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Abstract

In this paper, an efficient atlas based approach for muliptominal organ segmentation is presen
This automatic segmentation of different organs such ae,skitineys, liver, aorta, spleen of abdomi
image is based on allocation of spine as landmark. Iecugears several researches has been don
developing automatic segmentation techniques of abdomihidn@ges however still it is an incredib

system for abdominal image segmentation by marking sgnandmark to extract different organs us
a fuzzy based system. The proposed technique uses the fact ttigieroajans of abdominal images &g
situated at a particular distance and in particular rafigagles from the spine and spine is the solit
organ which is frequent in the slices of CT image datalsehis paper we focused for the segmenta
of liver, kidney, aorta, spine, spleen. This systeravigluated on the data of several patients (152

challenging task to segment this efficiently and appropyiafghis paper proposed a fully automatic
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images which consist all such organs) and obtained signifieanlts by comparing the computed results

to the boundaries manually traced by experts.
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1 Introduction

Image Segmentation is one of the most important issuesvefal imaging applications especially in case of
Medical Imaging. Efficient automatic segmentation of abdohimage is still a very challenging task as it
deals with the internal structure of the patient, thesactsires can be anatomical organs but also
pathological lesions. Automatic segmentation of the anatérorgmns from the large image data set is
having severe interest by researchers or scientssis permits the radiologist to assist in diagnosis, by
detecting possibly forgotten lesions, and also to accelénat@rocess of analysis [1]. If we talk about
abdominal image segmentation multi-region image segmentatiomagjor task in abdominal imaging. Due
to poor resolution and weak contrast this task is difficuthe presence of noise and artifacts [2,3].

Therefore the automatic segmentation of the abdominalarpays an important role in the study of the
function of kidney, liver, spine, aorta etc.

After go through the literature survey we found that ritw several techniques has been proposed for
automatic individual organ segmentation and multi organ segri@mfabm abdominal images like Daw-
Tung Lin et al. proposed method for kidney segmentation on abdb@T images by allocation of spine as
landmark and adaptive region growing [4] average correlatb@fficient obtained in that 88% between
automatic and manual segmentation which is significantlydgdoussema Zayane et al. worked on
automatic liver segmentation using basic operations of enpeigcessing like thresholding, edge detection,
median filtering, and basic morphological operations withdyresults [1]. Ritu punia et al. [5] reviewed
techniques of automatic liver segmentation based on neetabrk based [6,11], Support vector machine
based [12,15], Clustering based [16,20], Hybrid techniques4R1(&ng Luo et al. used graph cuts method
for segmentation of abdomen MR images especially far land kidneys. They used region growing
method and morphological operations for initial contour detie¢han shape priors obtained by training the
shape template constructed by integrating the shape jmiorshe kernel graph cuts energy function [25].
Paola Campadelli et al. proposed automated system forrabal organ segmentation like heart, bones (i.e.
ribs and spine), liver and its blood vessels, kidneys, and sf&¢nA. Shimizua et al. [27] suggested
concurrent extraction of multiple organs from abdominal Cages using process of abdominal cavity
standardization with feature database and atlas guelgdentation incorporating parameter estimation for
organ segmentation. Regina Pohle et al. proposed abdominal ingrgensation using adaptive region
growing [28].

The objective of this method is to combine efficiergraentation technique of different abdominal organs
such as adaptive region growing method for segmentation of kicddeyptive thresholding technigue for
liver segmentation, abdominal architecture for spine allacatvatershed method for spleen segmentation
and for aorta segmentation we used structural design of abdlo@il image.

2 Implementation

Our implementation consist three major steps given lasvbe

1. Allocation of Spine as landmark (as described as below)
2. Extraction of ROI (Region of Interest) located at mautdr distance and direction from spine
3. Extraction of Required Organ by applying appropriate algorithparticular region of interest

Basic flow chart of the above system is given below
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Abdominal CT Image

v
Preprocessing by Median Filtering
v
Allocation of Spine & Calculation of its Centroid

v

Computation of Distances and Angles from
spine on itsaxis as per prior knowledge

Required Segmentation of
Liver? Kidney? Spleen?
Aorta? Or All

Liver Kidney Aorta Splee All v None
v v v v
Technique for Technique for Techniquefor Techniquefor Spleen
Liver Extraction Kidney Extraction Aorta Extraction Extraction
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Fig. 1. Flow chart of the proposed system
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Description of the major steps are given below.
2.1 Median Filtering

Preprocessing of the abdominal image is very necgs® reduce the noise and for the further image
analysis. It is the main and challenging factortle computer-aided analytic systems [30]. The pre-
processing is extremely required for MR/CT imagksages are to be made more suitable for further
processing in CAD systems, the image quality néedse enhanced, and Noise in the image needs to be
removed [31]. To reduce the noise and in homogeseit the image, we used the Median Filtering. iMai
purpose to use this is to reduce noise and enhamteshthe edges of image [32].

Median filtering provides an efficient way to deeteame [3 reference]. Basic Steps of median filgedre
given below discussed in [29].

It replaces each pixel value with the median ofgteey values in the region of pixel:
1. Take a3 x 3 (or5x5 etc.) region centered arquirel (i)
2. Sort the intensity values of the pixels in the oeginto ascending order

3. Select the middle value as the new value of pixgl (

Computation of Median Value is given below

Sorted by pixel values
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Fig. 2. Computation of median value [29]
2.2 Allocation of Spine and the M easurement of Angles and Distances

To locate spine in an abdominal image after detgcabdominal cavity described as in [4] we have
performed the following steps. Let |11 and 12 be kmegth of the horizontal and vertical axis respedy,
spine is positioned at the location (@, %1.56}) as X in the following Figure.

We have shifted the origin of the axis at centafithe spine as show in the Fig. 4.

Once the spine is located we started to calculatgea and distance from the horizontal axis of esgiom
given ten data sets as shown. Than we found thatast of the slices aorta is specifically situagtdhe
angle of 85° to 145°. Liver is situated at certangle and distance. Spleen is also situated .netgjle and
distance and both of the kidneys presents at timation of 40° to 80°. We are considering thet facour
research that spine presents frequently in thesslif abdominal set and all other organs like kidseleen,
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liver can be viewed in certain slices for doing g#@me we have analyzed 152 images consists all such
organs and by referring Tsaggaan’'s Report [33].

Spine
Fig. 3. Abdominal region [4]

2.3 Liver Region Extraction and Its Segmentation

After examined huge data set of abdominal imagesfawmd that liver is situated mainly in second
coordinate with some portion on part Il as pegiorion spine shown in the following figure.

Fig. 4. Origin located at centroid of spine

Basically it is positioned in the higher right quawt of the abdomen, right part of the abdomenantbp
of the intestines. With the relative orientatioorfr spine, liver consisting part of abdominal im&gs been
cropped out automatically and further following ogg@n has been carried out on candidate ROI far li

segmentation [38-41,43].

1. Adaptive Thresholding

2. Basic Morphological Operation
3. Extraction of liver boundary

4. Segmentation of Liver



Saxena et al.; BJMCS, 12(1): 1-14, 2016; ArticleBId1CS.20812

Adaptive thresholding is also known as dynamic $hotding. Ideally, In this image is devided intorpa
overlapping sub images. The histograms of all the images are constructed and the local threstaskels
obtained. Then the threshold value is obtainecht®rpolating the result of sub images.

For the liver segmentation point of view we haveduMean + Constant or Median + Constant statithids
locally apply in to the overlapping sub regions.

After obtaining the thresholded image morphologiclalse operation is applied to fill in holes andatim
gaps in the extracted image. We used 8-connectigtib@s to keep the block whose region is the kigge
and set the others to zero. After this step bitigey mask is obtained.

Then we take out the liver periphery by settingixelpto O if its 4-connected neighbors are all tta s
leaving only boundary pixels.

Multiply the original liver CT image with the liveanasked image to obtain the final segmented liggron
with gray level values as those of original image.

2.4 Kidney Region Extraction and Its Segmentation

After analyzing several abdominal CT images anthastioned in [4] both kidneys appears in abdoméntal
inclination of 40°-801f we are considering middle slices of the sequesicET scan data sets. To extract
regions of both the kidneys we implemented theofulhg steps.

1. Fro_m the centroid location of spine move towardhlbe side of spine to extract candidate kidney

2. rEe;_ﬁ];l)ct)ir(]:s.candidate kidney region taking out withogressive positioning on the successive CT

3. (S)“r?f;.the candidate kidney region is found for bkitneys adaptive region growing has been

4. E{%nglsrci .Modification and both kidney segmentatioag®d on the priori knowledge of the shape of
idney

Detailed description of kidney segmentation is giireour research paper [30].

2.5 Aorta Region Extraction and Its Segmentation

Aorta is also a very important organ for radiol¢giito analyze abdominal CT images. When we analyzed
numerous datasets of abdominal images and aftemlating distances and angles from spine we hawedo
that its candidate region is mostly situated betwaegles 90° to 135° with certain distance orieritech
spine. After extracting the interested region weehdone basic operations of image processing gigen
below

1. Extract region of aorta at certain angle by creptiircular mask based on prior knowledge of
abdominal image.

2. Basic Morphological operations like dilation, filt§ and erosion one by one.

3. Creation of boundary of aorta.

2.6 Spleen Region Extraction and Its Segmentation

For the point of view of spleen segmentation wedusatershed approach as discussed in [34] after
detecting the region of interest of spleen at aedagle and distance from spine. After observiengsal CT
data set we found that area of spleen is situatétbaight side of spine we certain distance amglea Our
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approach is different from [34] in such a way that firstly extracted ROI of spleen from the landknar
pointed as spine. After extracting region of ing¢nee apply following step to segment out spleen.

1. Determination of region of interest marked from #ipine at right side from the angle°@0 -70 at
certain distance.

Smoothing by anistropic filter as given in [34]
Basic Morphological operations.

Watershed Segmentation

Spleen Segmentation

agrwDN

Evaluation of the proposed system is tested byirftnthe correlation among automatic segmentatioand
manual segmentation (Traced by Expertg)uSing Dice similarity coefficient [4,35-37] witholfiowing
equation

(S =EN(SUS) 1)

3 Experimental Setup and Results

The experiments performed in this paper estimageprformance of the designed automated system to
extract multiple soft tissues of abdomen.

Dataset: The Medical data was provided by Department ofiRdagnosis & Imaging, Institute of Medical
Sciences, Banaras Hindu University, Varanasi, Irafisseveral patients. However, we considered those
slices (152 slices) in which all the organs suclivas, kidneys, aorta, spleen appears.

3.1 Computing Environment

3.1.1 Design of Hardwar e used

Processor: Intel Core i7 -3770 CPU @340 GHz
RAM (Random Access Memory): 4 GB
Hard Disk Drive: 320 GB

3.1.2 Design of Softwar e used

System Type: 64 Bit operating System, X — 64- bagedessor.
Development Tools: MATLAB

Average Correlation Coefficient for Spine Segmeatato8%

Average Correlation Coefficient for Aorta Segmeiotat 95%

Average Correlation Coefficient for Liver Segmeidat 87%

Average Correlation Coefficient for Kidneys Segnagion: 81.5%

Average Correlation Coefficient for Spleen Segmiéoa 78%

Now we are going to present some random resulig\aeth from our implementation
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Extraction Result from Arbitrary Slice of Random Data Set
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Fig. 5. Original abdominal CT dlice Fig. 6. Anglesand distancein different directions
from spine
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Fig. 7. Spineaslandmarks Fig. 8. A Segmented aorta outlined
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Fig. 8. B Segmented liver Fig. 9. Segmented spleen
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Fig. 10. Segmented kidneys

Extraction Result from Arbitrary Slices of Other Data Set
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Fig. 11. Original abdominal CT dice Fig. 12. Spineaslandmarks
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Fig. 13. Angles and distance in different Fig. 14. Segmented Aorta outlined
directionsfrom spine
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100 200 500 400 500 600 50 100 150 200 IS0 300 350 400 450 500

Fig. 15. Segmented liver Fig. 16. Segmented spleen

100 130 200 250 300 350 400 430 500 S0 100 150 200 250 300 350 400 450 SO0
Fig. 17. Segmented kidneys

4 Discussion and Conclusion

An efficient automated system based on atlas igldped for segmenting an abdominal image that amnta
several regions as per choice of radiologist arsbarchers. Firstly spine is extracted based orr prio
knowledge and specific location of spine in abdahimage data set. After this several differentaoig
liver, kidney, aorta and spleen can be found effest This intelligent approach can be appropriatethe
images of different size as we are considering @atjve distance of different organs from spine.
Additionally, we extracted circular region for amrelliptical region for kidney, rectangle regiamw Epleen
and liver as per successive slices of CT datarmtpeoduces tremendous results. Another importspect

of this paper is to develop an automated systeinfeoaclinical purpose to handle radiologists eiffiatly.

We applied this intelligent method to 152 CT imagéseveral patients. Assessment of the performanhce
the system is done qualitatively and gquantitativ€lgrrelation coefficient for automated system arahual
segmentation is found significant as we have alrefistussed. Though, more data set needs to tael tes
validate this system. Another considerable aspkthis system is the time consumption. We saw that
want to extract out multiple organs of abdomen tie¢akes considerable time to execute as it poee

by one. Parallel Computing seems to be the intailigsolution for this. In future, after adding phaia
computing to this system can give the extraordinasult. It can be achieve by using GPU (Graphical
Processing Unit), Parallel Computing toolbox of MANB, Multithreading of Java or any other tool of
parallel processing.

10
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