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Abstract

We search for anisotropies in the arrival directions of cosmic rays (CRs) observed by the KASCADE-Grande air
shower experiment. The analysis is based on public data of about 23.7 million events with reconstructed primary
energies above 1 PeV. We apply a novel maximum-likelihood reconstruction method for the CR anisotropy that
compensates for spurious anisotropies induced by local detector effects. We find no evidence for a large-scale
dipole anisotropy in the data, consistent with official results based on the conventional east–west derivative
method. On the other hand, a subset of CRs with a median energy of 33 PeV shows strong evidence for a medium-
scale feature with an angular diameter of 40°. After accounting for the look-elsewhere effect, the post-trial
significance of this medium-scale feature is at the level of 4σ.

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858); Cosmic rays (329)

1. Introduction

Cosmic rays (CRs) experience deflections by Galactic and
extragalactic magnetic fields before their arrival on Earth. The
spatial variation of these magnetic fields in strength and
orientation scrambles the particles’ arrival direction and time.
Combined with the limited energy resolution and livetime of
CR observatories, these effects can explain the continuity of the
flux of CRs and the mostly isotropic distribution of their arrival
directions. However, some CR experiments have achieved the
necessary level of statistics to be able to infer weak anisotropies
in the arrival directions that reach a per-mille level at TeV–PeV
energies and even a percent level above the ankle (Di Sciascio
& Iuppa 2013; Ahlers & Mertsch 2017; Deligny 2019).

The size and strength of the residual anisotropy are controlled
by the spatial and temporal distribution of CR sources and
magnetic field configurations. The dipole anisotropy observed
below 2PeV can be understood in terms of the presence of
nearby sources—presumably supernova remnants—and aniso-
tropic diffusion in local magnetic fields (Ahlers 2016). This
large-scale anisotropy could induce the observed medium- and
small-scale features by CR streaming through local random
magnetic field configurations (Giacinti & Sigl 2012; Ahlers 2014;
Ahlers & Mertsch 2015). Extragalactic CRs above 8EeV show
a significant large-scale dipole feature with an amplitude of a
few percent. This observation can be interpreted as an excess
from an extragalactic source distribution, distorted by magnetic
fields (Aab et al. 2017).

So far, no significant CR anisotropies have been detected in the
intermediate range from 2 to 8EeV. It has been argued that the
best-fit dipole phases inferred from data in this energy range
exhibit a smooth transition between adjacent energy bins and
could indicate a continuous transition between source populations
(Deligny 2019). However, the significance of this observation
compared to random fluctuations is debatable. In any case, a
robust identification of anisotropies would provide valuable data
to decipher the transition between Galactic and extragalactic CR
sources.

In this Letter we search for anisotropies in the arrival
directions of CRs observed with the KASCADE-Grande air
shower experiment (Haungs et al. 2018). The analysis is based

on public data provided by the KASCADE Cosmic Ray Data
Center (KCDC) and uses a novel maximum-likelihood
reconstruction method introduced in Ahlers et al. (2016) that
we outline in the following section. We first discuss the
presence of a dipole anisotropy in the data and compare our
results to those derived via the conventional east–west (EW)
derivative method (Bonino et al. 2011). We then study—for the
first time—the presence of medium-scale anisotropies in the
KASCADE-Grande data.

2. Cosmic-Ray Anisotropy Reconstruction

Due to the diffusive dispersion of arrival times, the flux of
CRs can be considered as continuous over the livetime of
ground-based observatories. In a fixed energy range, we can
express the flux (units of cm−2 s−1 sr−1) as

( ) ( ) ( )f a d f a d= I, , , 1iso

where fiso is the angular-averaged isotropic flux level and I(α, δ)
is the relative intensity in terms of R.A. α and decl. δ. CR
diffusion predicts that the anisotropy δI=I−1 is subdomi-
nant, ∣ ∣ dI 1.
In the local reference system of a ground-based observatory

the arrival directions of CRs are uniquely characterized by their
azimuth angle j, zenith angle θ, and local sidereal time t. A unit
vector ( )j q¢n , in the local horizontal coordinate system is
related to the corresponding unit vector ( )a dn , in the celestial
equatorial coordinate system via a coordinate transformation

( ) ·= ¢n R nt . The rotation matrix R depends on local sidereal
time t and the geographic latitude Φ of the observatory; see, e.g.,
Ahlers et al. (2016). At any time, the observatory’s field of view
is limited by a maximum zenith angle θmax. Over the course of
many sidereal days, the observatory then covers a time-
integrated field of view in the equatorial coordinate system that
is characterized by the decl. band, d d d< <min max, with d =min

( )q-  F -max 90 , max and ( )d q=  F +min 90 ,max max .
We will assume in the following that the detector exposure 

per solid angle and sidereal time t accumulated over many
sidereal days can be expressed as a product of its angular-
integrated exposure E per sidereal time (units of cm2 sr)
and relative acceptance  (units of sr−1 and normalized as
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( )ò W W =d 1):

( ) ( ) ( ) ( )j q j q t E t, , , . 2

The same assumption is also implicit in CR background
estimations by direct integration (Atkins et al. 2003) or time-
scrambling (Alexandreas et al. 1993). Note that the accumula-
tion of data into sidereal bins tends to average out variations in
the relative acceptance that are out of phase with the length of
one sidereal day.

To simplify calculations on the local and celestial spheres,
the sky is binned into pixels of equal area ΔΩ using the
HEALPix parameterization of the unit sphere (Gorski et al.
2005). We follow the convention in Ahlers et al. (2016) and
use Roman indices for pixels in the local sky map and Fraktur
indices for pixels in the celestial sky map. Time bins are
indicated by Greek indices. For instance, the data observed at a
fixed sidereal time bin τ can be described in terms of the
observation in the local horizontal sky with bin i as nτi or
transformed into the celestial sky map with bin a as atn .

The number of CRs expected from within the solid angle
ΔΩ in the direction ( )j q¢n ,i i and within a sidereal time interval
Δt with a central value tτ is

( )mt t t I , 3i i i

where ( )fº Dt t t E tiso gives the expected number of
isotropic background events in sidereal time bin τ. The
quantity ( )j qº DW  ,i i i is the relative acceptance in the
local bin i, and ( ( ) ( ))j qº ¢t tR nI I t ,i i i is the corresponding
relative intensity observed in the time bin τ. Given mti, the
likelihood of observing tn i CRs is given by the product of
Poisson probabilities
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( )

m
=

t

t
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The maximum-likelihood (max-) combination of parameters
( )   I , , for given data n can be inferred via an iterative
reconstruction method as outlined and validated in Ahlers et al.
(2016) and Ahlers (2018).

The likelihood-based anisotropy reconstruction has several
advantages compared to the conventional EW derivative
method; see the Appendix. The max- method (i) compen-
sates for detector effects without prior assumptions on the
local angular acceptance, (ii) delivers a two-dimensional

representation of the anisotropy, (iii) allows us to combine
data from different observatories in a joint analysis, e.g.,
Abeysekara et al. (2019), and (iv) provides a direct statistical
measure to quantify the significance of anisotropies at various
angular scales.

3. Analysis of KASCADE-Grande Data

The KASCADE-Grande experiment located in Karlsruhe,
Germany (49°.1 N, 8°. 4 E) is a CR observatory collecting
charged particles created in extended CR air showers. The
footprint of the CR shower observed on the ground level
allows us to reconstruct the arrival direction of CRs. The
reconstructed number of charged particles in the shower, Nch,
serves as a proxy of the initial CR energy. The data used in
this analysis were collected between 2004 March and 2012
October and are available via KCDC (Haungs et al. 2018)
as one of the preselected data products: ReducedData-
GRANDE_runs_4775-7398_HDF5. The arrival direction
of events in this data set is limited to zenith angles below 40°.
For a comparison to previous anisotropy studies by the
KASCADE-Grande Collaboration (Chiavassa et al. 2016;
Apel et al. 2019) we select high-energy events with
Nch�105.2 and bin the data into three Nch bins that are
listed in the third column of Table 1. The median energy of
these Nch bins has been inferred from Monte Carlo simulation
in Chiavassa et al. (2016) and is shown in the second column.
The data distributions in terms of Modified Julian Date as well
as solar and local sidereal time are shown in Figure 1.

3.1. Large-scale Anisotropy

We will first study the presence of a dipole anisotropy in the
KASCADE-Grande data using the max- method presented in
Ahlers (2018). It is important to realize that this method does
not allow us to reconstruct anisotropies that are azimuthally
symmetric in the equatorial coordinate system (see Appendix A
in Ahlers 2018). The reconstructable dipole anisotropy is
therefore of the form

( ) ( )d a d a d a d= +I d d, cos cos sin cos . 5x ydipole

With this ansatz for the relative intensity, we can reconstruct
the maximum combination ( )    d d, , ,x y of Equation (4)
using an iterative method. After a few iteration steps (about 20
in this analysis), the max- ratio between the best-fit dipole

Table 1
Reconstructed Dipole Anisotropy

Data Emed
a Nch-range Ntot

EW (Official)b EW (This Work) Max- (This Work)c

A (10−3) α (°) A (10−3) α (°) A (10−3) α (°) λ p-value A90(10
−3)

Sidereal L �105.2 23,674,844 2.8±0.8 227±17 2.9±1.3 228±26 2.1±0.9 266±24 5.52 0.063 3.7
Solar 1.5±0.8 359±32 2.7±1.3 337±29 1.1±0.9 357±40 1.61 0.45 2.5
Bin 1 2.7PeV [105.2, 105.6) 17,443,774 2.6±1.0 225±22 3.4±1.5 218±26 2.1±1.0 243±27 4.49 0.11 3.7
Bin 2 6.1PeV [105.6, 106.4) 6,084,275 2.9±1.6 227±30 1.9±2.7 281±82 3.3±1.8 314±31 3.46 0.18 6.0
Bin 3 33PeV �106.4 146,795 12±9 254±42 24±18 240±42 9±11 299±77 0.57 0.75 28

Notes.
a Based on Chiavassa et al. (2016).
b Results presented in Apel et al. (2019).
c Method introduced in Ahlers (2018).
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anisotropy and the null hypothesis,

( ∣ )
( ∣ )
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  

   n d d
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2 ln

, , ,

0, 0, ,
, 6

x y i

i
0 0

allows us to estimate the significance of the dipole anisotropy.
Data following the null hypothesis have a distribution in λ that
follows a two-dimensional χ2-distribution (Wilks 1938). The
p-value of the observed data, i.e., the probability of a false-
positive identification of the dipole anisotropy, is then simply
given by = l-p e 2. In addition, the best-fit values of  and
 allow us to estimate the uncertainties of the best-fit dipole
anisotropy (see Ahlers 2018 for details).

The last five columns of Table 1 show our results on the
dipole anisotropy based on the max- method for the combined
data binned in local sidereal time (first row) and solar time
(second rows) as well as the three Nch bins in sidereal time (last
three rows). The best-fit range including the 68% confidence
level (C.L.) is expressed in terms of the amplitude A1 and phase
f1 of the dipole projected onto the equatorial plane. We also
indicate the test-statistic value λ and the corresponding p-value.
We find no evidence for a dipole anisotropy in the individual
data sets. The last column shows the 90% C.L.upper limit on
the dipole amplitude.

For a better comparison with previous KASCADE-Grande
analyses (Chiavassa et al. 2016; Apel et al. 2019; columns 5
and 6 of Table 1) we also study the dipole anisotropy with the
EW derivative method (columns 7 and 8 of Table 1); see the
Appendix. The best-fit amplitudes and their standard deviations
inferred with this method are somewhat larger than official
results. This seems to be related to different values of the
effective R.A. step Δα in Equation (16); whereas Apel et al.
(2019) choose 20°, we derive values between 12° and 13°

based on Equation (20). We have checked from reconstructions
of Monte Carlo data that this expression provides an unbiased
estimator of Δα. One can notice that the max- reconstruction
is more precise, i.e.,the standard deviation on the dipole
amplitude is smaller than aDN2 tot expected from the EW
derivative method (see Appendix C in Ahlers 2018).
Note that the analysis of Apel et al. (2019) applied an

additional quality cut to the data, discarding events having the
largest particle density measured by station number 15. This
subset of events shows a strong nonuniform azimuthal
distribution in the local coordinate system. The max- method
does not require this quality cut, since the reconstruction does
not rely on symmetries of the local angular acceptance.

3.2. Medium-scale Anisotropy

The likelihood-based anisotropy reconstruction allows us to
study the presence of anisotropies at arbitrary angular scales by
a bin-wise fit of δI in the equatorial coordinate system. The
likelihood is again maximized by an iterative reconstruction
presented by Ahlers et al. (2016). Similar to Ahlers (2018), we
increase the stability of the iterative reconstruction by
smoothing the data with a Gaussian symmetric beam with
FWHM of 2°. To extract the presence of medium-scale
anisotropies we smooth the resulting anisotropy and event
numbers by a top-hat kernel with radius of 20°. This
corresponds to the sum of events and expectation values over
the set a of data bins within 20° off a central bin a in the
equatorial coordinate system:

( )a

b

b

a

 å å=
t

t
Î

n n , 7

( )a
b

b b

a

 å åm =
t

t t
Î

 


  I , 8

( )
a

b

b b

a

 å åm =
t

t t
Î

 


 I . 9bg bg

In the absence of strong large-scale anisotropies, the isotropic
background level is simply taken as =I 1bg , but can in general
take on any form that is considered as the background level.
With these definitions we can express the smoothed anisotropy
as

( )a a a
  d m m= -I 1. 10bg

The left panels of Figure 2 show the reconstructed anisotropy
in the three energy bins with excesses and deficits indicated by
red and blue colors, respectively. The dashed line indicates the
projection of the Galactic plane onto the celestial sphere.
With the expectation values of Equations (7)–(9) we can also

define a smoothed significance map as

( ( )) ( )a a a a a   m m dº - + + +S n I2 log 1 . 11bg

This expression represents the statistical weight of the anisotropy
a
dI in each celestial (sliding) bin a. For sufficiently small

smoothing scales, a
S 2

can be interpreted as the bin-by-bin
maximum-likelihood ratio of the hypothesis a

I compared to the
null hypothesis a =I 1bg . Again, the test statistic of data under the
null hypothesis is following a one-dimensional χ2-distribution
and, in that case, a

S corresponds to the significance in units of
Gaussian standard deviations (Wilks 1938).

Figure 1. Distribution of KASCADE-Grande events with Nch�105.2 over
Modified Julian Days (top), solar time (bottom; thin blue line), and local
sidereal time (bottom; thick red line).
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The right panels of Figure 2 show the pre-trial significance
(11) of the anisotropy. We follow the standard convention to
indicate the significance of deficits by negative values. The
cross symbol indicates the location of maximum significance.
Whereas the first two bins do not show strong evidence of CR
anisotropies, the last bin shows a local excess at the level of
about 4.7σ. However, the significance of this excess needs to
be corrected for trials. We follow the same procedure as in
Ahlers (2018) to estimate the effective number of trials as

 DW DWNtrial FOV bin, where ΔΩFOV is the size of the
observatory’s time-integrated field of view and ΔΩbin is the
effective bin size according to the top-hat smoothing scale. For
the 20° smoothing radius of the KASCADE-Grande data we
obtain Ntrial;14.0. The post-trial p-value can then be
approximated as

( ) ( ) - -p p1 1 . 12N
post

trial

Figure 3 shows the post-trial significance map for the third
KASCADE-Grande bin in Galactic coordinates. As before, the
gray-shaded region indicates the part of the sky that is not
observable from the location of the experiment. The dashed
circle indicates the 20° smoothing radius around the location of
the highest post-trial significance of about 4.2σ.

4. Discussion

Our analysis does not uncover significant dipole anisotropies
in the KASCADE-Grande data, as indicated by the p-value in
the second-to-last column of Table 1. This is consistent with

official results summarized in Apel et al. (2019) and shown in
columns 5 and 6. The dipole amplitude in solar time induced by
the solar Compton–Getting effect (Compton & Getting 1935) is
expected to reach an amplitude of only 4.5×10−4 (Ahlers &
Mertsch 2017), which is far below the 90% C.L.upper limit of
about 2.5×10−3 inferred by our max- analysis (see the last
column of Table 1). On the other hand, a sidereal dipole
anisotropy has been observed in an analysis of IceTop data at a
median energy of 1.6PeV at the level of 1.6×10−3 (Aartsen
et al. 2016). This is consistent with the best-fit sidereal dipole
amplitude observed in the first Nch bin with a median energy of
2.7PeV.
Our analysis finds—for the first time—4σ evidence for CR

anisotropies on angular scales of 40° at a level of 3.7×10−2 and a
median energy of 33PeV. The CR flux associated with the excess
can be estimated as ( ) f ´ - - -E E 1.7 10 GeV cm s2

CR
7 2 1.

As discussed earlier, the origin of medium-scale anisotropies could
be induced by CR streaming in local magnetic fields. The
gyroradius of 33PeV charged CRs in Galactic magnetic fields is
less than 10pc, and it is therefore not expected that this excess is
related to the presence of a local CR source. However, there are
two notable exceptions in the following.
Neutrons can be produced by CR collisions with gas and

reach a decay length of about 300pc at 33PeV. The
corresponding anisotropy from local sources would appear
fuzzy and distorted due to the variance of the neutron’s lifetime
and residual magnetic deflections after neutron decay into
protons. Interestingly, the smoothing region of the maximal
excess shown in Figure 3 encloses the location of the Cygnus

Figure 2.Mollweide projections in equatorial coordinates of the reconstructed anisotropy (left) and pre-trial significance (right) for the three Nch bins listed in Table 1.
We show the results for a top-hat smoothing radius of 20°. The gray-shaded area indicates the unobservable part of the celestial sphere. The dashed line indicates the
projection of the Galactic plane. The values of pre-trial significance are shown in units of standard deviations and indicated by negative values for deficits. The
location of maximum pre-trial significance is indicated by the cross symbol.
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region—a rich region of gas and star formation in our local
Galactic environment.

Another non-diffusive origin of the excess could be a local
source of PeV γ-rays. These γ-rays would also originate from
high-energy CR interactions in the vicinity of their sources. CR
diffusion before interaction would account for the extended
emission. At 33PeV, the fraction of an isotropic γ-ray flux in
the CR data is below 10−3, which can be inferred by a search
for muon-poor showers (Apel et al. 2017). This is marginally
consistent with the medium-scale excess at a level of
3.7×10−2, if we account for the finite extension of the
smoothing region. Diffuse γ-ray data at GeV–TeV energies
would allow us to further test this hypothesis (Abdo et al. 2008;
Ackermann et al. 2012; Bartoli et al. 2015).

CR interactions that yield neutrons and γ-rays will also be
visible in high-energy neutrinos. For instance, if we consider
that at least one charged pion is created in the production of a
neutron that carries about 25% of the energy of neutron, the
corresponding flux of the PeV muon neutrinos is expected to
reach a level of ( )¯ f ´n n+

- - -
m m

E E 1.1 10 GeV cm s2 8 2 1.
This spatially extended emission could be detectable by
neutrino observatories like IceCube and ANTARES (Aartsen
et al. 2014, 2019; Adrián-Martínez et al. 2014; Illuminati
et al. 2019).

I would like to thank the KASCADE-Grande Collaboration
for sharing their data via KCDC. In particular, I would like to
thank Andrea Chiavassa, Ralph Engel, Andreas Haungs,
Donghwa Kang, Dmitriy Kostunin, Markus Roth, and Jürgen
Wochele for their feedback on KASCADE-Grande data and
previous anisotropy analyses. This work was supported by
VILLUM FONDEN under project No.18994.

Appendix
EW Derivative Method

The EW derivative method (Bonino et al. 2011) accounts for
variations in the angular acceptance and livetime of the detector
by studying the derivative of the relative intensity with respect
to R.A. At each sidereal time t the CR data are divided into two
bins, covering the east (0< j< π) and west ( p j- < < 0)
sectors in the local coordinate system. The event numbers
observed during a short sidereal time interval Δt in the east (+)

and west (−) sector can be expressed as

( ) ( )

( ) ( ) ( )

 ò òf j

q q j q j q

D

´  

p q




N t tE t

d I t

d

sin , , , . 13

iso
0 0

max

The EW asymmetry at sidereal time t is then defined as

( ) ( ) ( )
( ) ( )

( )º
-
+

+ -

+ -
A t

N t N t

N t N t
. 14EW

We can write the local detector acceptance as ( )d= +  1s ,
wheres is even under EW reflection,j j - , and d is odd.
For ground-based observatories we expect that ∣ ∣ d 1. To first
order in the CR anisotropy δI and the asymmetry of the detector
acceptance d we can evaluate the EW derivate as

( ) ( ( ) ( ) ) ( ) d d j q d j qá ñ + á ñ - á - ñA t I t I t
1

2
, , , , , 15EW

where ·á ñ denotes the average over the the east sector,
j p< <0 , with weight s. If we assume that the true

anisotropy follows a dipole, we can further reduce this equation to

( ) ( ) ( ) d a d aá ñ + D ¶aA t I , 0 , 16EW

with effective R.A. step size

( )a q jD = á ñsin sin . 17

The EW method only allows us to study the components of the
dipole anisotropy in the equatorial plane, which is a limitation
that is also present in the max- method. Equations (16) and
(17) define the EW derivative ¶aIEW. It is important to
emphasize that, in general, ( )a¶ ¹ ¶a aI I , 0EW if the anisotropy
deviates from a pure dipole.
After binning the data into Nsid sidereal time bins τ and Npix

celestial bins i one can derive an estimator of the EW
asymmetry as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( ) å å å= -t t t t

Î Î+ - 

A n n n , 18
i

i
i

i
i

iEW,

where  are the sets of bins in the east (+) and west (−). The
residual EW asymmetry from the detector is independent of
sidereal time and can be estimated as

( ) ådá ñ =
t

t
N

A
1

. 19
sid

EW,

The estimator of the effective R.A. step is given by the average

( ) ( ) åa a aD = D + D
t

t t+ -
N

1

2
, 20

sid
, ,

where at individual time steps we have

∣ ∣ ( )å åa q jD =t t t
Î Î  

n nsin sin . 21
i

i i i
i

i,

The leading-order statistical uncertainty in each bin is given by

⎛
⎝⎜

⎞
⎠⎟( ) ( ) åaD D ¶a t t

-

I n . 22
i

iEW,

1 2

Finally, the lower panels of Figure 4 show the binned EW
derivative for the three KASCADE-Grande bins. The dashed
blue line in the lower plots represents the best fit to the data

Figure 3. Mollweide projection in Galactic coordinates of the post-trial
significance of 20° smoothed anisotropies at 33PeV (bin 3). We use a trial
factor Ntrials ; 14 in Equation (12) and show units of Gaussian standard
deviations. We indicate the location of the maximum significance by the cross
symbol and the 20° smoothing radius by a dashed line.
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including the first five harmonics. The derivative data and best
fit can be converted via Equation (20) to the corresponding EW
anisotropy δIEW, as shown in the upper panels of Figure 4. The
black line indicates the best-fit dipole component with best-fit
values and standard deviations listed in columns 7 and 8 of
Table 1. Our analysis reproduces the official results in Apel
et al. (2019) within statistical uncertainties.
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