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Abstract

We analyze Brans–Dicke gravity with a cosmological constant, Λ, and cold dark matter (BD-ΛCDM) in the light
of the latest cosmological observations on distant supernovae, Hubble rate measurements at different redshifts,
baryonic acoustic oscillations, large-scale structure formation data, gravitational weak-lensing, and the cosmic
microwave background under full Planck 2015 cosmic microwave background likelihood. Our analysis includes
both the background and perturbations equations. We find that BD-ΛCDM is observationally favored as compared
to the concordance ΛCDM model, which is traditionally defined within General Relativity (GR). In particular,
some well-known persisting tensions of the ΛCDM with the data, such as the excess in the mass fluctuation
amplitude s8 and especially the acute H0-tension with the local measurements, essentially disappear in this context.
Furthermore, viewed from the GR standpoint, BD-ΛCDM cosmology mimics quintessence at s3 c.l. near
our time.

Unified Astronomy Thesaurus concepts: Cosmology (343); Cosmological models (337); Cosmological parameters
(339); Relativistic cosmology (1387); Cosmological evolution (336); Large-scale structure of the universe (902);
Dark matter (353)

1. Introduction

Brans and Dicke (BD) theory is the first historical attempt
to extend Einstein’s General Relativity (GR) by promoting
the Newtonian coupling constant GN into a variable one in the
cosmic time, G(t) (Brans & Dicke 1961). In addition to the
ordinary gravitational field, it introduces a new (scalar) field, ψ,
and a new parameter, wBD. The effective gravitational coupling
G(t) varies as the inverse of y t( ), and to recover the excellent
description of the gravitational phenomena by GR, one expects
that wBD must be sufficiently large in magnitude.

Different experiments in the solar system and cosmological
probes have been able to put stringent bounds on wBD
(Will 2006; Li et al. 2013; Umiltà et al. 2015; Ballardini
et al. 2016). We cannot exclude, however, that the BD behavior
at the cosmological scales is different from that which applies
in our astrophysical neighborhood (Clifton et al. 2012; Avilez
& Skordis 2014) owing to the possible existence of screening
mechanisms, resulting in softer bounds.

At the cosmological level, the most successful paradigm based
on GR is the ΛCDM model, which is the standard or
“concordance” model of cosmology (Peebles 1993). It assumes
the existence of dark matter and a cosmological constant, Λ, in
addition to other characteristic ingredients of the universe, such
as baryons, photons, and neutrinos. A positive Λ is introduced as
the canonical explanation for the observed accelerated expansion
of the universe (Riess et al. 1998; Perlmutter et al. 1999). For
lack of a better physical explanation, the parameter Λ in the
concordance model is associated to the energy density of
vacuum, as follows: r p= LL G8 N( ). Herein we would like to
use the increasingly precise observations on distant supernovae
(Sn Ia), Hubble rate data H(z), baryonic acoustic oscillations
(BAOs), large-scale structure formation (LSS): redshift-space
distortions (RSDs) and gravitational weak-lensing (WL); and
the cosmic microwave background (CMB), with the aim of
testing if we can be sensitive to phenomenological differences

between GR and BD. Specifically, we aim at checking if some of
the well-known discrepancies or tensions currently afflicting the
(GR-based) ΛCDM can be smoothed out in the context of the
BD-based one, or BD-ΛCDM.

2. BD-ΛCDM Cosmology

The action and field equations for BD-gravity are well
known (Brans & Dicke 1961). They involve the ordinary
(tensor) gravitational field of GR, mng , but also the scalar BD-
field ψ (of dimension two in natural units, = = c 1) and the
(dimensionless) BD-parameter, wBD. As in the original
formulation, we assume no potential for ψ, but we include
the cosmological constant, Λ, as a fundamental ingredient of
the theory. In fact, we wish to consider the same matter and
vacuum components as in the concordance ΛCDM, except that
we replace the GR paradigm by the BD one. The effective
gravitational coupling in the latter, yºG 1 , is no longer
constant but varies slowly as ψ itself. The vacuum energy
density and pressure are r k= LL

2 and r= -L Lp , respec-
tively, where for convenience we have introduced k pº G8 N

2

and ºG M1N P
2, with = ´M 1.22 10P

19 GeV the Planck
mass in natural units. Adding them to the corresponding matter
density r r= åi i and pressure = åp pi i (which may involve
both relativistic and nonrelativistic components) we can form
the total density and pressure of the combined system of matter
and vacuum: r r r= + LT and r= - Lp pT . In the following
we focus on the flat Friedmann–Lemaître–Robertson–Walker
(FLRW) metric only, i.e., d= - +ds dt a dx dxij

i j2 2 2 , where a
(t) is the scale factor as a function of the cosmic time, and we
define the usual Hubble rate =H a a˙ (dot denoting d/dt).

2.1. Field Equations

With the above notation, we can write down the BD-field
equations in the presence of matter and vacuum components as
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For constant ψ, the first two equations reduce to the Friedmann
and pressure equations of GR, respectively, with =G
y = G1 N , and the third requires w  ¥BD∣ ∣ for consistency.

By combining the above equations one finds a local covariant
conservation law that is identical to that of GR since there
is no interaction between matter and the BD-field, namely
r r+ + =H p3 0T T T˙ ( ) . Being r =L const. and owing to the
equation of state (EoS) of vacuum ( r= -L Lp ), the previous
equation reduces to r r+ + =H p3 0˙ ( ) . Taking into account
that we assume separate conservation of the different
components, such a law can be conveniently split into a
conservation law for each component (baryons, dark matter,
neutrinos, and photons). Hereafter we use the following
definitions:

j y
w

º = ºt G t G G t ,
1

, 4N N BD
BD

( ) ( ) ( ) ( )

where j is the dimensionless BD-field. In this notation,
j jº =G t G t GN( ) ( ( )) plays the role of effective gravita-

tional coupling in the BD context at the level of the action and
field equations. We should not expect G(t) to be equal to GN at
the present time (t0); thus, j t0( ) is in general close, but not
exactly equal, to 1. We can recover GR in the limit  0BD ,
and the ΛCDM model when  0BD and j  1.

2.2. Effective EoS in the GR-frame

It proves revealing to analyze Brans–Dicke cosmology from
the standpoint of what we may call the “GR-frame.” The latter
is obtained by parameterizing the BD-field equations as
deviations with respect to the usual Friedmann’s equations.
For instance, in Solà (2018) and de Cruz Pérez & Solà (2018) it
was shown, using an approximate treatment, that such kind of
approach leads to mimic “running vacuum,” even starting from
a cosmological constant. Vacuum dynamics, and in general
dynamical dark energy (DE), can be phenomenologically
favorable, even if not firmly established yet; see, e.g., Solà
et al. 2015, 2018, 2019, Zhao et al. 2017, Park & Ratra 2018,
Martinelli et al. 2019, and references therein. It can also be a
cure for some of the tensions in the ΛCDM (Di Valentino et al.
2017; Solà et al. 2017). Here we undertake a systematic
approach and an exact numerical treatment of the BD-field
equations in the GR-frame, which will lead to effective
dynamical DE. The first step is to rewrite Equation (1) as if
it were the usual Friedmann equation, k r r= +H3 .2 2

T BD( ) It
is not difficult to show that the effective energy density

associated to the BD-field, rBD, reads

k r j j
j
j

= D - +


H H3 3
1

2
, 52
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where j jD º -1 . Recall our definitions (4); we have just
included all the energy density terms beyond the ΛCDM in the
expression for rBD. Such an energy density can therefore be
interpreted as a new DE component within the GR-frame,
which must be added to the vacuum part rL. The second step is
to recast Equation (2) as the usual Friedmann’s pressure
equation: k+ = - +H H p p2 3 2 2

T BD
˙ ( ). This leads to the

following expression for the effective pressure associated to the
BD-field (playing the role of “extra DE pressure,” in addition to

r= -L Lp ):

k j j j j
j
j

= - D - D + + +

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1

2
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Direct calculation from the three field Equations (1)–(3) shows
that such a fluid obeys the additional conservation law

r r+ + =H p3 0. 7BD BD BD˙ ( ) ( )

One can also cross check it from  =m
mnT 0BD˜ , where

the energy–momentum tensor º -mn
d
d- mnT

g

S

g

BD 2 BD˜ ˜
is computed

from the part of the full BD-action SBD that remains after we
subtract from it the usual Einstein–Hilbert action SEH (with
cosmological term) and the matter action, Sm, i.e., =SBD˜

- -S S SmBD EH .
From the previous considerations, the BD-fluid can be

described by the quantities pBD and rBD. However, a more
useful picture can be obtained by considering the EoS of the
full “effective DE” in this context. Obviously, it must receive
contributions from the BD-fluid and the vacuum. Using the
field equations in the GR-frame as discussed above, we find

r r= + +L Lw p peff BD BD( ) ( ). It can be conveniently cast as
follows:

j j j j
j j j

= - +
- D +
L + D +

w t
H f

H f
1

2 , , ¨
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1
2

2
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The two functions f1,2 need not be specified here, as they can be
easily computed from the previous formulae. It suffices to say
that they are numerically negligible, in absolute value, as
compared to jDḢ and jDH2 since they depend on time
derivatives of the slowly varying function j. The effective EoS
(8) is, obviously, a time-evolving quantity that mimics
dynamical DE in the above effective GR picture. Since jD∣ ∣
is small, as confirmed by our analysis (see Section 4.2), let us
remark the following interesting situation near our time (i.e.,
for cosmological redshift z 1 ):

j
j- -

D
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- + D
W
- W

+w z
H

z1
2

1
1

1 ,

9

m

m
eff

0

0

3( )
˙

( )

( )

 

where we have expanded linearly in jD and expressed the
result in terms of the current value of the matter cosmological
parameter r rW =m m c0 0 0. Here r k= H3c0 0

2 2 is the critical
density at present and H0 is the Hubble parameter. Clearly,
for jD > 0 (resp.<0) we meet quintessence-like (resp.
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phantom-like) behavior. We shall further discuss this important
issue in Section 4.2.

3. Structure Formation and Perturbations

For a full-fledged confrontation of the BD-ΛCDM model
with the observations we need to consider not only its
background features but also the implications on the LSS
formation data, which we include in our global fit (see
Section 4). Thereby we need to account for the matter density
perturbations in the BD framework. We have performed such a
nontrivial calculation both within the synchronous and
conformal Newtonian gauges. They render the same result at
deep subhorizon scales (k aH2 2( ) ), as they indeed should.
Details on such, more technical, part of the analysis will be
provided elsewhere in the context of a more complete
presentation. Here we just quote the obtained differential
equation satisfied by the linear matter density contrast at the
mentioned scales, which is fully in accordance with the
analysis of Boisseau et al. (2000):

d d
p
j

r d + ¢ -
+
+

=





G a4 2 4

2 3
0, 10m m

N
m m

2
BD

BD

⎛
⎝⎜

⎞
⎠⎟¯

¯ ( )

where j̄ and rm¯ are the mean values of j and of the matter
density rm, respectively, at the cosmological scales in which the
linear theory remains valid. Prime denotes differentiation with
respect to conformal time η (recall that h=dt a d ) and

= ¢ a a. It is easy to recognize the corresponding perturba-
tions equation for the ΛCDM in the limit  0BD (i.e.,
w  ¥BD ), as could be expected. It follows from (10) that the
effective value of the gravitational constant driving the
formation of linear structures in the BD theory, at subhorizon

scales, is
j

+
+





G 2 4

2 3
N BD

BD
( )¯

. Even though a similar relation holds

between the local gravitational field created by a spherical mass
and the BD-field in the weak-field limit (Brans & Dicke 1961),
as indicated in the introduction we take the wider perspective
that the BD theory, when applied to the cosmological level, is
not restricted by the bounds obtained in the astrophysical
neighborhood. This is one of the traditional scenarios explored
in the literature, the alternative one being the identification of
the two domains. Both views are possible (Avilez &
Skordis 2014) and here we address the less restrictive one,
on account of the screening effects that may be produced by the
presence of matter in the local domain, as it has been
exemplified in other contexts; see, e.g., Clifton et al. 2012,
Amendola & Tsujikawa 2015 and references therein.

4. Confrontation with Data

4.1. Data

We use two data sets, which we believe are helpful to better
focus on the origin of the main effects. The first one is labeled
DS1 and contains the cosmological data Sn Ia+H(z)+BAO
+LSS+CMB+R19; the second one, DS2, is just the subset
BAO+LSS+CMB+R19 of the first. The CMB part involves
the full Planck 2015 TT+lowP+lensing likelihood (Planck
XIII 2016). These two data sets are essentially the same as
those described in detail in Solà et al. (2019). Here, however,
apart from the cosmic chronometer data on the Hubble rate H
(z), we have included the latest local value of the Hubble
parameter, = H 74.03 1.420 km s−1 Mpc−1 (Riess et al.
2019), which we have denoted R19, based on distance ladder
measurements. This is an important additional input, given the
significant existing tension ( s~4.4 ) of such a value with the
Planck results, as discussed in that reference. In addition, we
have added up the independent Sn Ia data from the DES survey

Table 1
The Mean Fit Values and 68.3% Confidence Limits for the Considered Models (ΛCDM and BD-ΛCDM) using Two Data Sets: (1) DS1, i.e., Sn Ia+H(z)+BAO+LSS

+CMB+R19 with Full Planck 2015 CMB Likelihood (First Block); and (2) DS2, Based on the Subset BAO+LSS+CMB+R19 (Second Block)

Parameter DS1 DS2

ΛCDM BD-ΛCDM ΛCDM BD-ΛCDM

H0 (km/s/Mpc) -
+68.65 0.40

0.38
-
+71.03 0.86

0.91
-
+68.69 0.39

0.38
-
+72.00 1.10

1.00

Wm0 0.2955±0.0048 0.2742±0.0077 0.2950±0.0047 0.2665±0.0084
Wb0 0.0476±0.0004 0.0453±0.0010 0.0476±0.0004 0.0443±0.0012
τ -

+0.063 0.012
0.010

-
+0.081 0.018

0.015
-
+0.063 0.011

0.010 0.084±0.018

ns -
+0.9700 0.0040

0.0038
-
+0.9891 0.0082

0.0070 0.9704±0.0038 -
+0.9945 0.0086

0.0081

s 08( ) -
+0.804 0.009

0.007 0.801±0.010 -
+0.804 0.008

0.007
-
+0.803 0.010

0.011

BD L - -
+0.00277 0.00154

0.00170 L - -
+0.00315 0.00175

0.00168

jini L -
+0.924 0.023

0.021 L -
+0.901 0.025

0.026

j 0( ) L -
+0.904 0.029

0.028 L 0.879±0.032

w 0eff ( ) −1 - -
+0.961 0.011

0.012 −1 - -
+0.951 0.013

0.012

- -G G yr0 0 10 13 1˙ ( ) ( )( ) L -
+3.149 1.924

1.741 L -
+3.625 1.954

1.994

ΔDIC (ΔAIC) L 8.34 (7.72) L 9.89 (9.94)

Note. In all cases a massive neutrino of 0.06 eV has been included. First, we display the fitting values for the conventional free parameters: Hubble parameter, H0, the
total nonrelativistic matter parameter Wm0, and the baryonic part Wb0, the reionization optical depth τ, the spectral index ns of the primordial power spectrum, and, for
convenience, instead of the amplitude As of the spectrum we list the value of s 08( ). The specific free parameters of the BD model are BD andjini; see the text. Owing
to their significance for our analysis, we quote their values with the error bars at 1σ, 2σ, and 3σ c.l., to wit: = - - - -

+ + + 0.00277BD 0.00154 0.00324 0.00484
0.00170 0.00312 0.00458 and

j = - - -
+ + +0.924ini 0.023 0.042 0.064

0.021 0.044 0.066 for the DS1 scenario, and = - - - -
+ + + 0.00315BD 0.00175 0.00341 0.00488

0.00168 0.00338 0.00515 andj = - - -
+ + +0.901ini 0.025 0.050 0.080

0.026 0.052 0.077 for the DS2 one. Finally, we include
the computed values of three parameters at present: the value of the BD-field, j 0( ), the effective EoS w 0eff ( ), Equation (8), and the relative time variation of G,
G G0 0˙ ( ) ( ). In the last row we compare the fit qualities by displaying the differences of the Deviance and Akaike information criteria (DIC and AIC, respectively)
between ΛCDM and its BD counterpart for the two data sets under consideration. BD appears to be preferred by the data according to these criteria. See the text for
further details.
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(Abbott et al. 2019) to the Pantheon+MCT data set (Riess
et al. 2018; Scolnic et al. 2018) already used in the mentioned
reference. In the BAO sector, we include a new data point from
the DES survey (Camacho et al. 2019) and the combined Lyα-
forest data by (Blomqvist et al. 2019). See Tables 4 and 5 of
Solà et al. (2019) for the remaining list of BAO and RSD data.
Note that, in the last two sets, we include the matter bispectrum
data from Gil-Marín et al. (2017; labeled BSP in the
aforementioned tables). Finally, we use the WL data from
Hildebrandt et al. (2018).

4.2. Numerical Analysis and Model Selection

To compare the theoretical predictions of the models under
study with the available observational data, we have made use
of the Einstein–Boltzmann code CLASS (Blas et al. 2011) in
combination with the Monte Carlo Markov Chain sampler
MontePython (Audren et al. 2013). Apart from the common set
of basic six parameters of the concordance model, the BD-
ΛCDM model involves two more, all of them listed in Table 1.
One of the characteristic BD parameters is obviously BD.
However, in order to solve numerically the system of
differential Equations (1)–(3) we use a second fitting
parameter, namely the initial value of the BD-field, jini, which
is set at =z 10ini

14. The evolution of j proves to be very mild
and we naturally take its derivative at that point to be zero. We
have checked that the small variation induced in the expansion
rate at BBN is within bounds (Uzan 2011). The main fitting
results of our analysis are displayed in Table 1 and Figure 1. In

the table, we compare the standard ΛCDM model with its BD-
ΛCDM counterpart. Remarkably enough, the contour lines in
Figure 1 show a preference for relatively high values of H0, not
far from R19, while keeping s sº 08 8( ) at an intermediate level
between Planck measurements (Planck XIII 2016) and cosmic
shear data (Hildebrandt et al. 2018), thus smoothing out this
tension as well. In Figure 1, we provide the matrix containing
some relevant combinations of two-dimensional marginalized
distributions for fitting parameters of the BD model, together
with the corresponding one-dimensional marginalized like-
lihoods for each parameter. We confirm indeed the softening
of the two tensions in view of the fitted values of H0

around 71–72 km s−1 Mpc−1, which coexist peacefully with a
sufficiently low s 0.808  . The residual H0-tension with the
local measurement (Riess et al. 2019) comes down to s1.8
(DS1) and s1.1 (DS2) only.
How about the global quality of our fits? Occam’s razor

principle can be implemented rigorously with various Bayesian
model selection tools; see, e.g., Burnham & Anderson
(2002). In this Letter, we opt for making use of the
Deviance (Spiegelhalter et al. 2002) and Akaike (Akaike 1974)
information criteria (DIC and AIC, respectively). When a large
amount of data is employed, AIC is simply given by

c q= + nAIC 22 (ˆ) , where n is the number of independent
fitting parameters and q̂ is the collection of their mean values.
DIC is a more sophisticated generalization of AIC, being
defined as

c q= + pDIC 2 . 11D
2 ( ˆ) ( )

Figure 1. Triangular matrix containing some relevant combinations of two-dimensional marginalized distributions for fitting parameters of the BD model (at 1σ, 2σ
and 3σ c.l.), together with the corresponding one-dimensional marginalized likelihoods for each parameter. H0 is expressed in km s−1 Mpc−1. We present the contours
for the data sets DS1 (in purple) and DS2 (in red). See Table 1 for the numerical fitting results.

4

The Astrophysical Journal Letters, 886:L6 (6pp), 2019 November 20 Peracaula et al.



Here c c q= -pD
2 2 (ˆ) is the effective number of parameters

of the model and c2 the mean of the overall c2 distribution.
DIC is particularly suitable for us, since we can easily compute
all the quantities involved directly from the Markov Chains and
other output generated with MontePython. Both DIC and AIC
are reliable provided the posterior distributions are sufficiently
Gaussian. This is actually the case here, as reflected in the
elliptic shapes of the two-dimensional contours in Figure 1 and
also in the normal-like appearance of the one-dimensional
distributions shown there. To compare the ability of the ΛCDM
and BD-ΛCDM models to fit the data, one has to compute the
respective differences of DIC and AIC values between the first
and second models. They are denoted ΔDIC and ΔAIC in
Table 1, where we provide the results for both data sets DS1
and DS2. Since these differences are positive and both lie in the
interval < D D <5 AIC, DIC 10 we conclude, following
Burnham & Anderson (2002) and Spiegelhalter et al. (2002),
that they point to strong evidence in favor of BD-ΛCDM as
compared to ΛCDM.

The following observations are also in order. The fitted BD

in Table 1 entails a large enough value of w =  300BD∣ ∣ ( ) such
as to guarantee that the BD-ΛCDM model remains sufficiently
close to the concordance one, but not so large as to make the
BD approach phenomenologically irrelevant. At the same time,
negative values of BD are preferred in our numerical analysis.
Both features are consistent with previous estimates from
analytical power-law solutions found in Solà (2018) and de
Cruz Pérez & Solà (2018). Furthermore, the relative time
variation of G at present is found to be positive,

+ ´ - -G G0 0 3 10 yr13 1˙ ( ) ( )  (at roughly 2σ), which indi-
cates “asymptotically free” behavior (i.e., G mildly increasing
with the expansion), which is also consistent with the
aforementioned power-law solution.

Last but not least, worth noticing is the behavior of the
effective EoS (8), which we plot numerically in Figure 2. Being
jD > 0 throughout our analysis (see Table 1) we can confirm

the expected quintessence-like signal, which we had anticipated
with the approximate formula (9) near our time (z 1 )—see
the inner plot in that Figure. As can be seen, a rather
conspicuous signal in between 3σ and 4σ is obtained,
depending on the data set. In the opposite end (z 1 ),
i.e., deep into the matter- or radiation-dominated epochs, the
behavior of (8) is of the form - -w 1 H

Heff
2

3 2

˙
 (as Λ and

f1,2 become negligible against jDH∣ ˙ ∣ and jDH2 ). The
characteristic EoS of these epochs is then met in sequence
(w 0, 1 3eff  ).

5. Conclusions

BD-cosmology is based on a gravity paradigm different from
GR, in which the gravitational coupling is mildly evolving with
the expansion. This is still compatible with the weak form of
the equivalence principle. However, a new degree of freedom
comes on stage. In this Letter, we have used a large body of
modern cosmological data to explore the possible impact that
such a change of paradigm can have on the overall description
of observations, while still keeping the usual matter and
vacuum concepts of the concordance ΛCDM model. This can
be timely, if we bear in mind the current weaknesses or
tensions of the ΛCDM with some observational data, as widely
recognized in the literature (Riess et al. 2019). We have found
that the BD-ΛCDM cosmology can appear ΛCDM-like with,
however, a mild time-evolving DE component whose effective
EoS mimics quintessence at more than 3σ c.l. around our time.
The latter acts as a “smoking gun” of the underlying BD-
dynamics. Using standard information criteria tools we have
confirmed that the statistical quality of the BD fit is strongly
preferred to that of a rigid Λ-term. Finally, the mass fluctuation
amplitude s8 stays at a low enough level and the sharp
H0-tension with the local measurements is rendered essentially
harmless in this context.
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