values are also
performed. Values of 1 and 0 are returned by the
don’t care (DC) check and off (OFF) check logic
respectively, if their corresponding conditions are
detected (Fig. 3). A logical OR operation is
performed on the results of the query don’t care
check, the stored don’t care check and the
preliminary match results. In this way, the
presence of a don’t care can overrule an exact
base mismatch. The final stage in generating the
match signal takes into account the possibility
that one of the bases was off.

The preliminary match results are allowed to
pass through if the logical AND of the OR output
and the off check indicates that both sequences
are on. Otherwise, the base-match signal is
forced to 0 and all other considerations are
overruled. The emerging signal is a binary
match/no-match and is passed up the hierarchy
to the codon-level for further handling.

4. MATCHING OF CODONS

Sequence comparison at the codon level is
shown in Fig. 5. A comparison of the query and
stored codons results in a two-bit match value.
The same three bases, in the same order, are
termed a complete match. When only two of the
three bases are found to match in corresponding
positions, a partial match has occurred as
indicated below:

query stored match
ATG CGT No
ATG ACG Partial
ATG ATG Complete

The ability to recognize a partial match is useful
in detecting related sequences. Because multiple
codons can identify a particular amino acid, and
those codons typically vary by a single base,
being able to detect two of three matching bases
allows for a match on codons that may have
equivalent values.

The presence of a match is indicated by the least
significant bit of match result. This bit is the
output of a majority circuit fed by the outgoing
match lines from the codon’s three constituent
bases. Whether that match is partial or complete
is revealed by the most significant bit, a logical
AND of the three base match lines. The coding
scheme is as follows:

00: no match 01: partial match 11: complete
match.

An output of 10 indicates a contradiction, that the
three bit sequence has both three 1s and a
majority value of 0. This pattern should therefore
never occur. The remaining valid match codes
are passed upwards to the sequence level upon
generation.

5. FULL SEQUENCE COMPARISON

At the sequence level, the CAM architecture
begins taking user-specifiable values into
account when generating match signals as
shown in Fig. 5. The ability to customize the
sensitivity of the CAM allows for the search
criteria to be better suited to the makeup of the
data. For example, in a comparison of highly
similar sequences a high threshold is useful to
prevent being overwhelmed with matches. It is
likewise helpful to avoid a complete lack of
matches in sequence comparisons involving less
similar entries.

To accommodate this feature, the sequence level
CAM module features additional logic to count
the number of matches occurring in the 16 codon
modules, and then compare that value with a
user-configurable threshold value. The match
counting logic works by taking as inputs the 16
two-bit values indicating the match types present
in each of the codon level modules. A threshold
select line controls whether partial or complete
matches will be accepted. A value of 0 on the

query

stored

match

Lala; BJAST, 10(5): 1-8, 2015; Article no.BJAST.19154

6

threshold select line indicates that a partial match
is sufficient. For a partial or a complete match,
the output is a 1 on the match line. A value of 1
on the threshold select line indicates that only
complete matches are acceptable; in this case,

complete matches result in an output of 1 on the
match line and a 0 output for either partial
matches or non-matches. The logic that
accomplishes this is shown in Fig. 6.

Fig. 5. Matching codons in CAM

Fig. 6. Codon matching logic

match

Least Significant Bit

Threshold Select

Lala; BJAST, 10(5): 1-8, 2015; Article no.BJAST.19154

7

Fig. 7. Match Counter Organization

This logic is repeated in parallel for each of the
16 codon modules. Once the partial/complete
match threshold has been taken into account, the
match count logic uses a tree of adders as
shown in Fig. 7 above to determine the number
of match signals with a value of 1. The
output lines from each codon matching logic
block (Fig. 6) are fed into the A, B, and carry-In
lines of 1-bit full adders. The 2-bit results are
passed down to a row of 2- bit adders that also
make use of their carry-in lines. This continues
down through 3-bit adders and then 4 bit adders
until the final 5-bit result holding the number of
active match lines is available.

6. CONCLUSIONS

Sequence alignment and matching using
currently available software-based techniques
are computationally intensive and time-
consuming. The CAM architecture proposed in
this paper can speed up these tasks by making
initial comparisons, and reducing the sequence
set to be considered to a more manageable size.
Thus a possible application of the proposed

CAM-based methodology could be as a
preliminary filter for a more exhaustive later
comparison. The prescreening of sequences
can take place as a global alignment in the case
of very high similarity sequences, or as a local
alignment between a subsequence of the query
sequence and the stored sequences. The later
alignment, between a query subsequence and
multiple stored sequences, constitutes an
important application in its own right. In order to
take advantages of the speed and parallelism
offered by the customized CAM implementation,
new sequence alignment and matching
algorithms need to be developed.

COMPETING INTERESTS

Author has declared that no competing interests
exist.

REFERENCES

1. Griffiths AJF, Miller JH, Suzuki DT,
Lewontin RC, Gelbart WM. Introduction to
Genetic Analysis. 7

th
 ed. New York: W. H.

Freeman & Co; 1999.

 A B Cin A B Cin A B Cin A B Cin

1-bit Adder 1-bit Adder 1-bit Adder 1-bit Adder

 SUM/Cout SUM/Cout SUM/Cout SUM/Cout
1 1 1 1

2 2 2 2

 A B Cin A B Cin

 A B Cin

 A B Cin

2-bit Adder 2-bit Adder

3-bit Adder

4-bit Adder

 SUM/Cout SUM/Cout

 SUM/Cout

 SUM/Cout

3 3

4
4
 0

5

Lala; BJAST, 10(5): 1-8, 2015; Article no.BJAST.19154

8

2. Rosenberg MS. Sequence alignment:
methods, models, concepts, and
strategies, University of California Press;
2009.

3. Krane D, Raymer M, Fundamental
concepts of bioinformatics. Benjamin
Cummings; 2003.

4. Compeau P, Pevzner PA, Bioinfomatics
algorithms, Active Learning Publishers;
2014.

5. Li H, Homer N. A survey of sequence
alignment algorithms for next-generation
sequencing Briefings in Bioinformatics.
2010;11(5):473-483.

6. Delcher A, Phillippy A, Carlton J, Salzberg
SL. Fast algorithms for large-scale
genome alignment and comparison’
Nucleic Acids Research. 2002;30(11):
2478-2483.

7. Sotiriades E, Kozanitis C, Dollas A, FPGA
based architecture for DNA sequence
comparison and database search, Proc.
20

th
 IEEE International Parallel &

Distributed Processing Symposium.2006;
25-29.

8. Lala PK. A Digital hardware-based
approach for molecular sequence

comparison. Information Engineering (IE).
2013;2(3):37-43.

9. Lala PK, Parkerson JP. A CAM (Content
Addressable Memory)-based architecture
for molecular sequence matching. Proc.
Int. Conf. Bioinformatics & Computational
Biology. 2011;252-256.

10. Smith TF, Waterman MS. Identification of
common molecular subsequences. Jour.
Mol. Biol. 1980;147:403-410.

11. Durbin R, Myers G. Invited Lecture –
Accelerating Smith-Waterman Searches.
Proc. Second Int. Workshop on Algorithms
in Bioinformatics, Lecture Notes In
Computer Science. 2002;2452:331–342.

12. Altschul SF, Gish W, Miller W, Myers EW,
Lipman DJ. Basic local alignment search
tools. Jour. Mol. Biol. 1990;215(3):403-10.

13. Lipman DJ, Pearson WR. Rapid and
sensitive protein similarity searches.
Science. 1985;227(4693):1435-41.

14. Chisvin L. Duckworth RJ. Content-
addressable and associative memory:
alternatives to the ubiquitous RAM. IEEE
Computer. 1989;22:51–64.

© 2015 Lala; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

http://sciencedomain.org/review-history/10133

