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ABSTRACT 
 

Economic development and growth in population have prompted rapid changes to earth’s land 
cover over the last few decades, and there is every indication that the pace of these changes will 
accelerate in the future. Therefore, systematic evaluations of Earth’s land cover must be repeated 
at a frequency that allows monitoring of both long term trends as well as inter-annual variability, 
and at a level of spatial detail to allow study of land use patterns. Land cover analysis can be done 
most effectively through remote sensing images of various spatial, spectral and temporal 
resolutions to improve the selection of areas designed for agricultural, urban and/or industrial areas 
of a region. Astute efforts have been made in developing advanced classification algorithms and 
techniques for improving the accuracy of land cover classification. Recent image classification 
approaches for land cover pattern analysis have been brought together with their pros and 
cones by reviewing literatures, books, manuals and other related documents. Suitable 
classification algorithms may be chosen based on their performance, type of image and 
application area. Through this survey, various aspects regarding, preprocessing, classification 
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and accuracy assessment, new and unique land cover products may be generated which could 
not be produced by earlier techniques. 
 

 
Keywords: Land use planning; land cover classification; remote sensing; image classification; 

geographical information systems. 
 
1. INTRODUCTION 
 
Land is one of the most important natural 
resources on which human life and their 
developmental activities are centered on [1]. 
Land cover refers to the physical material at the 
surface of the earth it can be a region covered by 
snow, forests, wetlands, dry land, grass land, 
open water, impervious surfaces and agriculture 
land. Land use refers to how people use the 
landscape whether for development, 
conservation, or mixed uses [2].  
 
Knowledge about land use and land cover is 
important for many planning and management 
activities and is considered an essential element 
for modeling and understanding the earth as a 
system [3]. Information on land use and land 
cover also helps to  overcome the problems of 
haphazard, uncontrolled development, 
deteriorating environmental quality, loss of prime 
agricultural lands, destruction of important 
wetlands, predict and assess impacts from floods 
and storm surges, loss of fish and wildlife habitat. 
 
Remote sensing image classification techniques 
are essential in deriving land use land cover 
information for socio-economic planning and 
environmental applications [4]. The technological 
innovation in the field of Remote Sensing (RS) 
and Geographic Information System (GIS) have 
opened a new dimension to address a wide 
range of scientific problems of land use land 
cover classification as they provide timely, 
precise, and quality information inputs to decision 
making, while making sustainable use of natural 
resources and improving conservation practices. 
A satellite image provides qualitative information 
of a large geographic area that reduces the 
intricacy of field work. A suitable remotely sensed 
data for image classification is chosen by 
analyzing the strength and limitation of different 
type of sensor data available. 
 
Land Use/ Land cover classification can be 
determined by measuring, analyzing and 
interpreting the satellite images collected from 
satellite sensors. The five main resolution 
characteristics of a satellite’s sensor system can 
be summarised into: 

• Spectral coverage/resolution i.e., band 
locations/width  

• Spectral dimensionality: number of bands 
• Radiometric resolution: quantization 
• Spatial resolution/instantaneous field of 

view  
• Temporal resolution 

 
Once the raw remote sensing digital data has 
been acquired, it is then processed into usable 
information. The changes made to remote 
sensing data involve two major operations which 
are preprocessing and post-processing.  
 

• Preprocessing of image includes 
radiometric correction and geometric 
correction. 

• Digital image post-processing include 
image enhancement, image classification, 
and change detection. 

 
Fig. 1 shows analysing satellite image for land 
cover feature identification which includes 
selection of remotely sensed image, finding a 
suitable classification system, selection of 
training samples, image pre-processing, feature 
selection/ extraction, selection of suitable 
classification approaches, post-classification 
processing and accuracy assessment. 
 
These computerized process routines improve 
the image scene quality and aid in the data 
interpretation. Some of the major satellites which 
deliver images for precision agriculture are Indian 
Remote Sensing Satellite (IRS-1A, IRS-1C, IRS-
1D), French SPOT, MODIS, ASTER, NOAA-
AVHRR, LANDSAT TM/ETM, RADARSAT, ERS, 
RAPIDEYE, QUICKBIRD, IKONOS, ADEOS-II, 
CBERS-CCD and HJ-1 CCD etc., 
 
2. METHODS AND METHODOLOGY  
 
The paper reviews recent technologies of land 
cover classification scheme using remotely 
sensing images to support precision farming. The 
review is prepared by referring to journals, 
conference papers, books, manuals/reports and 
other related documents. Over eight robust 
image classification schemes are discussed in 
this paper which are,  
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(i) Based on pixel information and are 
classified as pre-pixel classification, sub-
pixel classification, pre-field classification, 
contextual classification, knowledge based 
classification and combination of multiple 
classifications. 

(ii) Based on use of training samples and are 
classified as supervised classification and 
unsupervised classification. 

 
About 53 documents including papers from 
national and international journals/conferences, 2 
books and 3 manuals/reports have been referred 
in this survey. Stress has been given for recent 
land cover classification techniques using 
remotely sensing images to support precision 
farming by referring to published international 
journals in 2014-2015. Their commercial viability, 
application, potential and future scope of the 
algorithm has been analyzed in detail. A clear 
representation showing a particular method, its 
advantages/benefits and limitation/short comings 
are given. 
 
3. RESULTS AND DISCUSSION 
 
Remote sensing image classification is a 
commonly adopted method to obtain land cover 
information from Satellite images [5]. Digital 
image classification is the process of assigning 
pixels to meaningful classes. A pixel is assumed 
to be an individual unit which carries several 
spectral band values. The pixels of an image 
having comparable spectral values are assigned 
to one class. Classes are homogenous thus 
pixels of one class differ spectrally with the pixels 
of another class of the same image. These 
classes form regions on a map or an image, so 
that after classification digital image can be 
presented as a mosaic of consistent classes, 
each identified by a colour or symbol [6]. Land 
cover Image classification approaches can be 
done by either based on pixel information or 

based on use of training samples as shown in 
Fig. 2. 
 
3.1 Based on Pixel Information 
 
Image can be classified based on pixel 
information into following classification 
approaches pre-pixel classification, sub-pixel 
classification, pre-field classification, contextual 
classification, knowledge based classification 
and combination of multiple classifications. 
 
3.1.1 Per-pixel classification approach 
 
Traditional Per-pixel classifiers typically develop 
a signature by combining the spectra of all 
training set pixels for a given feature. 
 
The resulting signature contains the contributions 
of all materials present in the training pixels, but 
ignores the impact of the mixed pixels. Per-pixel 
classification algorithms can be parametric or 
non-parametric [7]. Commonly used Parametric 
Classifiers are Maximum likelihood classifier. 
Commonly used non-parametric classifiers are 
neural networks, Decision tree and Support 
Vector Machine. To improve performance in a 
non-parametric classification procedure, 
boosting, bagging or a hybrid of both techniques 
can be used [8]. Some of the per-pixel classifiers 
methods is described in Table 1. 
 
3.1.2 Sub-pixel classification approach 
 
Sub-pixel classification approaches have been 
developed to provide a more appropriate 
representation and accurate area estimation of 
land cover than per-pixel approaches, especially 
when coarse spatial resolution data are used [9]. 
In sub-pixel classification each pixel is 
considered mixed, and the real proportion of 
each class is estimated. Some of the Sub-pixel 
classifiers are described in Table 2. 

 
Table 1. Per-pixel classifiers methods 

 
Category Advanced classifiers Authors 
Per-pixel 
classifiers 

Two unsupervised classifications, algorithms based 
on RBF Neural Network and K-means 

Rollet R, et al. 1998 [10]  

Minimum Distance-to-Means Classifier Atkinson PM, et al. 2000 [11] 
Spectral angle Classifier Sohn Y,  et al. 2002 [12] 
Decision tree classifier Lawrence R et al. 2004 [13]  
Supervised classification was performed using the 
maximum likelihood algorithm and 25 classes.  

David Barry Hester, et al. 2008 
[14] 

Support  Vector Machine Marconcini M, et al. 2009 [15] 
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Fig. 1. Satellite image analysis [16] 
 

 
 

Fig. 2. Land cover image classification approaches [17] 
 
3.1.3 Per-field classification approach 
 
The Per-field classifier is designed to deal with 
the problem of environmental heterogeneity. The 
Per-field classifier averages out the noise by 
using land parcels (called ‘fields’) as individual 
units. The per-field classifications are often 
affected by such factors as the spectral and 
spatial properties of remotely sensed data, the 
size and shape of the fields, the definition of field 
boundaries and the land cover classes chosen 
[18]. Some of the pre-field classifiers are 
described in Table 3. 

3.1.4 Contextual classification approach 
 
Contextual classifieris an approach 
of classification based on contextual information 
in images. "Contextual" means this approach              
is focusing on the relationship of the nearby 
pixels, which is also called neighborhood. The 
goal of this approach is to classify the images by 
using the contextual information. Contextual 
classifiers were developed to overcome with the 
problem of intra-class spectral variations. Some 
of the contextual classifiers are described in 
Table 4. 

Satellite Image 

Image-Preprocessing 

Multilayer image stack 

Image 

Classification Method Training Data Collection 

Auxiliary Data (Maps) 

Unsatisfactory Satisfactory 

Post-Classification 
Editing 

Accuracy Assessment 

Geospatial Analysis 

Image Classification  

Based on pixel information Based on use of training samples 

1. Per-pixel classification 
2. Sub-pixel classification 
3. Pre-field classification 
4. Contextual classification 
5. Knowledge based classification 
6. Combination of multiple classifications 
 

 
1. Supervised classification  
 
2. Unsupervised classification 
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3.1.5 Knowledge- based classification 
approach 

 
Knowledge based classifier is more suited to 
handle complex data. Different kinds of ancillary 
data, such as digital elevation model, housing, 
soil map and temperature are easily available; 
they may be integrated into a classification 
procedure in different ways [8]. Some of             
the knowledge based classifier is described in 
Table 5. 
 
3.1.6 Combination of multiple classification 

approach 
 
Research have explored different techniques 
such as a production rule, a sum rule, stacked 
regression methods majority voting and 
thresholds to combine multiple classification 

results to provides improved classification 
accuracy compared to the use of a single 
classifier. Some of the Combination of multiple 
classifiers is described in Table 6. 
 
3.2 Based on Use of Training Samples 
 
3.2.1 Supervised classification 
 
Supervised classification methods require input 
from an analyst. The input from analyst is known 
as training set. All the supervised classifications 
usually have a sequence of operations that must 
be followed [41].  
 

• Defining of the Training Sites.  
• Extraction of Signatures.  
• Classification of the Image. 

 
Table 2. Sub-pixel classifiers methods 

 
Category Advanced classifiers Authors 
Sub-pixel 
classifiers 

Rule-based machine-version approach Foschi, et al. 1997 [19] 
Image Sub-pixel classifier Huguenin RL, et al. 1997 [20]   
Neural Networks Mannan B, et al. 2003 [21]  
Regression modelling Yang X, et al. 2005 [22] 
Fuzzy-spectral mixture analysis Tang J, et al. 2007 [23] 

 
Table 3. Per-field classifiers methods 

 
Category Advanced classifiers Authors 
Per-field 
classifiers 

Per-field classification based on per-pixel or sub-
pixel classified image 

Aplin, et al. 2001 [24] 

Per-field or per-parcel classification Wu S, et al. 2007 [25] 
Object-based classification Volker Walter, 2003 [26] 

Mengistie Kindu et al. 2013 [27] 
Thunig H, et al. 2011 [28] 

 
Table 4. Contextual classification methods 

 
Category Advanced classifiers Authors 
Contextual 
classifiers 

Fuzzy contextual classifier Binaghi E, et al. 1997 [29]  
Point-to-point contextual correction Cortijo, et al.1998 [30] 
Contextual classifier based on region-growth 
algorithm 

Lira, et al. 2002  [31] 

Frequency-based contextual classifier Xu B, et al. 2003 [32] 
Extraction and Classification of homogeneous 
objects 

Lu D, et al. 2004 [33] 

 
Table 5. Knowledge based classifier methods 

 
Category Advanced classifiers Authors 
Knowledge based 
classifier 

Knowledge-based classification Dobson MC, et al. 1996 [34] 
Schmidt KS, et al. 2004 [35] 
Hashimoto S, et al. 2012 [36] 

Rule-based syntactical approach Onsi 2003 [37] 
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Table 6. Combination of multiple classifiers methods 
 

Category Advanced classifiers Authors 
Combination of 
multiple 
classifiers 

Neural network, 
decision tree classifier and evidential reasoning 

Huang, et al. 2004 
[38] 

Maximum Likelihood Classifier (ML), Support Vector 
Machine (SVM), Artificial Neural Networks (ANN), 
Spectral Angle Mapper (SAM), Minimum Distance 
Classifier (MD) And Decision Tree Classifier (DTC)  

Lijun Dai, et al. 2010  
[39] 

Multiple Support Vector Machine (SVM) with the core of 
the Radial Based Function (RBF), SVM with the core of 
linear function, Neural Network (BP), decision tree of 
rough set, random forest, and K nearest neighbor 

Jiahui Xu, et al. 2012 
[40] 

 
Training sample is the most important factor in 
the supervised satellite image classification 
methods. Accuracy of the methods highly 
depends on the samples taken for training. 
Training samples are two types, one used for 
classification and another for supervising 
classification accuracy. Most commonly used 
supervised classification approaches are: 
 
3.2.1.1 Maximum likelihood  
 
Maximum likelihood decision rule is based on 
Gaussian estimate of the probability density 
function of each class. Maximum likelihood 
classifier evaluates both the variance and 
covariance of the spectral response patterns in 
classifying an unknown pixel. It assumes the 
distribution of the cloud of points forming the 
category training data to be normally distributed. 
Under this assumption, distribution of response 
pattern can be described by mean vector and the 
covariance matrix. From the given parameters 
the statistical probability of a given pixel value 
can be computed. By computing the probability 
of the pixel value, an undefined pixel can be 
classified. After evaluating the probability the 
pixel would be assigned to the one with highest 
probability value. One of the drawbacks in 
maximum likelihood classifier is large number of 
computation required to classify each pixel [17]. 
 
3.2.1.2 Artificial Neural Network (ANN) 
 
ANN has become increasingly popular for 
classification of remote sensing data. ANN is a 
simple structure consisting a set of processing 
units, interconnected with each other by 
weighted channels similar to a biological neuron 
[42]. The major appeal of ANN lies in its higher 
tolerance to any noise in the data, distribution 
free assumption, its ability to weight the 
importance of variables in the analysis and its 
capability to perform adequately in the presence 

of small training data set [43]. The feed forward 
BPNN learning algorithm is the most common 
algorithm used for remote sensing image 
classification [44]. 
 
3.2.1.3 Bayesian Network (BN) 
 
Bayesian Network provide a very general and yet 
effective graphical language for factoring joint 
probability distributions which in turn make them 
very popular for classification. A BN is a 
graphical model represents variables (as nodes) 
and cause-effect relationships (as directed links) 
between variables. All geographical data has 
uncertainty associated with its attributes, a BN 
uses belief probabilities to represent these 
uncertainties in a mathematically sound way. The 
two major tasks in learning a BN are learning the 
graphical structure and then learning the 
parameters for that structure [45]. 
 
3.2.1.4 Decision tree 
 
Decision tree approach is a non-parametric 
classifier and an example of machine learning 
algorithm. It involves a recursive partitioning of 
the feature space, based on a set of rules that 
are learned by an analysis of the training set. A 
tree structure is developed where at each 
branching a specific decision rule is 
implemented, which may involve one or more 
combinations of the attribute inputs. A new input 
vector then “travels” from the root node down 
through successive branches until it is placed in 
a specific class. Decision tree has ability to 
handle missing and noisy data, and non-
parametric nature. Decision trees are not 
constrained by any lack of knowledge of the 
class distributions. It can be trained quickly, 
takes less computational time [46]. C5.0 is 
flexible and is based on decision tree algorithm 
that is one of the most effective form of inductive 
learning [47]. Combining Bayes method with 
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inductive learning not only improves classification 
accuracy greatly, but also extends the 
classification by subdivide some classes with the 
discovered knowledge [48]. 
 
3.2.1.5 Minimum distance 
 
Minimum distance classifies image data on a 
database file using a set of 256 possible class 
signature segments as specified by signature 
parameter. Each segment specified in signature, 
for example, stores signature data pertaining to a 
particular class. Only the mean vector in each 
class signature segment is used. Other data, 
such as standard deviations and covariance 
matrices, are ignored (though the maximum 
likelihood classifier uses this). The result of the 
classification is a theme map directed to a 
specified database image channel. A theme map 
encodes each class with a unique gray level. The 
gray-level value used to encode a class is 
specified when the class signature is created. If 
the theme map is later transferred to the display, 
then pseudo-colour table should be loaded so 
that each class is represented by a different 
colour [49]. 
 
3.2.1.6 Parallel piped 
 
In the parallelepiped decision rule, the data file 
values of the candidate pixel are compared to 
upper and lower limits. These limits can be either 
the minimum and maximum data file values of 
each band in the signature or the mean of each 
band, plus and minus a number of standard 
deviations, or any limits that you specify, based 
on your knowledge of the data and signatures. 
There are high and low limits for every signature 
in every band. When a pixel's data file values are 
between the limits for every band in a signature, 
then the pixel is assigned to that signature's 
class. Limitation of this approach is that since 
parallelepipeds have "corners", pixels may be 
classified which are actually quite far, spectrally, 
from the mean of the signature [50]. 
 
3.2.1.7 K-nearest Neighbor (KNN) 
 
Nearest neighbor based algorithms are simple 
but effective methods used in statistical 
classification. Categorizing unlabeled samples is 
based on their distance from the samples in 
training dataset. KNN classification a set of k 
nearest neighbors is computed for an unlabeled 
sample instead of a single nearest neighbor. 
Then, the test sample is assigned to the class 
that occurs most frequently among the k-nearest 

training samples. If the ranges of the data in 
each dimension vary considerably, this can affect 
the accuracy of the nearest neighbour based 
classifications. Thus, both the training and testing 
data need be normalized [51]. 
 
3.2.1.8 Mahalanobis classification 
 
It is based on correlations between variables by 
which different patterns can be identified and 
analyzed. It gauges similarity of an unknown 
sample set to a known one. It differs from 
Euclidean distance. It takes into account the 
correlations of the data set and is scale-invariant. 
The author [52] illustrate Mahalanobis 
classification algorithm that uses spatial 
thresholds defined from the local knowledge to 
extract the reliable urban land cover information 
from the selected optical and microwave data 
sets. 
 
3.2.1.9 Object base classification 
 
Object-oriented classification pattern deals with 
image objects which share the similar attributes, 
such as Digital Number (DN) value, spectral 
characteristics, texture, size, shape, 
compactness, context information with adjacent 
image objects, etc [53,54]. Hence in object-
oriented classification pattern, image object is the 
aggregation of similar pixels by image 
segmentation method, so the formation of image 
objects is a weighed mean process and can 
reduce the influence of random noise point which 
decreases the limitations exist in the feature 
analysis in other classifiers [55]. 
 
3.2.2 Unsupervised classification  
 
Unsupervised Classification technique uses 
clustering mechanisms to group satellite image 
pixels into unlabelled classes/clusters. Later 
analyst assigns meaningful labels to the clusters 
and produces well classified satellite image. 
Unsupervised methods are usually very fast and 
computationally efficient. Most common 
unsupervised satellite image classifications are: 
 
3.2.2.1 ISODATA (Iterative Self-Organizing Data 

Analysis Technique) 
 
The ISODATA clustering method uses the 
minimum spectral distance formula to form 
clusters. It begins with either arbitrary cluster 
means or means of an existing signature set and 
each time the clustering repeats, the means of 
these clusters are shifted. The new cluster 
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means are used for the next iteration. The 
ISODATA utility repeats the clustering of the 
image until either a maximum number of 
iterations has been performed or a maximum 
percentage of unchanged pixels have been 
reached between two iterations [56] 
 
3.2.2.2 Support Vector Machine (SVM) 
 
The SVM formulation is based on the Structural 
Risk Minimization principle, which is an inductive 
principle for model selection that aims at 
providing a trade-off between hypothesis space 
complexity and quality of fitting the training data. 
The SVM approach has excellent properties like, 
good generalization ability, high effectiveness in 
hyper dimensional feature space, learning phase 
associated with the minimization of a convex cost 
function that guarantees the uniqueness of the 
solution and the possibility to be implemented in 
a parallel architecture thus reducing the overall 
computational time by an adequate parallel 
processing [57]. 
 
3.2.2.3 K-Means 
 
It is a popular statistics and data mining 
technique. It partitions n observations into k 
clusters based on Euclidean mean value. 
Advantages with the K-Means technique are 
simple to process and fast execution. Limitation 
with this method is analyst should know priori 
number of classes [58]. 
 
4. CONCLUSION 
 
Selection of a suitable classifier requires 
consideration of many factors, such as 
classification accuracy, algorithm performance, 
and computational resources. Classification 
algorithms can be per pixel, sub pixel, per field, 
contextual, knowledge based and combination of 
multiple classifiers. Classification approaches 
may vary with different types of remote-sensing 
data. Pixel-based image analysis is limited 
because the image pixels are not true 
geographical objects and the pixel topology is 
limited. Pixel based image analysis largely 
neglects the spatial photo-interpretive elements 
such as texture, context, and shape; the 
increased variability implicit within high spatial 
resolution imagery confuses traditional pixel-
based classifiers resulting in lower classification 
accuracies. A per-field or object-oriented 
classification approach is most favorable for fine 
spatial resolution data as the impact of the 
shadow problem and the wide spectral variation 

within the land-cover classes is isolated. Sub-
pixel classification methods can overcome the 
problem associated with mixed pixels in medium 
and coarse spatial resolution data. Contextual 
classification is developed to overcome the 
problem of intraclass spectral variation. 
Knowledge based classification approach is most 
suitable when dealing with multisource data such 
as combination of spectral signatures, texture 
and context information and ancillary data.  
Hybrid approaches of combining multiple 
classification schemes has been found to be 
helpful for improvement of classification accuracy 
which is based on the type of image obtained 
from remote sensors (multispectral image, 
superspectral image or hyperspectral image) 
and the application area. 
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