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Abstract 
 

In this paper, the Laplace decomposition method (LDM) and some modification, namely the Modified 
Laplace decomposition method (MLDM), are adopted to numerically investigate the optic soliton 
solution of the nonlinear complex Schrödinger equation (NLSE). The obtained results demonstrate the 
reliability and the efficiency of the considered methods to numerically approximate such initial value 
problems (IVPs). 
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1 Introduction 
 
The nonlinear complex Schrödinger equation (NLSE) is an equation which models many physical 
phenomena such as nonlinear optics, water waves, plasma physics, … etc. Particularly, the nonlinearity 
effects in an optic fiber including four-wave mixing, self-phase modulation, second harmonic generation, … 
etc. are modeled by the NLSE [1,2]. Moreover, the evolution of the envelope of modulated nonlinear water 
wave groups are essentially described by the NLSE. All these mentioned physical phenomena are eventually 
interpreted by the exact solutions for specified values of the NLSE’s parameters. In this paper we consider 
the Nonlinear Schrödinger equation (NLSE) of the form: 
 

2

2

2
0i P Q

t x

  
    

                                                                                                     (1) 
 

where ( , )x t  is a complex-valued function of real variables ( , )x t , and ,P Q  are nonzero real parameters. 

The NLSE (1) admits the optic soliton solution [3]:  
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in which 0PQ   gives the de-focusing case,  is a soliton velocity, 
2 2

(2 )P k   is a soliton wave 

number, k is a nonlinear frequency shift and 
0 0
,   are arbitrary constants. 

 
Last recent decades, the methods of decomposing have emerged as a powerful technique and as a subject of 
extensive analytical and numerical studies for large and general class of linear and nonlinear ordinary 
differential equations (ODE’s) as well as partial differential equations (PDE’s), fractional differential 
equations, algebraic, integro-differential, differential-delay equations  [4–17]. More precisely, the Adomian 
decomposition method is knowingly efficient in solving initial-value or boundary value problems without 
unphysical restrictive assumptions such as linearization, perturbation and so forth. The method provides the 
solution in an infinite series that is proven to converge rapidly with elegant computable components [4,5], 
[10]. In recent years a large amount of research work concerning the developing of the ADM is investigated 
see for instance [18–23]. In particular, the modification that was proposed by Wazwaz and El-Sayed [22], 
suggests that the zeroth component of the decomposition series can be divided into two  functions in which 
the first part is only assigned to the zeroth component whereas the second part is combined with recursive 
relation. This modified form is adopted along with the LDM to formulate the MLDM [24,25] and to be 
implemented in the current numerical study. 
 
 Laplace Decomposition Method (LDM) was introduced by Khuri [11,12] and has been successfully utilized 
for obtaining solutions of differential equations [6,7,9,14,17,26–34] and the NLSE of our interest. As, for 
instance, a recent study by Gaxiola [26] who applied the Laplace-Adomian decomposition method to a NLS-
like equation, namely the Kundu-Eckhaus equation, and the accuracy as well as the efficiency of the method 
is proved via examples, as for the nonlinear Schrodinger equation with harmonic oscillator the method of 
Laplace-Adomian was utilized in a comparison with another semi-analytical method to obtain approximate 
analytical solutions by Jaradat et al. [28] . The Powerfulness of this method is its consistency of Laplace 
transform and Adomian polynomials which guarantees an accelerative, rapid convergence of series solutions 
when compared with the ADM itself and therefore provides major progress [11,35,36]. The main numerical 
approach in this article is implementing the Laplace decomposition method (LDM) and the Modified 
Laplace Decomposition method (MLDM) to the NLSE (1), for this purpose the paper is organized to fully 
analyze the considered methods in Section 2. Numerical results are obtained and plentifully discussed via 
tables, illustrations and concluding remarks in Section 3. Finally, in Section 4 a brief conclusion is given. 
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2 Methodologies of the Used Methods  
 
2.1 LDM algorithm of the NLSE 
 
In this section we begin with reducing the nonlinear Schrödinger equation (NLSE) (1) into a system of 
coupled nonlinear equations involving the real and imaginary parts, by introducing the following 
transformation [11,37] : 
 

1 2
( , ) ( , ) ( , )x t x t i x t   

                                                                                                    (3) 
 

where 
1
( , )x t  and 

2
( , )x t  are real –valued functions. Substituting (3) into (1) we obtain the following 

system of coupled real equations with an initial value problem (IVP), to take the following form: 
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Rewriting (4) in the following operator form: 
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                                                                                    (6) 

 

where

2

2
,

t xx
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 are the linear differential operators, and    2 2

1 2 1 2 2
,N       , 

   2 2

1 2 1 2 1
,M         symbolize the nonlinear operators.  

 
Applying the Laplace Transform on both sides of the system in (6), and using the Laplace properties with the 
initial conditions, we get: 
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                                                       (7) 

 

The method assumes that the unknown functions 
1 2
( , ), ( , )x s x s   are expressed as infinite series in the 

form: 

1 1, 2 2,

0 0

( , ) ( , ) , ( , ) ( , )
n n

n n

x s x s x t x s   
 

 

  
                                         (8) 
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And the nonlinear operators are expressed in terms of an infinite series of the well-known Adomian 
polynomials (see for example [4,38] ) given by: 
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Listing below a few components of Adomian polynomials: 
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Using (8) and (9) into (7), we have: 
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According to (for example [4,11,12]), comparing both sides of (12) by applying the inverse Laplace 
transform, we obtain the subsequent components to take the following recursive relation:  
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                         (13) 

 

Obviously, the practical solution will be the n-term approximations of the infinite series (8). Thus the 
solution of (3) is given by: 

( , )x t     1,0 1,1 1,2 2,0 2 ,1 2,2
i            
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where 
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  . 

 

2.2 The Modified Laplace Decomposition Method (MLDM) algorithm of the NLSE 
 
The methodology of the LDM is implemented to the NLSE itself (1), along with Wazwaz modification [20, 
21] in which the zero components are split into two parts. According to it once we rewrite (1) in operator 
form, we proceed as follows: 
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                                                     (15) 
 

Where the nonlinear operator 
2

( )N     is decomposed using Adomian polynomials [38] into 

infinite series: 
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Here we may view the few first Adomian polynomials as follows: 
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Now, using(15), (16) and that the decomposition of the series 
0

( , ) ( , )
n

n

x t x t




   , we obtain: 
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                            (18) 
 
Identifying the recursive relation by comparing both sides of (18), then applying the inverse Laplace 
transform with its properties and using the given initial conditions we get: 
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The approximation is successfully obtained as the truncated series decomposition is given by: 
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where 

2

2
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Q


  . 

 

3 Numerical Results and Discussion 
 
In the present numerical computations and for the numerical study purposes, we will use the 2-term 
approximation (14), (20), due to the massive components of the series solution. We have assumed the 

involved parameters are given by 
0 0

1, 1, 2, 2k P Q          , the interval of spatial coordinate 

x    is [ 20,20] and maximum value of time is taken as 0.1t   sec. 

 

3.1 LDM results 
 
The module of the exact solution ( , )x t and the corresponding module of the numerical solution 

( , )
LDM

x t   with the help of two-term approximations of the decomposition series solution are shown in 

Fig. 1. Although we have used a low-order approximation which is led to high accuracy without loss of 

generality, this is totally achieved in Table 1 which exhibits the absolute errors ( , ) ( , )
LDM

x t x t     in 

constructions of the approximated ( , )
LDM

x t . 
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(a)      (b)    
 

Fig. 1. The plot of surface: (a) Exact module ( , )x t  of the equation (2). (b) Numerical module of 

LDM ( , )
LDM

x t  of the equation (14) 

 
Table 1. The error module ( , ) ( , )

LDM
x t x t    

 t 
x 0.0001 0.001 0.01 0.1 

-20 1.5987×10-14 1.5625×10-10 1.5625×10-6 0.015564 
-15 1.5543×10-14 1.5625×10-10 1.5625×10-6 0.015564 
-10 1.5321×10-14 1.5625×10-10 1.5625×10-6 0.015564 
-5 2.1538×10-14 1.6266×10-10 1.5691×10-6 0.015573 
0 3.0733×10-12 2.9236×10-9 1.4213×10-6 0.01396 
5 1.5321×10-14 1.5625×10-10 1.5625×10-6 0.015564 
10 1.5765×10-14 1.5625×10-10 1.5625×10-6 0.015564 
15 1.5765×10-14 1.5625×10-10 1.5625×10-6 0.015564 
20 1.5543×10-14 1.5625×10-10 1.5625×10-6 0.015564 

 
The calculated errors in Table 1 indicate a very good approximation with the actual solution by using two 
terms only and the error grows higher as the time value increases.  Fig. 2 (a) illustrates the three dimensional 
absolute error module for values of time [0, 0.1]  which its peak appears at 0.1t  . Whereas, Fig. 2(b), 

focuses on the peak of the surface where the absolute error module is seen at 0.1 sect   where it has been 

magnified when [ 5,5]x   . The exact solution ( , )x t  of the equation (1), the numerical solution  module 

( , )
LDM

x t of the equation [14] and the absolute error of the module ( , ) ( , )
LDM

x t x t     are compiled 

in Table 2.  The results we obtain show an acceptable agreement between the exact solution and the 
approximate solution, even at time where the peak of the error surface appears. 
 
 

(a)      (b)  
 

Fig. 2. The plots of: (a) The error module ( , ) ( , )
LDM

x t x t   . (b) The peak of the Error Module 

Curve when 0.1t   
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Table 2. The numerical results of the exact module (1), approximated module (14) and the  module 
error  

 

x ( , )x t  ( , )
LDM

x t  ( , ) ( , )
LDM

x t x t    

-5 1.9999 2.0155 0.015573 
-4 1.9985 2.0142 0.015705 
-3 1.9746 1.9925 0.017932 
-2 1.609 1.6589 0.049846 
-1 0.58801 0.55563 0.032376 
0 1.875 1.889 0.01396 
1 1.9924 2.0079 0.015487 
2 1.9995 2.0151 0.01556 
3 2. 2.0155 0.015564 
4 2. 2.0156 0.015564 
5 2. 2.0156 0.015564 

 

3.2 Modified LDM results 
 
In this subsection the achieved approximations using modified LDM will be discussed.  The interpretation of  
Fig. 3 indicates to the accuracy of modified LDM decreases considerably as the time interval extends which 
is certainly due to the complexity of the split and the massive components of the solution series (20) and the 

data results in Table 3 of the absolute error ( , ) ( , )
MLDM

x t x t    module prove it. 

 

(a)      (b)    
 

Fig. 3. The plot of surface of: (a) Exact module ( , )x t of the equation (2). (b) Numerical module of 

MLDM ( , )
MLDM

x t  of the equation (20) 

 

Table 3. The error module ( , ) ( , )
MLDM

x t x t    

 
x t 

0.0001 0.001 0.01 0.1 
-20 7.9802×10-8 7.9869×10-6 0.00080531 0.085765 
-15 5.6377×10-8 5.6468×10-6 0.00057374 0.066362 
-10 6.6538×10-8 6.6335×10-6 0.00064101 0.020131 
-5 1.6119×10-8 1.6089×10-6 0.00015788 0.012966 
0 3.9583×10-9 3.67×10-7 8.8355×10-6 0.017336 
5 8.6222×10-8 8.6189×10-6 0.00085836 0.080951 
10 7.5549×10-8 7.5638×10-6 0.00076522 0.084397 
15 3.4809×10-8 3.4498×10-6 0.00031235 0.017082 
20 1.0024×10-8 1.0022×10-6 0.00010004 0.0097977 
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At the end, as a completion of our numerical study a representation of the peak of the error surface at time 
0.1t   as a three dimensional graph where the approximation and the exact solution meet and diverse is 

presented in  Fig. 4(a). Moreover, the graphical and the tabulated data of the comparison between the exact 
solution and the approximate MLDM solution with its absolute error in Fig. 4(b) and Table 4 reveals an 
acceptable agreement of the series solution.  
 

(a)      (b)  
 

Fig. 4. The plots of: (a) The error module ( , ) ( , )
MLDM

x t x t   . (b) The peak of the Error Module 

curve when 0.1t   
 

Table 4. The numerical results of the exact module (1), approximated module (20) and the  module 
error  

 

x ( , )x t  ( , )
MLDM

x t  ( , ) ( , )
MLDM

x t x t    

-5  1.9999  2.0129  0.012966 

-4  1.9985  2.0526  0.05414 

-3  1.9746  2.0165  0.04196 

-2  1.609  1.7139  0.10489 

-1  0.58801  0.79691  0.2089 

0  1.875  1.8577  0.017336 

1  1.9924  2.0136  0.021197 

2  1.9995  2.0853  0.085782 

3  2.  1.9495  0.050521 

4  2.  2.04  0.039992 

5  2.  2.081  0.080951 
 
Remark: 
 
Obviously, any good numerical schemes should have satisfactory long time numerical behavior which is 
mostly accomplished by increasing the number of iterations which may be costly in time or try different split 
in the modified LDM. Despite some studies (see for example [24,25]) have proposed different splits, more 
components of the decomposition series have to be calculated.  
 

3.3 Comparison of the numerical results for the NLSE IVP 
 
In this subsection, a comparison between the numerical approximate solutions obtained using the LDM and 
the MLDM with the exact optic soliton solution (2) throughout their related absolute errors in Table 5 
demonstrates the efficiency and the accuracy of the considered approaches within only a few terms of the 
series solution. Additionally, the observed absolute errors prove that the LDM has the advantage of being 
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stabilized accurate approach over the MLDM which is also shown via illustrated three dimensional error 
module graph Fig. 2 (a), Fig. 4(a)  at 0.1t  when the peak of the error appears. 
 
Table 5. Numerical comparison of the absolute errors obtained by the Laplace decomposition method 

( , )LDM x t and the modified Laplace decomposition method ( , )MLDM x t  

 
t  x  

LDM
    

MLDM
    t  x  

LDM
    

MLDM
    

0.0001 -20 1.5987×10-14 7.9802×10-8 0.01 -20 1.5625×10-6 0.00080531 
 -15  1.5543×10-14  5.6377×10-8  -15  1.5625×10-6  0.00057374 
 -10  1.5321×10-14  6.6538×10-8  -10  1.5625×10-6  0.00064101 
 -5  2.1538×10-14  1.6119×10-8  -5  1.5691×10-6  0.00015788 
 0  3.0733×10-12  3.9583×10-9  0  1.4213×10-6  8.8355×10-6 
 5  1.5321×10-14  8.6222×10-8  5  1.5625×10-6  0.00085836 
 10  1.5765×10-14  7.5549×10-8  10  1.5625×10-6  0.00076522 
 15  1.5765×10-14  3.4809×10-8  15  1.5625×10-6  0.00031235 
 20  1.5543×10-14  1.0024×10-8  20  1.5625×10-6  0.00010004 
0.001 -20 1.5625×10-10 7.9869×10-6 0.1 -20 0.015564 0.085765 
 -15 1.5625×10-10 5.6468×10-6  -15 0.015564 0.066362 
 -10 1.5625×10-10 6.6335×10-6  -10 0.015564 0.020131 
 -5 1.6266×10-10 1.6089×10-6  -5 0.015573 0.012966 
 0 2.9236×10-9 3.67×10-7  0 0.01396 0.017336 
 5 1.5625×10-10 8.6189×10-6  5 0.015564 0.080951 
 10 1.5625×10-10 7.5638×10-6  10 0.015564 0.084397 
 15 1.5625×10-10 3.4498×10-6  15 0.015564 0.017082 
 20 1.5625×10-10 1.0022×10-6  20 0.015564 0.0097977 

 

4 Conclusion 
 
In this work, the LDM and modified version of it, namely the MLDM, have been successfully implemented 
to approximate an optic soliton solution of the nonlinear complex Schrödinger equation (NLSE) with an 
initial value problem (IVP). A transformation has been presented so that a system of coupled real partial 
differential equations is obtained and to be numerically solved in order to approximate the NLSE solution. In 
spite of, some studies [26,28] in which the Laplace transform has been applied directly to the equation of 
interest .On the other hand, based on Wazwaz’s modification [20] the solution of the NLSE is examined.  
The obtained results are investigated via illustrations and tables. Therefore, it is predictable, that the LDM 
and the MLDM are effective techniques to investigate numerical solutions of nonlinear complex problems. 
The LDM has the advantage of being a stabilized accurate method over the MLDM. Additionally, the 
considered methods are converging very rapidly with fewer terms of the series solution. 
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