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Abstract

In this paper, we obtain the generalized Hyers-Ulam stability of a new cubic reciprocal functional
equation of the form

f(2x+ y) + f(2x− y) =
4f(x)f(y)

[
4f(y) + 3f(x)

2
3 f(y)

1
3

]
(
4f(y)

2
3 − f(x)

2
3

)3

in non-Archimedean fields with f(y) ̸= 1
8
f(x). We also extend the results related to Hyers-Ulam

stability, Hyers-Ulam-Rassias stability, Ulam-Gavruta-Rassias stability and J.M. Rassias stability
controlled by the mixed product-sum of powers of norms for the same equation.
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1 Introduction

The classical theory of stability of functional equations is instigated by the question of S.M. Ulam
[1] in the year 1940. In the subsequent year, D.H. Hyers [2] was the foremost mathematician to
establish the result connected with the stability of functional equations. The result obtained by
D.H. Hyers is called as Hyers-Ulam stability of functional equation. Later in the year 1950, T. Aoki
[3] made further simplification to the theorem of D.H. Hyers. In the year 1978, Th.M. Rassias [4]
took a broad view in the Hyers’ result by taking the upper bound as sum of powers of norms. The
theorem proved by Th.M. Rassias persuaded a lot of mathematicians to work on the stability of
various functional equations and the result obtained by Th.M. Rassias is recognized as Hyers-Ulam-
Rassias stability of functional equation. J.M. Rassias [5] provided further generalization of the result
of D.H. Hyers by using weaker conditions controlled by a product of different powers of norms. The
result proved by J.M. Rassias is termed as Ulam-Gavruta-Rassias stability of functional equation.
Further, in the year 1994, P. Gavruta [6] provided a generalization of Th.M. Rassias’ theorem by
replacing a general control function as upper bound. The stability result ascertained by P. Gavruta
is celebrated as generalized Hyers-Ulam stability of functional equation. In the year 2008, J.M.
Rassias et al. [7] investigated the stability of quadratic functional equation

f(mx+ y) + f(mx− y) = 2f(x+ y) + 2f(x− y) + 2
(
m2 − 2

)
f(x)− 2f(y)

for any arbitrary but fixed real constant m with m ̸= 0; m ̸= ±1; m ̸= ±
√
2 using mixed product-

sum of powers of norms. This stability result acquired by J.M. Rassias is known as J.M. Rassias
stability involving mixed product-sum of powers of norms.

In the year 2010, K. Ravi and B.V. Senthil Kumar [8] proved Ulam-Gavruta-Rassias stability for a
new reciprocal type functional equation

f(x+ y) =
f(x)f(y)

f(x) + f(y)
(1.1)

where f : X → R is a mapping with X as the space of non-zero real numbers. The reciprocal
function g(x) = c

x
is a solution of the functional equation (1.1).

The other results pertaining to stability of different reciprocal type functional equations can be
found in ([9], [10], [11]).

A. Bodaghi and S.O. Kim [12] introduced and studied the Ulam-Gavruta-Rassias stability for the
quadratic reciprocal functional equation

f(2x+ y) + f(2x− y) =
2f(x)f(y)[4f(y) + f(x)]

(4f(y)− f(x))2
. (1.2)

The quadratic reciprocal function f(x) = c
x2 is a solution of the functional equation (1.2).

A. Bodaghi and Y. Ebrahimdoost [13] generalized the equation (1.2) as

f((a+ 1)x+ ay) + f((a+ 1)x− ay) =
2f(x)f(y)

[
(a+ 1)2f(y) + a2f(x)

]
((a+ 1)2f(y)− a2f(x))2

(1.3)

where a ∈ Z with a ̸= 0 and established the generalized Hyers-Ulam-Rassias stability for the
functional equation (1.3) in non-Archimedean fields.
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K. Ravi et al. [14] investigated the generalized Hyers-Ulam-Rassias stability of a reciprocal-
quadratic functional equation of the form

r(x+ 2y) + r(2x+ y) =
r(x)r(y)

[
5r(x) + 5r(y) + 8

√
r(x)r(y)

]
[
2r(x) + 2r(y) + 5

√
r(x)r(y)

]2 (1.4)

in intuitionistic fuzzy normed spaces.

In this paper, we obtain the generalized Hyers-Ulam stability of a cubic reciprocal functional
equation of the form

f(2x+ y) + f(2x− y) =
4f(x)f(y)

[
4f(y) + 3f(x)

2
3 f(y)

1
3

]
(
4f(y)

2
3 − f(x)

2
3

)3 (1.5)

in non-Archimedean fields. We extend the results concerning Hyers-Ulam stability, Hyers-Ulam-
Rassias stability, Ulam-Gavruta-Rassias stability and J.M. Rassias stability controlled by the mixed
product-sum of powers of norms for the equation (1.5). It is easy to see that the reciprocal cubic
function f(x) = 1

x3 is a solution of the functional equation (1.5).

2 Preliminaries

In this section, we recall the basic concepts of non-Archimedean filed, non-Archimedean norm and
non-Archimedean space.

Definition 2.1. By a non-Archimedean field, we mean a fieldK equipped with a function (valuation)
| · | from K into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r||s| and |r+ s| ≤ max{|r|, |s|}
for all r, s ∈ K.

Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N.

Let X be a vector space over a scalar field K with a non-Archimedean non-trivial valuation |.|. A
function ||.|| : X → R is a non-Archimedean norm (valuation) if it satisfies the following conditions:

(i) ||x|| = 0 if and only if x = 0;

(ii) ||rx|| = |r|||x|| (r ∈ K, x ∈ X);

(iii) the strong triangle inequality (ultrametric); namely,

||x+ y|| ≤ max{||x||, ||y||} (x, y ∈ X).

Then (X, ||.||) is called a non-Archimedean space. Due to the fact that

∥xn − xm∥ ≤ max {∥xj+1 − xj∥ : m ≤ j ≤ n− 1} (n > m)

a sequence {xn} is Cauchy if and only if {xn+1−xn} converges to zero in a non-Archimedean space.
By a complete non-Archimedean space, we mean that every Cauchy sequence is convergent in the
space.

An example of a non-Archimedean valuation is the mapping | · | taking everything but 0 into 1 and
|0| = 0. This valuation is called trivial. Another example of a non-Archimedean valuation on a field
A is the mapping

|r| =


0 if r = 0
1
r

if r > 0

− 1
r

if r < 0
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for any r ∈ A.

Let p be a prime number. For any non-zero rational number x = pr m
n

in which m and n are coprime
to the prime number p. Consider the p-adic absolute value |x|p = p−r on Q. It is easy to check that
| · | is a non-Archimedean norm on Q. The completion of Q with respect to | · | which is denoted by
Qp is said to be the p-adic number field. Note that if p > 2, then |2n| = 1 for all integers n.

3 Generalized Hyers-Ulam Stability of Equation (1.5)

In this section, we investigate the generalized Hyers-Ulam stability of equation (1.5) in non-
Archimedean fields. We also establish the results pertaining to Hyers-Ulam stability, Hyers-Ulam-
Rassias stability, Ulam-Gavruta-Rassias stability and J.M. Rassias stability controlled by product-
sum of powers of norms.

Throughout this section, we consider that A and B is a non-Archimedean field and a complete non-
Archimedean field, respectively. From now on, for a non-Archimdean field A, we put A∗ = A−{0}.
For the purpose of simplification, let us define the difference operator Df : A∗ × A∗ → B by

Df (x, y) = f(2x+ y) + f(2x− y)−
4f(x)f(y)

[
4f(y) + 3f(x)

2
3 f(y)

1
3

]
(
4f(y)

2
3 − f(x)

2
3

)3

for all x, y ∈ A∗.

In the following results, we assume f(x) ̸= 0 and x+ y ̸= 0 for all x, y ∈ R.

For proving our main results, we necessitate the following definition.

Definition 3.1. A mapping f : A∗ → B is called as reciprocal cubic mapping if f satisfies equation
(1.5).

Theorem 3.1. Let φ : A∗ × A∗ → B∗ be a function such that

lim
n→∞

∣∣∣∣ 127
∣∣∣∣n φ

( x

3n+1
,

y

3n+1

)
= 0 (3.1)

for all x, y ∈ A∗. Suppose that f : A∗ → B is a mapping satisfying the inequality

|Df (x, y)| ≤ φ(x, y) (3.2)

for all x, y ∈ A∗. Then there exists a unique cubic reciprocal mapping Rc : A∗ → B such that

|f(x)−Rc(x)| ≤ max

{∣∣∣∣ 127
∣∣∣∣j φ( x

3j+1
,

x

3j+1

)
: j ∈ N ∪ {0}

}
(3.3)

for all x ∈ A∗.

Proof. Plugging (x, y) by (x, x) in (3.2), we obtain∣∣∣∣f(3x)− 1

27
f(x)

∣∣∣∣ ≤ φ(x, x) (3.4)

for all x ∈ A∗. Now, substituting x by x
3
in (3.4), we find∣∣∣∣f(x)− 1

27
f
(x
3

)∣∣∣∣ ≤ φ
(x
3
,
x

3

)
(3.5)
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for all x ∈ A∗. Replacing x by x
2n

in (3.5) and multiplying by
∣∣ 1
27n

∣∣n, we have∣∣∣∣ 1

27n
f
( x

3n

)
− 1

27n+1
f
( x

3n+1

)∣∣∣∣ ≤ ∣∣∣∣ 127
∣∣∣∣n φ

( x

3n+1
,

x

3n+1

)
(3.6)

for all x ∈ A∗. Hence we find that the sequence
{

1
27n

f
(

x
3n

)}
is a Cauchy sequence by (3.1) and

(3.6). Since B is complete, we can define a mapping Rc given by

Rc(x) = lim
n→∞

1

27n
f
( x

3n

)
. (3.7)

For each x ∈ A∗ and non-negative integers n, we have∣∣∣∣ 1

27n
f
( x

3n

)
− f(x)

∣∣∣∣ =
∣∣∣∣∣
n−1∑
i=0

{
1

27i+1
f
( x

3i+1

)
− 1

27i
f
( x

3i

)}∣∣∣∣∣
≤ max

{∣∣∣∣ 1

27i+1
f
( x

3i+1

)
− 1

27i
f
( x

3i

)∣∣∣∣ : 0 ≤ i < n

}
≤ max

{∣∣∣∣ 127
∣∣∣∣i φ( x

3i+1
,

x

3i+1

)
: 0 ≤ i < n

}
. (3.8)

The inequality (3.3) is true using (3.7) and letting n → ∞ in the above inequality (3.8). Using
(3.1), (3.2) and (3.7), we have for all x, y ∈ A∗

|DRc(x, y)| = lim
n→∞

∣∣∣∣ 127
∣∣∣∣n ∣∣∣Df

( x

3n
,
y

3n

)∣∣∣
≤ lim

n→∞

∣∣∣∣ 127
∣∣∣∣n φ

( x

3n
,
y

3n

)
= 0.

Thus the mapping Rc satisfies (1.5) and hence it is cubic reciprocal mapping. In order to prove
the uniqueness of Rc, let us consider R′

C : A∗ → B be another cubic reciprocal mapping satisfying
(3.3). Then we have∣∣Rc(x)−R′

C(x)
∣∣

= lim
m→∞

∣∣∣∣ 127
∣∣∣∣m ∣∣∣Rc

( x

3m
x
)
−R′

c

( x

3m

)∣∣∣
≤ lim

m→∞

∣∣∣∣ 127
∣∣∣∣m max

{∣∣∣Rc

( x

3m

)
− f

( x

3m

)∣∣∣ , ∣∣∣f ( x

3m

)
−R′

c

( x

3m

)∣∣∣}
≤ lim

m→∞
lim

n→∞
max

{
max

{∣∣∣∣ 127
∣∣∣∣i+m

φ
( x

3i+m+1
,

x

3i+m+1

)
: m ≤ i ≤ n+m

}}
= 0

for all x ∈ A∗, which shows that Rc is unique. Hence the proof is complete.

Theorem 3.2. Let φ : A∗ × A∗ → B∗ be a function such that

lim
n→∞

|27|nφ (3nx, 3ny) = 0 (3.9)

for all x, y ∈ A∗. Suppose that f : A∗ → B is a mapping satisfying the inequality (3.2) for all
x, y ∈ A∗. Then there exists a unique cubic reciprocal mapping Rc : A∗ → B such that

|f(x)−Rc(x)| ≤ max
{
|27|i+1φ

(
3ix, 3ix

)
: i ∈ N ∪ {0}

}
(3.10)

for all x ∈ A∗.
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Proof. Switching y to x in (3.2) and multiplying by |27|, we find

|27f(3x)− f(x)| ≤ |27|φ(x, x) (3.11)

for all x ∈ A∗. Now, replacing x by 3nx in (3.11) and multiplying by |27|n, we obtain∣∣27nf (3nx)− 27n+1f
(
3n+1x

)∣∣ ≤ |27|n+1φ (3nx, 3nx) (3.12)

for all x ∈ A∗. It is easy to see that the sequence {3nf (3nx)} is a Cauchy sequence by letting
n → ∞ in (3.12) and using (3.9). Since B is complete, this Cauchy sequence converges to a
mapping Rc : A∗ → B defined by

Rc(x) = lim
n→∞

27nf (3nx) . (3.13)

For each x ∈ A∗ and non-negative integers n, we have

|27nf (3nx)− f(x)| =

∣∣∣∣∣
n−1∑
i=0

27i+1f
(
3i+1x

)
− 27if

(
3ix

)∣∣∣∣∣
≤ max

{∣∣∣27i+1f
(
3i+1x

)
− 27if

(
3ix

)∣∣∣ : 0 ≤ i < n
}

≤ max
{
|27|i+1φ

(
3ix, 3ix

)
: 0 ≤ i < n

}
. (3.14)

Applying (3.13) and letting n → ∞, we find that the inequality (3.10) holds. From (3.9), (3.2) and
(3.13), we have for all x, y ∈ A∗

|DRc(x, y)| = lim
n→∞

|27|n |Df (3
nx, 3ny)|

≤ lim
n→∞

|27|nφ (3nx, 3ny) = 0.

Hence the mapping Rc satisfies (1.5) and it is cubic reciprocal mapping. Now, let R′
C : A∗ → B be

another cubic reciprocal mapping satisfying (1.5). Then we have∣∣Rc(x)−R′
c(x)

∣∣
= lim

m→∞
|27|m

∣∣Rc (3
mx)−R′

c (3
mx)

∣∣
≤ lim

m→∞
|27|mmax

{
|Rc (3

mx)− f (3mx)| ,
∣∣f (3mx)−R′

c (3
mx)

∣∣}
≤ lim

m→∞
lim

n→∞
max

{
max

{
|27|i+m+1φ

(
3i+mx, 3i+mx

)
: m ≤ i ≤ n+m

}}
= 0

for all x ∈ A∗, which proves that Rc is unique.

Theorem 3.3. Let f : A∗ → B be a mapping for which there exists a constant ϵ > 0 (independent
of x and y) such that the functional inequality

|Df (x, y)| ≤
26ϵ

27
(3.15)

holds for all x, y ∈ A∗. Then the limit

Rc(x) = lim
n→∞

1

27n
f
( x

3n

)
(3.16)

exists for all x ∈ A∗, n ∈ N and Rc : A∗ → B is the unique mapping satisfying the cubic reciprocal
functional equation (1.5) such that

|f(x)−Rc(x)| ≤ ϵ (3.17)

for all x ∈ A∗.
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Proof. Putting y = x in (3.15), we get∣∣∣∣f(3x)− 1

27
f(x)

∣∣∣∣ ≤ 26ϵ

27
(3.18)

for all x ∈ A∗. Now, substituting x by x
3
in (3.18), we find∣∣∣∣f(x)− 1

27
f
(x
3

)∣∣∣∣ ≤ 26ϵ

27
(3.19)

for all x ∈ A∗. Replacing x by x
3
in (3.19) and then dividing both sides by 33, we have∣∣∣∣ 133 f (x

3

)
− 1

36
f
( x

32

)∣∣∣∣ ≤ 26ϵ

272
(3.20)

for all x ∈ A∗. It follows from (3.19) and (3.19) that∣∣∣∣f(x)− 1

36
f
( x

32

)∣∣∣∣ ≤ 26ϵ

27

(
1 +

1

33

)
(3.21)

for all x ∈ A∗. The above process can be repeated to obtain∣∣∣∣f(x)− 1

33n
f
( x

3n

)∣∣∣∣ ≤ 26ϵ

27

(
1 +

1

33
+

1

36
+ ......+

1

33(n−1)

)
(3.22)

for all x ∈ A∗ and all n ∈ N. In order to prove the convergence of the sequence
{

1
33n

f
(

x
3n

)}
, we

have if n > k > 0, then by (3.23)∣∣∣∣ 1

33n
f
( x

3n

)
− 1

33k
f
( x

3k

)∣∣∣∣ = 1

33k

∣∣∣∣ 1

33(n−k)
f
( x

3n

)
− f

( x

3k

)∣∣∣∣
=

1

33k

∣∣∣∣ 1

33(n−k)
f
( y

3n−k

)
− f(y)

∣∣∣∣ (3.23)

≤ 1

33k
26ϵ

27

(
1 +

1

33
+

1

36
+ ......+

1

33(n−k−1)

)
(3.24)

≤ 3−3kϵ (3.25)

for all x ∈ A∗ in which y = x
3k

. The above result shows that the mentioned sequence is a Cauchy
sequence and thus limit (3.16) exists for all x ∈ A∗. Taking that n tends to infinity in (3.21), we
can see that inequality (3.17) holds for all x ∈ A∗. Replacing (x, y) by

(
x
3n

, y
3n

)
, respectively in

(3.15) and dividing both sides by 33n, we deduce that

1

33n
|Df (3

nx, 3ny)| ≤ 26ϵ

33(n+1)
(3.26)

holds for all x, y ∈ A∗. Taking that n tends to infinity in (3.26), we see that Rc(x) satisfies (3.15)
for all x, y ∈ A∗. To prove that R′

c(x) is a unique quadratic reciprocal functional satisfying (3.15)
subject to (3.18), let us consider a R′

c(x) : A∗ → B to be another quadratic reciprocal function which
satisfies (3.15) and inequality (3.18). Clearly Rc(x) and R′

c(x) satisfy (3.18) and using (3.17), we
get ∣∣Rc(x)−R′

c(x)
∣∣ = lim

n→∞

1

33n

∣∣∣Rc

( x

3n

)
−R′

c

( x

3n

)∣∣∣
≤ lim

n→∞

1

33n

{∣∣∣Rc

( x

3n

)
− f

( x

3n

)∣∣∣+ ∣∣∣f ( x

3n

)
−R′

c

( x

3n

)∣∣∣}
= 0

for all x ∈ A∗, which proves that Rc is unique.

7
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Corollary 3.1. Let c1 ≥ 0 and p ̸= −3, be fixed constants. If f : A∗ → B satisfies

|Df (x, y)| ≤ c1 (|x|p + |y|p)

for all x, y ∈ A∗, then there exists a unique cubic reciprocal mapping Rc : A∗ → B satisfying (1.5)
and

|f(x)−Rc(x)| ≤

{
2c1

|3|p|3|p+3 |x|p , for p > −3

2c1|3|3|3|p+3 |x|p , for p < −3

for every x ∈ A∗.

Proof. Considering φ(x, y) = c1 (|x|p + |y|p), for all x, y ∈ A∗ in Theorem 3.1 with p > −3 and in
Theorem 3.2 with p < −3 and proceeding by similar arguments as in Theorems 3.1 and 3.2.

Corollary 3.2. Let f : A∗ → B be a mapping and let there exist real numbers α, β : ρ = α+β ̸= −3.
Let there exists c2 ≥ 0 such that

|Df (x, y)| ≤ c2 |x|α |y|β

for all x, y ∈ A∗. Then there exists a unique cubic reciprocal mapping Rc : A∗ → B satisfying (1.5)
and

|f(x)−Rc(x)| ≤

{
c2

|3|ρ|3|ρ+3 |x|ρ , for ρ > −3

c2|3|3|3|+ρ+3 |x|ρ , for ρ < −3

for every x ∈ A∗.

Proof. The required results are obtained by choosing φ(x, y) = c2 |x|α |y|β , for all x, y ∈ A∗ in
Theorem 3.1 with ρ > −3 and in Theorem 3.2 with ρ < −3, the proof of the corollary is complete.

Corollary 3.3. Let c3 ≥ 0 and r ̸= −3 be real numbers, and f : A∗ → B be a mapping satisfying
the functional inequality

|Df (x, y)| ≤ c3
(
|x|

r
2 |y|

r
2 + (|x|r + |y|r)

)
for all x, y ∈ A∗. Then there exists a unique cubic reciprocal mapping Rc : A∗ → B satisfying (1.5)
and

|f(x)−Rc(x)| ≤

{
3c3

|3|r|3|r+3 |x|r , for r > −3

3c3|3|3|3|r+3 |x|r , for r < −3

for every x ∈ A∗.

Proof. The proof follows immediately by taking φ(x, y) =
(
|x|

r
2 |y|

r
2 + (|x|r + |y|r)

)
in Theorem

3.1 with r > −3 and in Theorem 3.2 with r < −3.

4 Conclusion

This is the first attempt made to study stability results on the cubic type rational functional
equation. In this paper we have investigated a new type of cubic rational functional equation in
non-Archimedean fields and we arrived the stability results in the sense of Hyers-Ulam stability,
Hyers-Ulam-Rassias stability, Ulam-Gavruta-Rassias stability and J.M. Rassias stability and the
results are more attractive.
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