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Abstract

Two approaches to parameter estimation for a mixture of two univariate Gaussian distributions

are numerically compared. The proposed method (PM) is based on decomposing a continuous

function into its odd and even components and estimating them as polynomials, the other is the

usual maximum likelihood (ML) method via the expected maximisation (EM) algorithm. An

overlapped mixture of two univariate Gaussian distributions is simulated. The PM and ML are

used to re-estimate the known mixture model parameters and the measure of performance is the

absolute percentage error. The PM produces comparable results to those of to the ML approach.

Given that the PM produces good estimates, and knowing that the ML always converges given

good initial guess values (IGVs), it is thus recommended that the PM be used symbiotically with

the ML to provide IGVs for the EM algorithm.
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1 Introduction

When computing model parameters, several statistical methods that largely depend on the probability
density function of the underlying population are employed. In applied statistics, the most frequently
encountered model deals with a set of entities on which statistical inferences are made based on a
sample drawn from the parent entities. The entities are often times a mixture of several component
populations, say K-components with conditional densities p(y | λi)i=1,...,k, and prior probabilities
p(λi)i=1,...,k, where λi denotes the proportion of a given component in the mixture [1]. This scheme
is aimed at ascertaining the composition of each individual population in the mixture understudy.
The study is conducted on a sample drawn from the parent entities or population. For a great deal
in statistical modelling the probability distribution of the constituent K-components is considered
known, thereafter the major objective is to estimate the parameters of the probability density
associated with the parametric family of the mixture distributions. In this study, the mixture is
considered finite since it has known component mixture distributions, (i.e. K = 2), of the form

f(x, σ1,σ2, µ1, µ2, λ) = λ
1

σ1

√
2π
e
{−(x−εµ1)2

2σ21

}
+ (1− λ)

1

σ2

√
2π
e
{−(x−εµ2)2

2σ22

}
. (1.1)

A general representation of two normal mixtures with equal mixing proportions of equation 1.1, is
of the form

f(x,Ψ) = A1e
−α1(x−εµ1)2 +A2e

−α2(x−εµ2)2 , (1.2)

where Ψ = (A1, A2, µ1, µ2, α1 , α2) is the absolute collection of distinct parameters occurring in the
mixture and ε is the separation or distance between the absolute mean µ of the overall mixture and
the means µ1 and µ2 of the individual K -component distributions. Its significance is to emphasize
a non-zero separation between the distribution means. The Gaussian distribution has been studied,
because it is regarded as the most important distribution in the scientific domain and appears
more frequently in the applied statistics [1] [2]. In section 2, we describe the problem of parameter
estimation associated with the maximum likelihood (ML) method via the expectation maximization
(EM) algorithm.

2 Estimation Problem

There exist several methods for approximating parameters of a mixture of normal distributions
[3], [4] [5]. However, the ML method via the EM algorithm is considered as one of the most
robust methods for practical applications [5]. In part, this is because the computed estimates have
acceptable sampling and asymptotic properties and as well the likelihood function is admirable for
iterative computations for parameter optimisation [1] [6]. However, the ML method leads to implicit
equations in the unknown parameters and can not be solved analytically since they do not have
closed-form solutions [7], hence an ill-posed problem. Their solutions are mainly obtained through
iterative optimization, which requires initial guess values (IGVs) to start the iteration process. The
first order necessary conditions of providing IGVs were published by [8] A usually encountered
problem is the selection of suitable initial parameter values [9]. From reviewed literature, it appears
that no systematic method exists as yet for computing the IGVs. It is more of an art than a
science to provide reasonable guesses that will guarantee convergence to the optimal solution [10]
[6]. Providing a reasonable guess requires high expertise and also, if the provided guess is far from
the optimal value, then high computation time may result [10] [11]. The proposed method (PM)
could be used symbiotically with the ML method to provide IGVs. For an informative and detailed
presentation of the ML method via the EM algorithm we refer the reader to [1], [12] [13]. In section
3 we provide a simple and elementary mathematical approach on which the formulation of the PM
is based.
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3 Mathematical Basis

Mathematical notions for decomposing continuous functions that are bounded by real numbers are
presented. It is upon these notions that the PM is developed. Consider the following elementary
but important trivial notions of symmetry and antisymmetry from the field of functional analysis:

• A function f : R→ R is said to be even if f(−ξ) = f(ξ), for all ξ ε R, and odd if f(−ξ) = −
f(ξ), for all ξ ε R.

• Every function f : R → R can be decomposed into a sum of its even fe(ξ) and odd fo(ξ),
components

fe(ξ) =
f(ξ) + f(−ξ)

2
and fo(ξ) =

f(ξ)− f(−ξ)
2

. (3.1)

Therefore,
f(ξ) = fe(ξ) + fo(ξ). (3.2)

Hence, all functions limited to the domain of real numbers can be expressed as a sum of their
even and odd components [14].

3.1 Proposed Method

In this section we state without proof a theorem on which the PM method can closely be linked.
For the proof and a detailed discussion of the theorem, the interested reader can refer to [15], [16],
[17] [14].

Theorem 1. The Weierstrass approximation theorem states that, any continuous real function
defined on a bounded closed interval of real numbers can be uniformly approximated by polynomials.

The formulation of the PM is based on the understanding of functional decomposition (Section 3)
and the Weierstrass approximation theorem which was later generalised by [16].

3.1.1 Procedure

Using the decomposition procedure in Equation (3.1), for ξ = x, the even component is

fe(x) = Ā1e
−α1x

2

+ Ā2e
−α2x

2

+O(x2) (3.3)

where
Ā1 = A1e

−α1µ
2
1ε

2

Ā2 = A2e
−α2µ

2
2ε

2

.

.

.

 (3.4)

and the odd component

fo(x) = β̄1xe
−α2x

2

+ β̄2xe
−α1x

2

+O(x3) (3.5)

where
β̄1 = A1α1µ1εe

−α1µ
2
1ε

2

β̄2 = A2α2µ2εe
−α2µ

2
2ε

2

.

.

.

 . (3.6)

A mathematical software, Maple15, is used for the functional decomposition. Equations (3.3 & 3.5)
represent polynomial-exponential series in x. When higher accuracy is required in both theoretical
and practical problems, higher order terms could be included, though this comes at a cost of heavy
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computation. Consider the following representation of Equation (3.3) having neglected the terms

Ā3x
2e−α2x

2

and Ā4x
2e−α1x

2

fe(x) = Ā1e
−α1x

2

+ Ā2e
−α2x

2

. (3.7)

Let y = x2, hence f(
√
y) = f(x), which for easy presentation is written as f̄(y) = f(

√
y) = f(x) in

the subsequent equations. Equation (3.3) can now be written as

f̄(y) = Ā1e
−α1y + Ā2e

−α2y. (3.8)

It is observed that, Equation (3.8) represents a general solution of a second order differential equation
that could be written as

d2f̄

dy2
+ β1

df̄

dy
+ β2f̄ = 0. (3.9)

β1 and β2 can now be estimated from a dataset {f̄(yi), yi}, i = 1, ..., n. Firstly df̄
dy

and d2f̄
dy2

are

calculated numerically and the ordinary least squares (OLS) method is used to calculate β1 and β2.
Having estimated β1 and β2, the relationship between the exponents α1 and α2 of Equation (3.8)
and the parameters β1 and β2 of Equation (3.9) can be written as: β1 = α1 + α2 and β2 = α1α2

and solved in terms of β1 and β2, where α1andα2 are exponents as defined in Equation (1.2)

α1, α2 =
β1

2
±

√
β2

1

4
− β2. (3.10)

Substitute the estimated values of α1 and α2, into Equation (3.8) and let

Y1 = e−α1y and Y2 = e−α2y. (3.11)

Substituting Equations (3.11) into Equation (3.8) yields

f̄(y) = Ā1Y1 + Ā2Y2. (3.12)

If a dataset {xj , f(xj)} where j = 1, ..., n is available, then a new dataset {yj = x2
i , f(yj) = f(

√
xi)}

where j = 1, ..., n could be constructed. Equation (3.12) can as well be solved using the OLS
methods to obtain parameter estimates for Ā1 and Ā2, since Y1j = e−α1yj and Y2j = e−α2yj .
Substituting for Ā1 and Ā2, in the first two expressions of Equation (3.4), two equations are obtained
containing four unknown parameters. Therefore, the parameters cannot be estimated explicitly at
this stage. Let us write the first two expressions of Equation (3.4) as

Ā1 = A1e
−α1µ

2
1ε

2

, (3.13)

and
Ā2 = A2e

−α2µ
2
2ε

2

. (3.14)

On estimating the odd component Equation (3.5) of the mixture model, we first divide it by x so
that higher order x values in it can appear just like those in the even component. This is aimed at
estimating it exactly in the same way as the even component

fo(x)

x
= β̄1e

−α1x
2

+ β̄2e
−α2x

2

+O(x2) (3.15)

Dividing Equation (3.5) by x, the odd terms are converted into even, see Equation (3.15) and in
this way both the even and odd components can be compared. Only the first two terms of Equation
(3.15) are considered. Let y = x2 then f(x) = f(

√
y) and, f̄(y) = f(

√
y), as before in the estimation

of the even component. Neglecting the terms β̄3x
2e−α2x

2

and β̄4x
2e−α1x

2

, Equation (3.15) can be
written as

f̄(y) = B̄1e
−α1y + B̄2e

−α2y. (3.16)
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Computing the exponential functions as in Equation (3.11) yields

Z1 = e−α1y and Z2 = e−α2y. (3.17)

Let f̄(y) = f̄(z) and substitute Equation (3.17) into Equation (3.16) to obtain

f̄(z) = B̄1Z1 + B̄2Z2. (3.18)

Again if a dataset {xj , f(xj)} is available, then Equation (3.18) can as well be solved using
OLS methods to obtain parameter estimates for B̄1 and B̄2. The estimated parameters are then
substituted into Equation (3.6) to obtain

β̄1 = A1α1µ1εe
−α1µ

2
1ε

2

, (3.19)

and

β̄2 = A2α2µ2εe
−α2µ

2
2ε

2

. (3.20)

Recall that at some stage, the odd function was divided by an x factor so that it could approximate
an even function. In this way the equations from the odd function can be compared to those from
the even component. Dividing Equation (3.14) by Equation (3.20) and simplifying, we are able to
estimate µ2 as

µ̂2 =
β̄2

Ā2α2ε
, for ε 6= 0. (3.21)

On making appropriate algebraic substitutions the rest of the unknown parameters; µ1, A1, and
A2 are obtained from the following equations

Â2 = − Ā3
2α2

β̄2
2 − Ā2

2α2

, (3.22)

µ̂1 =
β̄1

Ā1α1ε
, (3.23)

and

Â1 = − Ā3
1α1

β̄2
1 − Ā2

1α1

. (3.24)

After estimating the general unknown parameters A1, A2, µ1 and µ2, of Equation (1.2), it can be
concluded that the parameters of the mixture model have been completely estimated. It is also
observed that the two means of the original problem, Equation (1.1) are estimated from Equations
(3.21 & 3.23); the standard deviations are computed from the relationships of Equations (3.22 &
3.24) to the original problem, Equation (1.1). At this point, it is important to caution the reader
that, two values for each of the standard deviations (σ1 and σ2) could be obtained from the latter
relationships, therefore, an average of the values is considered as the appropriate estimate for the
respective parameters. Hence the estimated parameters Â1, Â2, µ̂1 and µ̂2, can be used as the IGVs
for the unknown parameters in the EM algorithm.

Remark. In the process of parameter estimation small values of x are used. In this case it is possible

to neglect terms like x2e−αx
2

in comparison with e−αx
2

.

Remark. The origin, x = 0, in the vicinity of the maximum of the original distribution is considered.
Stated otherwise, the working interval is 0 < x� 1.

Assumption 1. For our computations it is assumed that the value of ε = 1. In otherwords the
respective means of the distributions have a unity separation from their absolute mean.
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Fig. 1. Two-component Gaussian mixture models. The upper most
curve is the mixture model, lower curve has, µ1 = −0.01 and middle

curve has µ2 = 0.2

4 A Monte Carlo Simulation Study

Our interest in this study is to compare the estimates from the proposed method with those of the
maximum-likelihood method and make appropriate recommendations based on the accuracy of the
results. We perform a simulation study of two univariate normal mixture distribution based on two
assumptions; one is that the distributions have equal mixing proportions and two, that the mixing
distributions had different standard deviations and means. The mixture distribution function is
expressed as

λN(µ1, σ1) + (1− λ)N(µ2, σ2), (4.1)

where N emphasizes the normal distribution and that λ + 1 − λ = 1, lambda considered known
as stated in the assumptions. For our simulation it is taken as 0.5. Since the separation between
components is determined by varying their parameters, one normal component is 0.5N(−0.01, 0.403)
and the other 0.5N(0.2, 0.448). The values of the standard deviations σ1 = 0.403 and σ2 = 0.448,
and means µ1 = −0.01 and µ2 = 0.2 are chosen in such a way that an overlapped mixture is
obtained.

In our simulation study, a fixed sample of size 599 was generated using Mathematica 8 basing on the
parameters indicated above. The synthetic data exhibited the required behaviour of an overlapped
normal mixture distribution, see Figure 1. In section 5, we present the results and their detailed
discussion.

5 Results and Discussion

Using the synthetic sample data obtained in section 4, the PM and ML methods were applied to
compute the known parameters of a mixture model. The results of the two methods were compared
and the measure of accuracy of their estimates was the absolute percentage error (APE), see Table
1. A smaller value of the APE of a method relative to the other indicated a higher accuracy of that
respective method in re-estimating the considered parameter. From our results it can be observed
that the PM produces better estimates of the standard deviations and for the second mean, µ2 as
compared to the ML approach, see Table 1.
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Table 1: Exact parameter values for the Gaussian mixture; estimated
values for both the proposed (PM) and maximum likelihood (ML)
methods and their respective absolute percentage error (APE).

..............................................................
Parameters Exact PM ML APE (PM) APE (ML)

µ1 −0.01 0.184184 0.021 1941 310
µ2 0.200 0.212534 0.049 6.3 75.5
σ1 0.403 0.543903 0.011 35 97
σ2 0.448 0.589939 0.199 31.6 55.6

6 Conclusion

Considering the estimates, and the accuracy of the two approaches, it is reasonable to conclude
that, the PM produced better results in comparison to the standard ML method. Nevertheless, it
has to be noted that the results of the ML method largely depend on the initial approximations.
The large error observed might have resulted from the provided starting approximations being
far from the neighbourhood of the required solution and could not guarantee convergence of the
method to the “exact” optimal values. Results presented in Table 1 should not lead to an instant
or “sweeping” conclusion that the PM is a better estimation approach than the ML method in the
general case. [18] observes that, the EM algorithm will always converge, but the results depend on
the starting approximations of the unknown parameters and the possibility of multiple solutions is
always present.

7 Recommendation

Since considerable research has shown that the ML approach via the EM algorithm always converges
to the optimal solutions given, “good” IGVs, we thus recommend that the PM approach be used
symbiotically with the ML to provide the necessary initial approximations required to commence
the iteration process in the EM algorithm.

Table 1 summarises the results obtained by applying the PM and ML estimation approaches on the
simulated data. Figure 1 shows the component mixture of the two univariate Gaussian distributions.
This kind of mixture is what is commonly referred to as the overlapped mixture.
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