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Abstract

In this paper, we obtain the generalized Hyers-Ulam stability of a new cubic reciprocal functional
equation of the form

4f(2)f(y) |47 () + 3 (@)} F()F]

2

(4702~ 1@)?)’

in non-Archimedean fields with f(y) # £ f(x). We also extend the results related to Hyers-Ulam
stability, Hyers-Ulam-Rassias stability, Ulam-Gavruta-Rassias stability and J.M. Rassias stability
controlled by the mixed product-sum of powers of norms for the same equation.

fQx+y)+ f2x —y) =
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1 Introduction

The classical theory of stability of functional equations is instigated by the question of S.M. Ulam
[1] in the year 1940. In the subsequent year, D.H. Hyers [2] was the foremost mathematician to
establish the result connected with the stability of functional equations. The result obtained by
D.H. Hyers is called as Hyers-Ulam stability of functional equation. Later in the year 1950, T. Aoki
[3] made further simplification to the theorem of D.H. Hyers. In the year 1978, Th.M. Rassias [4]
took a broad view in the Hyers’ result by taking the upper bound as sum of powers of norms. The
theorem proved by Th.M. Rassias persuaded a lot of mathematicians to work on the stability of
various functional equations and the result obtained by Th.M. Rassias is recognized as Hyers-Ulam-
Rassias stability of functional equation. J.M. Rassias [5] provided further generalization of the result
of D.H. Hyers by using weaker conditions controlled by a product of different powers of norms. The
result proved by J.M. Rassias is termed as Ulam-Gavruta-Rassias stability of functional equation.
Further, in the year 1994, P. Gavruta [6] provided a generalization of Th.M. Rassias’ theorem by
replacing a general control function as upper bound. The stability result ascertained by P. Gavruta
is celebrated as generalized Hyers-Ulam stability of functional equation. In the year 2008, J.M.
Rassias et al. [7] investigated the stability of quadratic functional equation

fmz +y) + f(ma —y) = 2f(x +y) + 2f(x —y) + 2 (m* — 2) f(z) — 2f(y)

for any arbitrary but fixed real constant m with m # 0; m # +1; m # £1/2 using mixed product-
sum of powers of norms. This stability result acquired by J.M. Rassias is known as J.M. Rassias
stability involving mixed product-sum of powers of norms.

In the year 2010, K. Ravi and B.V. Senthil Kumar [8] proved Ulam-Gavruta-Rassias stability for a
new reciprocal type functional equation

f(@)f ()
e 1.1
7 + F(W) -
where f : X — R is a mapping with X as the space of non-zero real numbers. The reciprocal
function g(z) = £ is a solution of the functional equation (1.1).

flx+y) =

The other results pertaining to stability of different reciprocal type functional equations can be
found in ([9], [10], [11]).

A. Bodaghi and S.0. Kim [12] introduced and studied the Ulam-Gavruta-Rassias stability for the
quadratic reciprocal functional equation

(2o -+9) + (2 —y) = LD LI (1.2

The quadratic reciprocal function f(z) = -5 is a solution of the functional equation (1.2).

A. Bodaghi and Y. Ebrahimdoost [13] generalized the equation (1.2) as

_ 2f@)f W) [(a+1)*f(y) +a’f(w)]

((a+1)2f(y) — a2 f(x))®
where a € Z with a # 0 and established the generalized Hyers-Ulam-Rassias stability for the
functional equation (1.3) in non-Archimedean fields.

fla+ Dz +ay) + f((a+ Dz — ay) (1.3)
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K. Ravi et al. [14] investigated the generalized Hyers-Ulam-Rassias stability of a reciprocal-
quadratic functional equation of the form

r(@)r(y) [5r(@) + 5r(y) + 8v/r(@)r ()]
[2r(@) + 20(0) + 5/r@r ()]

r(x 4+ 2y) +r(2z +y) = (1.4)

in intuitionistic fuzzy normed spaces.

In this paper, we obtain the generalized Hyers-Ulam stability of a cubic reciprocal functional
equation of the form

4f (@) f(y) |47 () + 3 (@)} F()F]

2 23
(17w)? - r@)?)
in non-Archimedean fields. We extend the results concerning Hyers-Ulam stability, Hyers-Ulam-
Rassias stability, Ulam-Gavruta-Rassias stability and J.M. Rassias stability controlled by the mixed
product-sum of powers of norms for the equation (1.5). It is easy to see that the reciprocal cubic

function f(z) = Z5 is a solution of the functional equation (1.5).

FRx+y)+ f(2z —y) = (1.5)

2 Preliminaries

In this section, we recall the basic concepts of non-Archimedean filed, non-Archimedean norm and
non-Archimedean space.

Definition 2.1. By a non-Archimedean field, we mean a field K equipped with a function (valuation)
| | from K into [0, 00) such that |r| = 0 if and only if » = 0, |rs| = |r||s| and |r + s| < maz{|r|, |s|}
for all r;s € K.

Clearly |1] =|—1] =1 and |n| <1 for all n € N.
Let X be a vector space over a scalar field K with a non-Archimedean non-trivial valuation |.|. A
function ||.|| : X — R is a non-Archimedean norm (valuation) if it satisfies the following conditions:
(i) ||z|| = 0 if and only if x = 0;
(i) lrz(| = [rlllz]]  (re Kz e X);

(iii) the strong triangle inequality (ultrametric); namely,

llz + yll < max{[|z]],[ly[[}  (z,y € X).
Then (X, ||.||) is called a non-Archimedean space. Due to the fact that

[ — @]l < max{llejsr — o im<j<n—1}  (n>m)

a sequence {zy } is Cauchy if and only if {x,,+1 — 2z, } converges to zero in a non-Archimedean space.
By a complete non-Archimedean space, we mean that every Cauchy sequence is convergent in the
space.

An example of a non-Archimedean valuation is the mapping | - | taking everything but 0 into 1 and
|0] = 0. This valuation is called trivial. Another example of a non-Archimedean valuation on a field
A is the mapping

0 ifr=0
|r| = % ifr>0
—% if r <0
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for any r € A.

Let p be a prime number. For any non-zero rational number z = p" 7 in which m and n are coprime
to the prime number p. Consider the p-adic absolute value |z|, = p~" on Q. It is easy to check that
| - | is a non-Archimedean norm on Q. The completion of Q with respect to |- | which is denoted by
Qy is said to be the p-adic number field. Note that if p > 2, then |2"| =1 for all integers n.

3 Generalized Hyers-Ulam Stability of Equation (1.5)

In this section, we investigate the generalized Hyers-Ulam stability of equation (1.5) in non-
Archimedean fields. We also establish the results pertaining to Hyers-Ulam stability, Hyers-Ulam-
Rassias stability, Ulam-Gavruta-Rassias stability and J.M. Rassias stability controlled by product-
sum of powers of norms.

Throughout this section, we consider that A and B is a non-Archimedean field and a complete non-
Archimedean field, respectively. From now on, for a non-Archimdean field A, we put A* = A—{0}.
For the purpose of simplification, let us define the difference operator Dy : A* x A* — B by

4 @) f () [47 () + 31 () ()3 ]

Dy(z,y) = f(2x +y) + f(2z —y) — (4f( V3 4 )2)3
y)3s — f(x)3

for all z,y € A*.
In the following results, we assume f(z) # 0 and z +y # 0 for all z,y € R.
For proving our main results, we necessitate the following definition.

Definition 3.1. A mapping f : A* — B is called as reciprocal cubic mapping if f satisfies equation
(1.5).

Theorem 3.1. Let ¢ : A" x A" — B* be a function such that

n

im | — LY )
s ‘ 57| # (e o) = 31
for all x,y € A*. Suppose that [ : A* — B is a mapping satisfying the inequality
D¢ (2,y)| < o(2,y) (32)

for all x,y € A*. Then there exists a unique cubic reciprocal mapping R. : A* — B such that

J

(@) = Re(a)| <max{]217 ¢ (57 37 :jeNu{O}} (33)

for all x € A™.

Proof. Plugging (z,y) by (x,z) in (3.2), we obtain

760 - 52 1@) < ole0) (3.4

for all z € A*. Now, substituting = by % in (3.4), we find

'f(rr:) -3 =0 (55) (3.5)
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for all z € A*. Replacing = by 5% in (3.5) and multiplying by }# |n, we have

’27n 3 Wlﬂf(?wxﬂ)‘ ‘217 w(gnmﬂ’gnxﬂ) (3.6)

for all z € A*. Hence we find that the sequence {27n f ( n)} is a Cauchy sequence by (3.1) and
(3.6). Since B is complete, we can define a mapping R, given by

Re(x) = lim %f (3%) . (3.7)

For each z € A™ and non-negative integers n, we have
n—1
1 T 1 T
; {27i+1f (3i+1) ~ ot (3)}‘
1 T 1 T
< —_— — <
—max{‘zwﬂf(:aiﬂ) 27if(3@)‘ 0 Z<"}

1] T T .
§maX{’27 ‘P(3¢+173¢+1):0§Z<n}‘ (3.8)

The inequality (3.3) is true using (3.7) and letting n — oo in the above inequality (3.8). Using
(3.1), (3.2) and (3.7), we have for all z,y € A*

o) — (@)

o (5

1" T oy
|Dr(@,y)| = lim | in (3—”,37)\

<1 ’ sran) =0
n—>oo 3n n

Thus the mapping R. satisfies (1.5) and hence it is cubic reciprocal mapping. In order to prove
the uniqueness of R., let us consider Ry : A* — B be another cubic reciprocal mapping satisfying
(3.3). Then we have

|Re(z) — Re ()]
Jim | R () = e ()|

o[ max{\Rc@%)—f<3%>1,\f<3%>—m<3%>\}

IN

. . 1| z T .
= ,,}Enm&“;om“{m“{‘w (v ) im << ”*m}}
=0
for all z € A*, which shows that R. is unique. Hence the proof is complete. O

Theorem 3.2. Let v : A" x A" — B* be a function such that
lim 27" (3"z,3"y) =0 (3.9)
n— o0

for all z,y € A*. Suppose that f : A* — B is a mapping satisfying the inequality (3.2) for all
x,y € A*. Then there exists a unique cubic reciprocal mapping R. : A* — B such that

|f () — Re(z)| < max {|27|f+1¢ (3z 3%) ;ieNU {0}} (3.10)

for all x € A™.
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Proof. Switching y to z in (3.2) and multiplying by |27|, we find
127£(32) — £(2)| < 127)(, ) (3.11)
for all x € A*. Now, replacing z by 3"z in (3.11) and multiplying by |27|", we obtain
27" f (3"x) — 27" f (3" )| < 27" e (372, 3" ) (3.12)

for all x € A*. It is easy to see that the sequence {3"f (3"x)} is a Cauchy sequence by letting
n — oo in (3.12) and using (3.9). Since B is complete, this Cauchy sequence converges to a
mapping R. : A* — B defined by

R.(z) = lim 27" f(3"z). (3.13)

n—00

For each = € A* and non-negative integers n, we have

n—1
n n . _ 1+1 1+1 o 7 [3
127" (3"z) — f(z)] ‘;:O o7 (3 :v) 27 f (3 x)

< max{‘wi“f (3”1:;:) _oTif (Bx)‘ 0<i< n}
< max {|27|”1¢ (3x3:p) 0<i< n} . (3.14)

Applying (3.13) and letting n — oo, we find that the inequality (3.10) holds. From (3.9), (3.2) and
(3.13), we have for all z,y € A"

|Drc(a.y)| = lim [27]" Dy (3"2,3"y)
< li_>m 127" ¢ (3"z,3™y) = 0.

Hence the mapping R. satisfies (1.5) and it is cubic reciprocal mapping. Now, let R¢ : A* — B be
another cubic reciprocal mapping satisfying (1.5). Then we have

|Re(z) — Re(2)]
lim |27 |Re (3™z) — R, (3™ )|

A

lim [27|"max {|R. (3"x) — f (3™x)|, |f (3"x) — R (3"x)|}

m—r o0

lim lim max {max {\27\i+m+1g0 (3i+mx, 3i+mm) m<i<n+ m}}

M —r00 N— 00

=0

IN

for all z € A*, which proves that R, is unique. O

Theorem 3.3. Let f: A* — B be a mapping for which there exists a constant € > 0 (independent
of © and y) such that the functional inequality

26€

< — .
IDs(a9)| < 2 (3.15)
holds for all x,y € A*. Then the limit
. 1 T
Refw) = lim o7 (57) (3.16)

ezists for allz € A", n € N and R. : A" — B is the unique mapping satisfying the cubic reciprocal
functional equation (1.5) such that

|f(z) = Re(z)| <€ (3.17)
for all x € A™.
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Proof. Putting y = z in (3.15), we get

<= (3.18)

for all z € A*. Now, substituting = by ¢ in (3.18), we find

26¢
‘f( )—ff( ) <% (3.19)
for all z € A*. Replacing = by § in (3.19) and then dividing both sides by 3%, we have
1 x 1 T 26¢
— (2 - = (=) < =2 .
33f(3) 36 (32)‘*272 (3:20)
for all x € A*. Tt follows from (3.19) and (3.19) that
1 26¢€ 1
- < == .
‘f(x) 36 (32)‘_ > (1+33) (3.21)
for all z € A*. The above process can be repeated to obtain
1 T 26€ 1 1 1
’f(gf;)—gH (37)’§2—7(1+§+3—6+ ...... +m) (3.22)

for all x € A* and all n € N. In order to prove the convergence of the sequence {Sd%f (3%)}, we

have if n > k > 0, then by (3.23)
st (52) ~ et (5)| = g3e [ (57) 7 (59|

1 1 y
= 33 |3sm (?n,k) - f(y)' (3.23)
1 26e 1 1 1
Sgﬁﬁ (1+§+3i6+ ...... +m) (3.24)
<37 (3.25)

for all z € A" in which y = 2%. The above result shows that the mentioned sequence is a Cauchy
sequence and thus limit (3. 16) exists for all z € A*. Taking that n tends to infinity in (3.21), we
can see that inequality (3.17) holds for all x € A*. Replacing (z,y) by (Jn, 31)7 respectively in

(3.15) and dividing both sides by 33", we deduce that

26€

\Df(?’ ,3"Y)| < e

holds for all z,y € A*. Taking that n tends to infinity in (3.26), we see that R.(z) satisfies (3.15)
for all z,y € A*. To prove that R,(z) is a unique quadratic reciprocal functional satisfying (3.15)
subject to (3.18), let us consider a R.(z) : A* — B to be another quadratic reciprocal function which
satisfies (3.15) and inequality (3.18). Clearly R.(x) and R.(z) satisfy (3.18) and using (3.17), we

get
[Re(@) - R \—ﬁw@*(g) ()
T T ;[T
< . i fadl adi R i
—nhiﬂo33 {‘ (3 ) (3n)‘+‘f(3n) RC(3H)‘}
=0
for all z € A*, which proves that R. is unique. (I
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Corollary 3.1. Let ¢c1 > 0 and p # —3, be fized constants. If f : A* — B satisfies
|Dg(2,y)| < e (Jaf” + |yl?)

for all x,y € A", then there exists a unique cubic reciprocal mapping Re : A* — B satisfying (1.5)
and

2c
(@) — Rela)| < { Foames o0 forp > =3
| 2e1 312131213 2P, forp < =3

for every x € A*.

Proof. Considering ¢(z,y) = c1 (|z|” + |y|”), for all z,y € A* in Theorem 3.1 with p > —3 and in
Theorem 3.2 with p < —3 and proceeding by similar arguments as in Theorems 3.1 and 3.2. O

Corollary 3.2. Let f : A* — B be a mapping and let there exist real numbers a, B : p = a+f # —3.
Let there exists co > 0 such that

1Dy (z,y)| < e2 || yl®
for all z,y € A*. Then there exists a unique cubic reciprocal mapping R. : A* — B satisfying (1.5)
and

(@) — Rela)| < § B 120 Jorp > =3
" LBl or p< =3

for every x € A*.

Proof. The required results are obtained by choosing ¢(z,y) = ¢z |z|* |y|?, for all 2,y € A* in
Theorem 3.1 with p > —3 and in Theorem 3.2 with p < —3, the proof of the corollary is complete.
O

Corollary 3.3. Let c3 > 0 and r # —3 be real numbers, and f : A* — B be a mapping satisfying
the functional inequality

1D (2, )| < ca (Jal® yl® + (ol + 191

for all z,y € A*. Then there exists a unique cubic reciprocal mapping R. : A* — B satisfying (1.5)
and
m,i’%hﬂr, forr > —3

3cs|31313|" 2 |z|", forr < -3

for every x € A*.

Proof. The proof follows immediately by taking o(x,y) = (|1:|% lyl% + (|Jz|” + \y\r)) in Theorem
3.1 with » > —3 and in Theorem 3.2 with r < —3. O

4 Conclusion

This is the first attempt made to study stability results on the cubic type rational functional
equation. In this paper we have investigated a new type of cubic rational functional equation in
non-Archimedean fields and we arrived the stability results in the sense of Hyers-Ulam stability,
Hyers-Ulam-Rassias stability, Ulam-Gavruta-Rassias stability and J.M. Rassias stability and the
results are more attractive.
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