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Abstract

We calculate the posterior distributions, the marginal distributions and the normal Bayes
estimators of three hierarchical normal models in the same manner. The three models are
displayed in increasing complexity. We find that the posterior distributions and the marginal
distributions are all normal distributions. We also obtain the normal Bayes estimators under the
squared error loss function.
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1 Introduction

Statistical inferences are covered in many classical textbooks, see for instance, [1, 2, 3, 4, 5, 6].
Point estimation is an important class of statistical inference. Bayes estimator is a kind of point
estimation. The classical Bayesian books are [7, 8, 9, 10, 11, 12, 13, 14, 15].

The hierarchical normal model (also named as the normal mean mixture model or the Gaussian
mixture model) has been investigated recently in the literature, for example, [16, 17, 18, 19, 20]. We
calculate the posterior distributions, the marginal distributions and the normal Bayes estimators of
three Hierarchical Normal Models (HNMs) in the same manner. The three models are displayed in
increasing complexity. We find that the posterior distributions and the marginal distributions are
all normal distributions. We also obtain the normal Bayes estimators under the squared error loss
function (or the quadratic loss function).

The rest of the paper is organized as follows. In the next Section 2, we calculate the posterior
distributions, the marginal distributions and the normal Bayes estimators of three HNMs in the
same manner. Section 3 concludes.

2 Main Results

The first Hierarchical Normal Model (HNM) (Model I) is{
X|θ ∼ N

(
θ, σ2

)
,

θ ∼ N
(
µ, τ2

)
,

(2.1)

where σ2, µ and τ2 are known constants. In Model I, one θ is drawn from its prior distribution
π (θ) ∼ N

(
µ, τ2

)
. Then given θ, one observation X|θ is drawn from its sampling distribution

f (x|θ) ∼ N
(
θ, σ2

)
. Model I is simple and it has been treated in [3] Example 7.2.16. Our aim is

to calculate the posterior distribution of θ|X, the marginal distribution of X and the normal Bayes
estimator E (θ|X). Although the solution of our aim is already known, we will present our solution
and approach here because they will be useful for two other HNMs. The joint distribution of x and
θ is

f (x, θ) = f (x|θ)π (θ) = π (θ|x)m (x) ,

where f (x|θ) is the sampling distribution of x|θ (or the likelihood function), π (θ) is the prior
distribution of θ, π (θ|x) is the posterior distribution of θ|x and m (x) is the marginal distribution
of x. It is known from (2.1) that

f (x, θ) = f (x|θ)π (θ)

=
1√
2πσ

exp

(
− (x− θ)2

2σ2

)
1√
2πτ

exp

(
− (θ − µ)2

2τ2

)
.

Factor the exponent in the above mathematical expression, we obtain

− (x− θ)2

2σ2
− (θ − µ)2

2τ2
= − (θ − δ1 (x))

2

2v21
− (x− µ)2

2 (τ2 + σ2)
, (2.2)

where

δ1 (x) =
τ2x+ σ2µ

τ2 + σ2
and v21 =

τ2σ2

τ2 + σ2
.

We remark that the proof of (2.2) is elementary but tedious. To obtain (2.2), the following
completion of the square in θ is useful:

aθ2 + bθ + c = a

(
θ +

b

2a

)2

+ c− b2

4a
.
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Let N (a, b) denote the pdf of a normal distribution with mean a and variance b. The factorization
(2.2) shows that

f (x, θ) = f (x|θ)π (θ) = π (θ|x)m (x)

= N
(
θ, σ2)×N

(
µ, τ2) = N

(
δ1 (x) , v

2
1

)
×N

(
µ, τ2 + σ2) , (2.3)

where the posterior distribution of θ|x is π (θ|x) ∼ N
(
δ1 (x) , v

2
1

)
and the marginal distribution of

x is m (x) ∼ N
(
µ, τ2 + σ2

)
. Thus, the normal Bayes estimator is E (θ|X) = δ1 (X).

The second HNM (Model II) is{
Xi|θ

iid∼ N
(
θ, σ2

)
, i = 1, 2, . . . , n,

θ ∼ N
(
µ, τ2

)
,

(2.4)

where σ2, µ and τ2 are known constants. In Model II, one θ is drawn from its prior distribution
π (θ) ∼ N

(
µ, τ2

)
. Then given θ, a sample X1|θ, X2|θ, . . . , Xn|θ is drawn from its sampling

distribution f (xi|θ) ∼ N
(
θ, σ2

)
, i = 1, 2, . . . , n. Model II has been treated in [3] Exercise 7.22. For

completeness, we present the solution here. Model II can be changed to Model IIa below:{
X̄|θ ∼ N

(
θ, σ2/n

)
,

θ ∼ N
(
µ, τ2

)
.

(2.5)

To compute the posterior distribution π (θ|x̄) and the marginal distribution m (x̄), we follow the
route of Model I. The joint distribution of x̄ and θ is

f (x̄, θ) = f (x̄|θ)π (θ) = π (θ|x̄)m (x̄) ,

where f (x̄|θ) is the sampling distribution of x̄|θ (or the likelihood function), π (θ) is the prior
distribution of θ, π (θ|x̄) is the posterior distribution of θ|x̄ and m (x̄) is the marginal distribution
of x̄. It is known from (2.5) that

f (x̄, θ) = f (x̄|θ)π (θ)

=
1√

2πσ/
√
n
exp

(
− (x̄− θ)2

2σ2/n

)
1√
2πτ

exp

(
− (θ − µ)2

2τ2

)
.

Factor the exponent in the above mathematical expression, we get

− (x̄− θ)2

2σ2/n
− (θ − µ)2

2τ2
= − (θ − δ2 (x̄))

2

2v22
− (x̄− µ)2

2 (τ2 + σ2/n)
, (2.6)

where

δ2 (x̄) =
τ2x̄+

(
σ2/n

)
µ

τ2 + σ2/n
and v22 =

τ2σ2/n

τ2 + σ2/n
.

We remark that the proof of (2.6) is elementary but tedious. The factorization (2.6) shows that

f (x̄, θ) = f (x̄|θ)π (θ) = π (θ|x̄)m (x̄)

= N

(
θ,

σ2

n

)
×N

(
µ, τ2) = N

(
δ2 (x̄) , v

2
2

)
×N

(
µ, τ2 +

σ2

n

)
, (2.7)

where the posterior distribution of θ|x̄ is π (θ|x̄) ∼ N
(
δ2 (x̄) , v

2
2

)
and the marginal distribution of

x̄ is m (x̄) ∼ N
(
µ, τ2 + σ2

n

)
. Therefore, the normal Bayes estimator is E

(
θ|X̄

)
= δ2

(
X̄
)
. In fact,

we can get (2.7) from (2.3) directly by noting that (2.5) has the same structure with (2.1). In (2.5),
compared to (2.1), x̄ replaces x and σ2/n replaces σ2, other things being equal. Note that Model II
is a generalization of Model I. Take n = 1 in Model II, then it reduces to Model I. Similarly, Model
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IIa is also a generalization of Model I.

The third HNM (Model III) is{
Xi|θi

independent∼ N
(
θi, σ

2
)
, i = 1, 2, . . . , n,

θi
iid∼ N

(
µ, τ2

)
, i = 1, 2, . . . , n,

(2.8)

where σ2, µ and τ2 are known constants. In Model III, a sample θ1, θ2, . . . , θn is drawn from its
prior distribution π (θi) ∼ N

(
µ, τ2

)
, i = 1, 2, . . . , n. Then given θi, i = 1, 2, . . . , n, a random

variable Xi|θi is drawn from its sampling distribution f (xi|θi) ∼ N
(
θi, σ

2
)
. The resulting random

variables X1|θ1, X2|θ2, . . . , Xn|θn are independent but certainly not identically distributed. Model
III is not new. It has been treated in [3] Exercise 7.25. In Exercise 7.25, it has been shown that the
marginal distribution of Xi is N

(
µ, τ2 + σ2

)
and that, marginally, X1, X2, . . . , Xn are iid. However,

the posterior distribution and the normal Bayes estimator is not given. Model III can be changed
to Model IIIa below: {

X̄|θ̄ ∼ N
(
θ̄, σ2/n

)
,

θ̄ ∼ N
(
µ, τ2/n

)
.

(2.9)

Now we derive the distribution of X̄|θ̄ in (2.9). We have

X̄|θ̄ =

(
1

n

n∑
i=1

Xi

)
|θ̄ =

1

n

n∑
i=1

(
Xi|θ̄

)
=

1

n

n∑
i=1

(Xi|θi) ,

since θ̄ has the same information of (θ1, θ2, . . . , θn) and Xi depends only on θi. Since Xi|θi, i =
1, 2, . . . , n, are independent and they are normal, their linear combination is also normal. We have

E
(
X̄|θ̄

)
= E

[
1

n

n∑
i=1

(Xi|θi)

]
=

1

n

n∑
i=1

E (Xi|θi) =
1

n

n∑
i=1

θi = θ̄

and

Var
(
X̄|θ̄

)
= Var

[
1

n

n∑
i=1

(Xi|θi)

]
=

1

n2
Var

[
n∑

i=1

(Xi|θi)

]

=
1

n2

n∑
i=1

Var (Xi|θi) =
1

n2

n∑
i=1

σ2 =
σ2

n
.

Therefore,

X̄|θ̄ ∼ N

(
θ̄,

σ2

n

)
.

To compute the posterior distribution π
(
θ̄|x̄
)
and the marginal distribution m (x̄), we follow the

route of Model I. The joint distribution of x̄ and θ̄ is

f
(
x̄, θ̄
)
= f

(
x̄|θ̄
)
π
(
θ̄
)
= π

(
θ̄|x̄
)
m (x̄) ,

where f
(
x̄|θ̄
)
is the sampling distribution of x̄|θ̄ (or the likelihood function), π

(
θ̄
)
is the prior

distribution of θ̄, π
(
θ̄|x̄
)
is the posterior distribution of θ̄|x̄ and m (x̄) is the marginal distribution

of x̄. It is known from (2.9) that

f
(
x̄, θ̄
)
= f

(
x̄|θ̄
)
π
(
θ̄
)

=
1√

2πσ/
√
n
exp

(
−
(
x̄− θ̄

)2
2σ2/n

)
1√

2πτ/
√
n
exp

(
−
(
θ̄ − µ

)2
2τ2/n

)
.
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Factor the exponent in the above mathematical expression, we have

−
(
x̄− θ̄

)2
2σ2/n

−
(
θ̄ − µ

)2
2τ2/n

= −
(
θ̄ − δ3 (x̄)

)2
2v23

− (x̄− µ)2

2 (τ2/n+ σ2/n)
, (2.10)

where

δ3 (x̄) =

(
τ2/n

)
x̄+

(
σ2/n

)
µ

τ2/n+ σ2/n
=

τ2x̄+ σ2µ

τ2 + σ2
and v23 =

(
τ2/n

) (
σ2/n

)
τ2/n+ σ2/n

=
τ2σ2

n (τ2 + σ2)
.

We remark that the proof of (2.10) is elementary but tedious. The factorization (2.10) shows that

f
(
x̄, θ̄
)
= f

(
x̄|θ̄
)
π
(
θ̄
)
= π

(
θ̄|x̄
)
m (x̄)

= N

(
θ̄,

σ2

n

)
×N

(
µ,

τ2

n

)
= N

(
δ3 (x̄) , v

2
3

)
×N

(
µ,

τ2

n
+

σ2

n

)
, (2.11)

where the posterior distribution of θ̄|x̄ is π
(
θ̄|x̄
)
∼ N

(
δ3 (x̄) , v

2
3

)
and the marginal distribution of

x̄ is m (x̄) ∼ N
(
µ, τ2

n
+ σ2

n

)
. Consequently, the normal Bayes estimator is E

(
θ̄|X̄

)
= δ3

(
X̄
)
. In

fact, we can get (2.11) from (2.3) directly by noting that (2.9) has the same structure with (2.1).
In (2.9), compared to (2.1), x̄ replaces x, θ̄ replaces θ, σ2/n replaces σ2 and τ2/n replaces τ2, other
things being equal. Note that Model III is a generalization of Model I. Take n = 1 in Model III,
then it reduces to Model I. Similarly, Model IIIa is also a generalization of Model I. Note also that
Model III is a generalization of Model II. In Model III, when

θ1 = θ2 = · · · = θn = θ ∼ N
(
µ, τ2) , (2.12)

then Model III reduces to Model II. However,

P (θ1 = θ2 = · · · = θn) = 0.

Since Model III generalizes Model II, we can get (2.11) from (2.7) directly by noting that (2.9) has
the same structure with (2.5). Under (2.12), we have

θ̄ =
1

n

n∑
i=1

θi =
1

n

n∑
i=1

θ = θ ∼ N
(
µ, τ2) .

In (2.9), compared to (2.5), θ̄ replaces θ and τ2/n replaces τ2, other things being equal.

3 Conclusion

We calculate the posterior distributions, the marginal distributions and the normal Bayes estimators
of three hierarchical normal models in the same manner. The three models are displayed in
increasing complexity in the sense that Model II generalizes Model I, and Model III generalizes
Models I and II. We find that the posterior distributions and the marginal distributions are all
normal distributions. We also obtain the normal Bayes estimators under the squared error loss
function (or the quadratic loss function).
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