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Abstract

In this paper, we introduce an implication operation, called weak implication, which will be quite

useful in order to characterize subdirectly irreducible monadic Heyting algebras. Furthermore, it

is shown that deductively semisimple algebras are the non trivial ones such that the subalgebra

of constants is a Tarski algebra with first element, i.e. a Boolean algebra, as it is mentioned by

A. Monteiro and O. Varsavsky in 1957 (Algebras de Heyting monádicas, Actas de las X Jornadas

de la Unión Matemática Argentina, Bah́ıa Blanca, (1957), (52–62). Finally, it is stated that some

of the results established for monadic Heyting algebras are also valid for monadic generalized

Heyting algebras.
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1 Preliminaries

We refer the reader to the bibliography listed here as [1, 2, 3, 4] for specific details of the many
basic notions and results of Heyting algebras including distributive lattices and universal algebras
considered in this paper.

In 1995, A. Monteiro described Heyting algebras, which he called Brouwer algebras, as algebras
〈L,∧,∨,→, 0, 1〉 of type (2, 2, 2, 0, 0) satisfying the identities:

(H1) x→ x = 1,

(H2) (x→ y) ∧ y = y,

(H3) x ∧ (x→ y) = x ∧ y,

(H4) x→ (y ∧ z) = (x→ y) ∧ (x→ z),

(H5) (x ∨ y)→ z = (x→ z) ∧ (y → z),

(H6) 0 ∧ x = 0.

It is simple to verify that in any Heyting algebra L the following properties hold ([3]) :

(H7) x ∧ y ≤ z if and only if y ≤ x→ z,

(H8) x ≤ y if and only if x→ y = 1,

(H9) y ≤ x→ y,

(H10) x ≤ y implies z → x ≤ z → y,

(H11) x ≤ y implies y → z ≤ x→ z,

(H12) x→ (y → z) = (x ∧ y)→ z = (x→ y)→ (x→ z).

In 1957, A. Monteiro and O. Varsavsky ([5]) (see also [6, 7, 8]) considered a generalization of monadic
Boolean algebras ([9]) and defined monadic Heyting algebras as follows:

A monadic Heyting algebra (or MH−algebra) is a triple (L,∇,4) where L is a Heyting algebra
and ∇, 4 are unary operations on L which satisfy the following conditions:

(E1) ∇0 = 0, (E7) 4x ≤ x,

(E2) x ≤ ∇x, (E8) 4(x ∧ y) = 4x ∧4y,

(E3) ∇(x ∧∇y) = ∇x ∧∇y, (E9) 44x = 4x,

(E4) ∇(x ∨ y) = ∇x ∨∇y, (E10) 4∇x = ∇x,

(E5) ∇∇x = ∇x, (E11) ∇4x = 4x.

(E6) 41 = 1,

From the above definition, it immediately follows that ∇ is a quantifier on L ([10, p.185]) and 4
is the dual of an additive closure operator ([3, p.47]), called existential quantifier and universal
quantifier respectively.

In what follows we will denote by MH the variety of MH−algebras and they will usually be
indicated by L.

The well-known results announced here for MH will be used throughout the paper.

(MH1) If L ∈MH, then it is simple to verify that x = 4x if, and only if, x = ∇x and that 4(L)
is a subalgebra of L.
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(MH2) Let L ∈MH. Then, D ⊆ L is a monadic deductive system if it verifies: (D1) 1 ∈ D, (D2)
x, x → y ∈ D imply y ∈ D and (D3) x ∈ D implies 4x ∈ D. We will denote by D(L) the
sets of all monadic deductive systems of L.

(MH3) Let L ∈MH with more than one element and let Con(L) be the lattice of all congruences
on L. Then, Con(L) = {R(D) : D ∈ D(L)}, where R(D) = {(x, y) ∈ L × L : x → y, y →
x ∈ D}. Besides, the lattices Con(L) and D(L) are isomorphic considering the mappings
θ 7−→ [1]θ and D 7−→ R(D), which are mutually inverse, where [x]θ stands for the equivalence
class of x modulo θ.

2 Subdirectly Irreducible MH-Algebras

Next, our attention is focused on characterizing subdirectly irreducible as well as simpleMH−algebras.

Lemma 2.1. Let L ∈MH and a ∈ 4(L). Then, [a) = {x ∈ L : a ≤ x} is the monadic deductive
system generated by a.

Proof. It is routine.

Theorem 2.2. Let L ∈ MH with more than one element. Then, the following conditions are
equivalent:

(i) L is subdirectly irreducible,

(ii) 4(L) \ {1} has last element.

Proof. (i)⇒ (ii): By the hypothesis and (MH3), there is D0 ∈ D(L) \ {1} such that D0 ⊆ D for all
D ∈ D(L) \ {1}. Since D0 6= {1}, there is p ∈ D0, p 6= 1. From 4p 6= 1 and 4p ∈ D0 it follows
that [4p) ⊆ D0 and, consequently by Lemma 2.1, we have that [4p) = D0. On the other hand, let
x ∈ 4L \ {1}. Hence, Lemma 2.1 allows us to assert that [x) ∈ D(L) \ {1} and so, we have that
[4p) ⊆ [x). Therefore, 4p is the last element of 4L \ {1}.
(ii)⇒ (i): Let D ∈ D(L) \ {1}. Then, there is x ∈ D, x 6= 1 and so, 4x ∈ 4(L) \ {1}. If p is the
last element of 4(L) \ {1}, hence 4x ≤ p. Therefore, D0 = [p) ⊆ D for all D ∈ D(L) \ {1} and by
well-known results of universal algebra ([4]) we conclude the proof.

Definition 2.1. Let L be a Heyting algebra. A uq−pair on L is a pair (∇,4) of unary operations
on L such that (L,∇,4) ∈MH.

Definition 2.2. Let L be a Heyting algebra and (∇,4) be a uq−pair on L. (∇,4) is said to be
simple if 4x = 0 for all x ∈ L, x 6= 1.

It is easy to see that 4x = 0 for all x ∈ L, x 6= 1 if and only if ∇x = 1 for all x ∈ L, x 6= 0.

Theorem 2.3. Let (L,∇,4) ∈MH with more than one element. Then, the following conditions
are equivalent:

(i) (L,∇,4) is simple,

(ii) (∇,4) is simple.

Proof. (i)⇒ (ii): Let x ∈ L, x 6= 1. Hence, by Lemma 2.1 we have that [4x) ∈ D(L) \ {1} and
taking into account that L is simple we conclude that [4x) = L for all x ∈ L, x 6= 1. Therefore,
4x = 0 for all x ∈ L, x 6= 1.
(ii)⇒ (i): Let D ∈ D(L) \ {1}. Then, there is x ∈ D, x 6= 1. From the hypothesis and the fact that
4x ∈ D \ {1}, we have that 0 ∈ D which implies that D = L.
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3 Deductively Semisimple MH-Algebras

Our next task will be to indicate a characterization of deductively semisimple MH−algebras
different from the one announced in [5] without proof.

The following result will be used in the subsequent parts of this section.

Lemma 3.1. In MH the following identities hold true:

(E12) ∇(4x→4y) = 4x→4y,

(E13) 4(4x→4y) = 4x→4y,

(E14) 4(4x→ y) = 4x→4y.

Proof.
(E12): We have that

∇(4x→4y) ∧4x = ∇((4x→4y)) ∧∇4x, by (E11)

= ∇((4x→4y) ∧∇4x), by (E3)

= ∇((4x→4y) ∧4x), by (E11)

= ∇(4x ∧4y), by (H3)

= ∇4(x ∧ y), by (E8)

= 4(x ∧ y), by (E11)

= 4x ∧4y, by (E8)

≤ 4y .

and so, ∇(4x→4y) ≤ 4x→4y. The other inequality follows from (E2).

(E13): It is an immediate consequence of (E12) and (MH2).

(E14): From (E13) and (E7) we have that 4x→ 4y = 4(4x→ 4y) ≤ 4(4x→ y). Conversely,
we have that

4(4x→ y) ∧4x = 4(4x→ y) ∧44x, by (E9)

= 4((4x→ y) ∧4x), by (E3)

= 4(4x ∧ y), by (H3)

= 44x ∧4y, by (E8)

≤ 4y .

Hence, 4(4x→ y) ≤ 4x→4y.

In order to find the characterization we were looking for, we define a new binary operation ⇒ on
an MH−algebra L, which we call weak implication, by means of the formula:

x⇒ y = 4x→ y.

Lemma 3.2. The weak implication verifies the following properties:

(I1) x⇒ x = 1,

(I2) x⇒ (y ⇒ x) = 1,

(I3) (x⇒ (y ⇒ z))⇒ ((x⇒ y)⇒ (x⇒ z)) = 1,
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(I4) 1⇒ x = x,

(I5) x⇒4x = 1,

(I6) x ≤ y implies x⇒ y = 1.

Proof. We will only prove (I3).
(I3): From the definition of ⇒, E14 and H12 we have that (x ⇒ y) ⇒ (x ⇒ z) = 4(4x → y) →
(4x → z) = (4x → 4y) → (4x → z) = (4x → 4y) → (4x → z) = 4x → (4y → z) = x ⇒
(y ⇒ z).

Hence, by (I1) we conclude the proof.

Definition 3.1. Let L ∈MH and D ⊆ L. D is a week deductive system of L if it satisfies:

(wd1) 1 ∈ D,

(wd2) x, x⇒ y ∈ D imply y ∈ D.

Lemma 3.3. Let L ∈MH and D ⊆ L. Then, the following conditions are equivalent:

(i) D is monadic deductive system,

(ii) D is a weak deductive system.

Proof. (i)⇒ (ii): Suppose that x, x ⇒ y = 4x → y ∈ D. Then, by (D3) we have that 4x ∈ D,
and so by (D2) we get y ∈ D.
(ii)⇒ (i): It is plain that (D3) follows from (I5) and (wd2). Suppose now that x, x → y ∈ D.
Hence, by (H11) we infer that x → y ≤ x ⇒ y. From this assertion and (I6) we have that
(x→ y)⇒ (x⇒ y) ∈ D, and so by (wd2) we conclude that y ∈ D.

Now, we have achieved our desired goal of characterizing deductively semisimple MH−algebras and
thus, restated in a more explicit form the results established in [5].

Lemma 3.4. Let L ∈MH and x, y ∈ L. Then, the following identities are equivalent:

(i) (4x→4y)→4x = 4x,

(ii) ((4x→4y)→4x)→ x = 1,

(iii) ((x⇒ y)⇒ x)⇒ x = 1.

Proof. (i)⇒ (ii): By (I1), we have ((4x → 4y) → 4x) → x = 4x → x = x ⇒ x = 1. (ii)⇒ (iii):

((x ⇒ y) ⇒ x) ⇒ x = 4(4(4x → y) → x) → x. Hence, by (E14) we have ((x ⇒ y) ⇒ x) ⇒ x =
(4(4x→ y)→4x)→ x = ((4x→4y)→4x)→ x = 1.

(iii)⇒ (i): From the hypothesis, (I2) and (I6) we conclude that (x ⇒ y) ⇒ x = x and so,
x = 4(4x → y) → x. Hence, by (E14) we have that 4x = 4(4x → y) → 4x = (4x → 4y) →
4x.

Theorem 3.5. Let L ∈MH be non trivial. Then, the following conditions are equivalent:

(i) L is a deductively semisimple MH−algebra,

(ii) L satisfies the identity (4x→4y)→4x = 4x,

(iii) 4(L) is a monadic Tarski algebra,

(iv) 4(L) is a monadic Boolean algebra.

Proof. It is a direct consequence of Lemma 3.1, 3.2, 3.3, 3.4, [11, pag. 427-431] (see also [12])
and well-known results on monadic Tarski algebras (see [13]) and monadic Boolean algebras (see
[9]).
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4 Concluding Remarks

Recall that a generalized Heyting algebra (or H0−algebra)([2]) is an algebra 〈L,∧,∨,→, 1〉 of type
(2, 2, 2, 0) which satisfies (H1) to (H5). Then, we can define monadic generalized Heyting algebras
(or MH0−algebras) as triples (L,∇,4) such that L is an H0−algebra and it verifies the identities
(E2), . . ., (E11).

Hence, all the results obtained for MH−algebras which do not involve the first element also hold
true for MH0−algebras. Thus, for example, semisimple MH0−algebras are characterized as follows:

Let L be a non trivial MH0−algebra, then the following conditions are equivalent:

(i) L is a deductively semisimple MH0−algebra,

(ii) L satisfies the identity (4x→4y)→4x = 4x,

(iii) 4(L) is a Tarski algebra.

On the other hand, if L ∈MH it is easy to see that the identity (E1) is a consequence of (E7) and
(E11). However, condition (E13) is not a consequence of (E6),. . ., (E9). To this end, let us consider
the lattice L shows in Fig. 1 with the operations → and 4 defined as follows:

�
�
�

@
@
@
�
�
�

@
@
@

•

•

•

•

Fig. 1. Lattice L

0

b

1

a

→ 0 a b 1

0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

x 4x
0 0
a a
b 0
1 1

Indeed, it is easy to see that (E6), . . ., (E9) hold, but (E13) is not verified for x = a and
y = 0. Motivated in this example, we introduce the notion of U−Heyting algebras as algebras
〈L,∧,∨,→,4, 0, 1〉 of type (2, 2, 2, 1, 0, 0) such that 〈L,∧,∨,→, 0, 1〉 is a Heyting algebra and 4
satisfies (E6),. . .,(E9) and (E13). In a prospective paper we will develop the theory of these algebras.
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